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Abstract 

The invisible and complex transfer of embodied carbon emissions makes the traditional production or 

consumption approach insufficient to inform emissions abatement actions because carbon 

communities have emerged during the transmission procedure of embodied carbon emissions. The 

carbon community—a group of sectors with more intensive embodied carbon emissions trades within 

the group than outside—provides the missing critical information about carbon abatement beyond the 

commonly used production and consumption approaches. This research aims to detect the carbon 

communities and examine the effect of community structure on sectors’ direct carbon emissions. 

Unlike the industrial agglomeration in traditional economics and management studies, where the 

border is predefined in a geographical or administrative region, the hybrid input-output analysis and 

network analysis method detects the carbon communities data-driven, focusing on the embodied 

carbon emissions trades. Moreover, the hierarchical linear model examines the effect of community 

structure on sectors’ direct carbon emissions to inform climate change policy-making and planning. 

The findings suggest around 19 carbon communities existing in China, which can advise local 
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governments on their external cooperation strategies for a synergy. In addition, the regression results 

indicate that the increasing size and density of carbon communities can help mitigate sectors’ direct 

carbon emissions.  

Keywords 

carbon emissions; transmission; network analysis; input-output analysis; community; industrial 

agglomeration  

 

1. Introduction 

The invisible and complex transfer of embodied carbon emissions is one of the main challenges for 

China to achieve its carbon peak and neutral goals (Duan et al., 2018; Mo et al., 2018). When the 

products of a sector are used by another sector, the carbon emissions produced by the first sector are 

transferred to the second sector in an embodied form. While the world economy and the domestic 

market in China have grown, the linear relationship between industries has been replaced by vertical, 

horizontal, and multi-lateral connections (Wu et al., 2021; Zhao et al., 2021). The complexity makes 

the assessment of critical sectors and regions that are responsible for emissions particularly difficult. 

The commonly used production-based and consumption-based accounting methods (Yang et al., 2021) 

focus on the beginning and the end of the supply chain system, while overlooking a large number of 

sectors participating in the transmission of emissions.  

A transmission perspective can offer new insights for climate change policy-making by putting more 

pressure on sectors up and down the supply chains. Unlike the production and consumption 

perspective, which assigns the emissions abatement responsibilities to a few important sectors, the 

transmission perspective values the collective efforts of all the sectors in the economy. Adopting a 

transmission perspective requires a deeper focus on what happens between the production of goods 

and services where fossil fuels are burnt and their final consumption. All sectors of the economy 

along the transmission procedure can be scrutinized, and the collective effort across all sectors of the 

economy is encouraged to pursue deeper carbon abatement. The transmission perspective has 

emerged as an important research topic (Hanaka et al., 2017; Li et al., 2017; Liang et al., 2016). 

Recent attempts have been made to identify the critical sectors or clusters of sectors to use as leverage 

points for effective emissions abatement (Huang et al., 2019; Kagawa et al., 2015; Liang et al., 2016, 

2015). In addition, some studies examined the effect of a sectors' transmission-related characteristics 

on emissions (Jiang et al., 2019; Wang et al., 2017).  

The carbon community concept is a better tool for materializing the transmission perspective but has 

rarely been implemented in studying China’s emissions. The carbon community is a group of sectors 
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with much more intensive embodied carbon emissions trades within the group than outside. This 

‘carbon community’ concept is similar to the ‘cluster’ concept in input-output analysis (IOA), which 

identifies the critical clusters of sectors along the transmission to leverage carbon abatement efforts 

(Kanemoto et al., 2018). However, the IOA- based clusters are identified alongside the pre-defined 

supply chain, usually with a pre-defined number of sectors in each cluster. In contrast, the carbon 

community is detected data-driven based on the embodied emissions transmission procedure within 

the whole economy. Almost all the sectors are grouped into communities. In addition, for the current 

research examining the effect of the embodied emissions transmission characteristics on sectors’ 

direct carbon emissions, only the transmission structure characteristics at the sector level were 

considered (Jiang et al., 2019; Wang et al., 2017).  

The carbon community can be viewed as a form of industrial agglomeration where many industries 

are geographically concentrated. While industrialization and urbanization have been progressing 

rapidly in China, industrial agglomerations have emerged, and their impacts on climate change are 

studied in-depth to inform policy-making and planning (Wang and Wang, 2019; Zheng et al., 2017). 

Unlike the traditional industrial agglomeration, which is usually pre-defined in a geographical or 

administrative region such as the Beijing-Tianjin-Hebei area, the carbon community is detected 

data-driven from the whole Chinese economy perspective. For example, we have detected the carbon 

communities in the embodied carbon emissions network in 2012 and found that the 30 sectors of 

Beijing were separated into six carbon communities of 10 provinces. Thus, the identified carbon 

communities can tell the closely connected sectors of provinces in terms of embodied carbon 

emissions trades, which can be targeted together by relevant policies for synergistic effects.  

Our research contributes to the literature in the following ways. First, this study is among the first to 

introduce the hybrid method of network analysis and input-output analysis to reveal embodied carbon 

emissions transmission patterns and examine the effect of sectoral interdependence on carbon 

emissions from a meso perspective. Compared with input-output analysis, network analysis is more 

from a system-wide view and can provide the research result easy-to-understand and visually 

appealing. Secondly, this research applied the community concept in China by province and by sector. 

Unlike the cluster of sectors identified alongside the pre-defined supply chain or the industrial 

agglomeration pre-defined in a region (Kanemoto et al., 2018; Wang and Wang, 2019; Xu et al., 

2018), we detect the carbon communities where sectors have intensive embodied carbon emissions 

trades data-driven with no pre-assumption. The research results will inform China's carbon emission 

policies at the national, provincial and sectoral levels. Thirdly, the research examines the effect of 

community structure on sectors’ direct carbon emissions, which were seldomly discussed in previous 

studies. The research results can advise how to leverage the community structure on emissions 

abatement efforts. 
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This paper is built on our previous work, Carbon Communities and Hotspots for Carbon Emissions 

Reduction in China (Huang et al., 2019). We have accomplished a large amount of work to conduct 

further research and offer new insights. In this new research, the focus is to reflect the dynamics of 

carbon communities from 2007 to 2012 and examine the effect of community structure on sectors' 

direct carbon emissions. In contrast, our previous paper focused on a descriptive study of the 

embodied carbon emissions network in 2012. In addition, a new community detection algorithm is 

introduced in our current work to ensure the robustness of the carbon community division results. The 

paper is structured as follows. Section 2 introduces methods and data sources used in the research. 

Section 3 and section 4 provide results and discussion of this empirical study. Finally, section 5 

concludes with policy suggestions and future studies.  

2. Materials and methods 

2.1 Methods 

Environmentally extended input-output analysis (EE-IOA), network analysis, and statistical analysis 

are adopted in the research. EE-IOA is used to provide the information on the embodied carbon 

emissions flows among sectors of regions. On this basis, network analysis offers the toolbox to 

examine the embodied carbon emission from macro and meso perspectives. Moreover, statistical 

analysis is used to research how the embodied emissions transmission-related characteristics may 

influence sectors’ direct emissions.  

2.1.1 Embodied carbon emissions network construction  

EE-IOA model lays the groundwork for the embodied carbon emissions network. The Leontief 

inverse matrix 𝑳 = (𝑰−𝑨) −1
 reflects the direct and indirect input requirements of sector’s outputs from 

other sectors(Leontief, 1970). Complemented with the carbon intensity information of each sector, the 

embodied carbon emission flows transmitted amid sectors can be outlined by matrix 𝑮 = 𝒌̂𝑳𝒇̂, where 

k is the carbon emission intensity vector, 𝑳 is the Leontief inverse matrix, and 𝒇 is the final demand 

vector (Lenzen et al., 2012; Wiedmann et al., 2015). Detailed formula derivation and the embodied 

carbon emissions network construction steps can be found in our previous work (Huang et al., 2019). 

Each network is represented by 𝔾(𝑁, 𝐿). For ease of expression, sector 𝑖 in region 𝑟 is referred as 

sector 𝑛, and sector 𝑗 in region 𝑠 is referred as sector 𝑚. The set of nodes is defined by 

vector 𝒱(𝑁) = {1,2, ⋯ , 𝑁}, N= the sum of sectors within each region, and the set of directed edges is 

defined by the matrix 𝐿 = {ℯ𝑛𝑚|𝑛 → 𝑚, 𝑛, 𝑚 ∈ 𝒱(𝑁), 𝑞𝑛𝑚 > 0 }. The term 𝑞𝑛𝑚 denotes the 

quantity of embodied carbon emissions transferred from sector 𝑛 to sector 𝑚.  

Based on the raw embodied emissions network, network analysis algorithms and metrics are used to 

prevail the transmission pattern more clearly and systematically examine the transmission 

characteristics. The backbone of the raw emissions network is drawn out by using the network 
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reduction algorithm proposed by Serrano et al.’s (2009) and a threshold of one tone (Huang et al., 

2019). While noise in the raw network is significantly reduced to ensure the effectiveness of network 

algorithms and metrics, the essential multi-scale network structure is maintained in the backbone 

network. Moreover, network analysis metrics are used to examine the transmission pattern at the 

sector and community levels. In network theory, the changes in the topological structure of the 

underlying network have a critical influence on how the whole network will function or perform. In 

the context of this research, the structure of the embodied carbon emissions transmission network may 

affect sectors’ carbon emissions. 

2.1.2 Hierarchical linear model  

Statistical analysis is adopted to measure the effect of transmission-related characteristics on sectors’ 

carbon emissions. Structural decomposition analysis (SDA) is frequently used to analyze the overall 

change of the Leontief inverse matrix on carbon emissions. Though the Leontief inverse matrix 

reflects economic structure information from a macro perspective, a more systematic view is required 

to use the rich information provided by the matrix. Using statistical analysis, we can examine the 

influence of economic structure in more detail, especially from the community perspective. For 

example, the effect of community size on carbon emissions can be examined, which SDA analysis 

cannot reveal. 

Embodied carbon emission networks have multi-level data structures. In these nested structures, the 

quantity of carbon emissions produced by a sector is influenced not only by the network structure at 

the individual sector level, but also by the community structure where the embodied carbon emissions 

trades were more intensive than outside, as shown in Figure1. The influence mechanisms at the node 

and community level interact and affect a sector’s carbon emissions. For example, two sectors with 

the same values for transmission characteristics, such as the number of export partners, may have a 

different influence on emissions depending on their roles in their communities. At the same time, 

sectors that belong to the same community have the same community structure metric values, such as 

the community size.  
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This research adopts a hierarchical linear model to measure the effect of sector-level and 

community-level network structures on sectors’ carbon emissions, as well as their interactions. The 

hierarchical linear model is widely used in management, education, and medical research (Bowers & 

Urick, 2011; Gentry & Martineau, 2010; Otaniet al., 2012; Zhang et al., 2018). It allows the 

individual-level variables to act on the outcome variable differently in each group by adding a random 

effect. During the estimation procedure, both the fixed effects at multiple levels and the heterogeneity 

of individual-level variables’ influence are considered. Specifically, the heterogeneity is achieved by 

adding a random effect on the basis of fixed effect for the sector level network structure variables in 

the model. 

The multi-level structure should be determined before constructing a hierarchical linear model. While 

the network structure at the sector node level is regarded as level 1, the community level is regarded 

as level 2. Moreover, for level 2, a time effect is added to communities. The data modelled in this 

study cover the years 2007, 2010, and 2012 and each sector belongs to a year-community. For 

example, the agriculture sector of Beijing in 2012 belongs to 2012-community 3, and its community 

ID is assigned as 2012_3. In this way, 2653 sectors are divided into 53 mutually exclusive 

year-communities. The details about the community division of sectors can be found in Appendix A.2. 

In addition, all the network structure variables are normalized in this study to avoid multi-collinearity 

and increase the model's interpretability.  

Following the common practice adopted in the hierarchical linear models (Luke, 2004), four models 

were set up in the study. 

Model (1). This is a random intercept model that contains only individual sector-level network 

structure variables as fixed effects. Because this study standardizes all the dependent and interpreted 

variables, there is no intercept term in the estimation equation. Models (2), (3), and (4) are treated in 
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the same way. In addition, 𝑦𝑖𝑗 is the independent variable, referring to the carbon emissions 

(logarithm) produced by sector 𝑖 of year-community 𝑗. 

Level 1:  

𝑦𝑖𝑗 = ∑ 𝛽𝓀 ∙ 𝑆𝑒𝑐𝑡𝑜𝑟_𝐿𝑒𝑣𝑒𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑗𝓀

𝛫

𝓀=1

+ 𝜉0𝑗 + 𝜀𝑖𝑗，𝜀𝑖𝑗~𝑁(0, 𝜎2) 

（𝑖 = 1, … . , 2653，𝑗 = 1, … , 53） (1) 

Level 2:  

 𝜉0𝑗 = 𝑢0𝑗，𝑢0𝑗~𝑁(0, 𝜏00
2 ) (2) 

In these formulas, 𝑆𝑒𝑐𝑡𝑜𝑟_𝐿𝑒𝑣𝑒𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑗𝓀 is the 𝓀-th sector-level network structure variable of 

sector 𝑖 of year-community 𝑗. 𝜉0𝑗 is a random variance difference between communities. 𝜀𝑖𝑗 is the 

random error term of the model at the sector level, satisfying the homoscedastic assumption of 

statistical models. Model (1) does not include any independent variables at the year-community level, 

and all the information relevant to communities is attributed to the random term 𝜉0𝑗. 

Model (2): This random intercept model includes sector- and community-level network structure 

variables as fixed effects. Based on Model (1), Model (2) adds network structure variables at the 

community level as fixed effects 𝛾ℓ(𝑙 = 1, … , 4). 

Level 1:  

𝑦𝑖𝑗 = ∑ 𝛽𝓀 ∙ 𝑆𝑒𝑐𝑡𝑜𝑟_𝐿𝑒𝑣𝑒𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑗𝓀

𝛫

𝓀=1

+ ∑ 𝛾ℓ ∙ 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦_𝐿𝑒𝑣𝑒𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠ℓ

𝐿

ℓ=1

 + 𝜉0𝑗 + 𝜀𝑖𝑗， 

𝜀𝑖𝑗~𝑁(0, 𝜎2)，𝑖 = 1, … . , 2653，𝑗 = 1, … , 53 (3) 

Level 2:  

𝜉0𝑗 = 𝑢0𝑗，𝑢0𝑗~𝑁(0, 𝜏00
2 ) (4) 

The coefficients 𝛽𝓀(𝓀 = 1, … ,8) of sector-level network structure variables in both Model (1) and 

Model (2) do not change with the year-communities. In other words, the individual sector-level 

network structure influences a sector’s carbon emissions in the same way in all year-communities.  

Model (3): This random coefficient model includes sector- and community-level network structure 

variables. Based on Model (2), for the influence mechanism of sector-level structure on carbon 

emissions, a random term that varies with year-communities is added so that sector-level network 

structure influences a sector’s carbon emissions differently in each year-community.  

Level 1:  

𝑦𝑖𝑗 = ∑ 𝛽𝓀𝑗 ∙ 𝑆𝑒𝑐𝑡𝑜𝑟_𝐿𝑒𝑣𝑒𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑗𝓀

𝛫

𝓀=1

+ ∑ 𝛾ℓ ∙ 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦_𝐿𝑒𝑣𝑒𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠ℓ

𝐿

ℓ=1

 + 𝜉0𝑗 + 𝜀𝑖𝑗， 

𝜀𝑖𝑗~𝑁(0, 𝜎2)，𝑖 = 1, … . , 2653，𝑗 = 1, … , 53 （5） 

Level 2: 
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𝛽𝓀𝑗 = 𝛿𝓀𝑗 + 𝜖𝑗𝓀，𝜖𝑗𝓀~𝑁(0, 𝜏𝓀𝑗
2 ) 

𝜉0𝑗 = 𝑢0𝑗，𝑢0𝑗~𝑁(0, 𝜏00
2 ) (6) 

In these formulas, the effect of the 𝓀-th sector level structure variable on carbon emissions is 

composed of a fixed part (𝛿𝓀𝑗) and a random term (𝜖𝑗𝓀). The former can be interpreted as the average 

effect of sector-level structure on carbon emissions, and the latter as a random effect which will be 

different for each year-community. This random term is introduced to take account of the 

heterogeneity of the impact of sector-level structure variables on carbon emissions, reflecting the 

multi-level structure of the data. 

Model (4): Based on Model (3), Model (4) adds control variables to the model, reflecting the 

differences in sectors’ economic characteristics, industrial production processes, and energy use. 

When developing multi-level linear models, maximum likelihood estimation or restricted maximum 

likelihood estimation is generally used. There is not a significant difference in the values of the 

estimated coefficients between the two. The main difference is in the estimation of the variance part 

of the fixed effect and the random effect in the multi-level linear model. This study uses restricted 

maximum likelihood estimation, which is more common in the literature (Leeuw et al., 2008). 2.2 

Data and variables 

Energy consumption datasets, carbon emissions datasets, and the multi-region input-output (MRIO) 

datasets from the China Emission Accounts and Datasets (CEADs) (http://www.ceads.net) are used 

for this analysis. This empirical study looks closely at the transmission of the embodied carbon 

emissions from 2007 to 2012. These datasets are used to construct the embodied carbon emission 

transmission network and provide variables for the proposed hierarchical linear model. The MRIO 

tables of China for 2007, 2010, and 2012 are used to provide information on monetary flows between 

30 sectors and 30 provinces in China. To match the sectors between the provincial-level CO2 emission 

inventories and the China MRIO tables, sectors are aggregated or disaggregated. Please see Table A.1 

in Appendix A in our previous work (Huang et al., 2019) for the sector matching details. The dataset 

consists of 30 sectors and 30 provinces after the matching process. In addition, the intervening period 

between 2007 and 2012 is a crucial period when China emerged as the world’s manufacturing hub. 

Though there is a time lag, the research results can still provide insights into current policies.  

2.2 Data and variables 

2.2.1 Independent variables 
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This paper applies network analysis metrics to examine the embodied carbon emissions transmission 

procedure at both sector and community levels. The metrics are briefly introduced in table 1, and the 

detailed definitions and formulas are provided in Appendix A.1.  

The multi-level modularity optimization algorithm is used to detect the carbon communities formed in 

the embodied emissions transmission procedure(Blondel et al., 2008). Additionally, to ensure 

robustness, the fast greedy modularity optimization algorithm proposed by Clauset (2004) was also 

applied to the network for community detection. Both algorithms do not pre-define the number of 

communities, and they are commonly used to discover communities in large complex networks 

(Bassett et al., 2011; Del Río-Chanona et al., 2017; Jia et al., 2018). 

Metrics Definition Calculation Interpretation 

Community-level network structure variables 

Community size 

The number of 

nodes contained 

in a community 

 

The number of 

sectors contained in a 

community 

Community density 

The ratio of the 

existing edges to 

all possible edges 

in a community 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗 =
𝑙

[𝑛 ∗ (𝑛 − 1)]/2 
 

The ratio of the 

existing embodied 

carbon emissions 

trades to all possible 

trades 

The community average path 

length 

The expected 

number of edges 

between any pair 

of nodes in a 

community 

𝐴𝑃𝐿𝑗 =
1

𝑛 ∙ (𝑛 − 1)
∙ ∑ 𝑑(𝑣𝑚, 𝑣𝑛)

𝑖≠𝑗

 

The expected number 

of embodied carbon 

trades between any 

two sectors in the 

community 

Assortativity 

The likelihood 

that nodes with 

high degrees tend 

to be connected 

with others with 

high degrees 

𝑟𝑗

=

1

|𝐷𝑗|
∙ ∑ 𝑘𝑚𝑘𝑛 − [

1

|𝐷𝑗|
∙ ∑

1
2

∙ (𝑘𝑚 + 𝑘𝑛)]

2

1

|𝐷𝑗|
∙ ∑

1
2

∙ (𝑘𝑚
2 + 𝑘𝑛

2) − [
1

|𝐷𝑗|
∙ ∑

1
2

∙ (𝑘𝑚 + 𝑘𝑛)]

2 

The likelihood that 

sectors with a large 

number of trade 

partners tend to be 

connected with each 

other 

Sector-level network structure variables 

Degree 

Centrality 

In-degree 

The number of 

incoming edges 

to a node  

𝐷𝑒𝑔𝑟𝑒𝑒𝑖
𝑖𝑛 = ∑ 𝐼[𝑞𝑗𝑖 > 0]

𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)

  

The number of a 

sector’s import 

partner sectors on 

embodied emissions 

Out-degree 

The number of 

outgoing edges 

from a node 

𝐷𝑒𝑔𝑟𝑒𝑒𝑖
𝑜𝑢𝑡 = ∑ 𝐼[𝑞𝑖𝑗 > 0]

𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)

 

The number of a 

sector’s export 

partner sectors on 

embodied emissions 

Strength 

Centrality 

In-strength 

The weights 

assigned to all the 

incoming edges 

to a node 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖
𝑖𝑛 = ∑ 𝑞𝑗𝑖

𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)

 

The amount of 

embodied emissions a 

sector imports from 

others  

Out-strength 

The weights 

assigned to all the 

outgoing edges 

from a node 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖
𝑜𝑢𝑡 = ∑ 𝑞𝑖𝑗

𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)

 

The amount of 

embodied emissions a 

sector exports to 

others 

Closeness 

Centrality 
Closeness-up 

The distance 

between a node as 

the end and others 

nodes as starts 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑈𝑝𝑖 = 𝑓 ∙ (∑ 𝐴𝑙

∞

𝑙

) ∙ 𝐽𝑖 ∙= 𝑓𝑇𝐽𝑖𝕐 

The total weights of 

the carbon emission 

transfer paths ending 

in a sector 
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based on the 

shortest path 

Closeness-down 

The distance 

between a node as 

the start and 

others as the ends 

based on the 

shortest path 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝐷𝑜𝑤𝑛𝑖 = 𝑓 ∙ 𝐽𝑖 ∙ (∑ 𝐴𝑙

∞

𝑙

)

= 𝑓𝐽𝑖𝑇𝕐  

The total weights of 

the carbon emission 

transfer paths starting 

in a sector 

Clustering Coefficient 

The likelihood 

that the neighbors 

of a node are 

connected 

𝐶𝐶𝔾(𝑖) =
# {𝑗𝑘|𝑘 ≠ 𝑗, 𝑗 ∈ 𝑁𝔾(𝑖), 𝑘 ∈ 𝑁𝔾(𝑖)}

𝑑𝔾(𝑖)(𝑑𝔾(𝑖) − 1)/2
  

The likelihood that 

the trade partners of a 

sector are also trade 

partners themselves 

Betweenness Centrality 

The total amount 

of flows going 

through a node 

bi = fTJiTy  

* Details can be found in Liang’s (2016) 

research. 

The total quantity of 

embodied emissions 

flows passing a sector 

from all others  

Table1 Network metrics in the context of carbon emissions transfer network 

2.2.2 Dependent variable and other control variables 

The dependent variables of the model are the quantities of carbon emissions directly produced by each 

sector in 2007, 2010, and 2012 (in thousands of tons). Figure 2 shows that the carbon emissions of 

various sectors each year have a highly skewed distribution. Therefore, this study performs a 

logarithmic transformation of the dependent variables (see Figure 3), adjusting the data to align with 

the statistical model assumptions. 

 

Figure 2 Probability density distribution of direct carbon emissions in 2007, 2010 and 2012 
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Figure 3 Probability density distribution of direct carbon emissions in 2007, 2010 and 2012  

(Logarithmic transformation) 

2.2.3 Other control variables 

The data used in this study covers the three years of 2007, 2010, and 2012. Because the Chinese 

economy developed fast during this period, the effect of time on the relationships between structure 

variables on carbon emissions is considered in this research. Therefore, this study introduces two 

time-effect dummy variables: 

𝑌𝑒𝑎𝑟_2010 = {
 1, if from the year 2010 data；

0, if not from the 2010 data；
 

𝑌𝑒𝑎𝑟_2012 = {
 1, if from the year 2012 data；

0, if not from the 2012 data；
 

Because the sector's characteristics may impact its carbon emissions, they are also taken as control 

variables in this study. Two dummy variables are introduced that characterize the nature of the sector, 

whether it belongs to the primary sector, manufacturing sector, or service sector: 

 𝑆𝑒𝑐𝑡𝑜𝑟_𝐼𝑛𝑑𝑢𝑠 = {
 1, if it is a manufacturing sector;

0, if else；
 

𝑆𝑒𝑐𝑡𝑜𝑟_𝑆𝑒𝑟𝑣 = {
 1, if it is a service sector；

0, if else；
 

In addition, variables reflecting differences in economic characteristics, industrial production 

processes, and energy use are also introduced. To reflect a sector’s economic features, its GDP, fixed 

capital depreciation, employee compensation, net taxes on production, and operating surplus are 

added to the model after logarithmic transformation. Furthermore, carbon emissions per unit of added 

value, and the ratio of intermediate input to final output, are added to the model as proxies for 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



variations in production processes. In addition, to reflect a sector’s preference in energy use, as coal is 

the primary energy type in China, the ratio of coal to all fossil fuels is used as a proxy for the sector’s 

energy use structure. 

 

3. Identification of carbon communities  

3.1 Overview of the emissions transmission in China from 2007 to 2012 

Three embodied carbon emissions networks are constructed to reveal the transmission procedure amid 

30 sectors of 30 provinces in China from 2007 to 2012. Each network has 900 nodes representing 

provinces' sectors and has directed edges from 719,084 to 776,161, representing the transferred 

amount and direction of embodied carbon emissions. On this basis, the backbones of the three raw 

emissions networks are extracted to reveal the transmission patterns of embodied carbon emissions 

more clearly and to ensure the well-functioning of network metrics and algorithms. The robustness of 

the network reduction algorithm is checked by its application to the network data for the three years, 

2007, 2010, and 2012, as shown in Table 2. The edges are dramatically reduced, with only about 7% 

of the raw network edges retained. However, more than 92% of embodied carbon emissions and 

multi-scale structural features are kept. The backbone network is characterized by scale-free, which 

has the presence of large hubs. In addition, a long-tail distribution can be observed for both network 

degree and strength, as presented in Figure 4. 
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Year 2007 2010 2012 

Raw Network 

Number of nodes 900 900 900 

Number of edges 719,084 776,161 774,391 

Total edges weights 

(Unit: thousand tonnes) 
6,501,038.594 7,928,532.445 10,143,742.76 

Backbonenetwork 

 

Number of nodes 883 884 886 

Percentage of retained 

nodes 
98.11% 98.22% 98.44% 

Number of edges 51,928 51,003 54,670 

Percentage of retained 

edges 
7.22% 6.57% 7.06% 

Total edges weights 

(Unit: thousand tonnes) 
6,019,726 7,376,856 9,428,826 

Percentage of retained 

edges weights 
92.60% 93.04% 92.95% 

Table 2 Raw network and reduced network comparison 

 

 

Figure 4. Degree and strength distribution of 2012 reduced embodied carbon emission network 

Figure 5 presents the embodied carbon emissions transmission pattern at the national level from 2007 

to 2012. In these networks, each node corresponds to a sector within a province. Sectors of the same 

province are put into the same color. The direction, color, and width of each edge represent the 

transmission direction, the province of the source sector, and the amount of the transmitted emissions, 

respectively. The sectors with intensive embodied carbon emissions trade are put nearby, while 

sectors with no trades are forced apart using the OpenOrd algorithm (Martin et al., 2011). From 2007 

to 2012, the embodied carbon emissions were distributed unevenly among sectors of provinces. While 

clusters of sectors can be observed at the heart of the network, some isolated sectors are put on the 

periphery. In 2007, several components of provinces could be observed. Probably due to the shock of 

the financial crisis in 2008, the network became more separated in 2010. While the economy 

recovered, the network became more integrated in 2012, and a large component can be observed at 

the heart of the network.  
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Figure 5. Embodied carbon emissions network from 2007 to 2012 

The emissions transfer activities amid sectors of provinces were weekended by the 2008 global 

financial crisis, while the absolute amount of the transferred emissions increased steadily from 2007 

to 2012. Four metrics were used to examine the network structure change in table 3. The average 

degree, which measures the number of direct trading partners of each sector, decreased by 1.9% from 

2007 to 2010 and increased by 6.9% from 2010 to 2012. This result is consistent with the change in 

network density. The trading closeness of sectors in the emission network is measured by network 

density, which calculates the percentage of the actual trade relationships in the network to the number 

of all possible trade relationships in the network. The network density in 2007 was 0.067, which 

means that 6.7% of the possible trades existed in the actual network. This index decreased in 2010 and 

increased in 2012. The same trend can be observed in average path length and average clustering 

coefficient.  

The embodied carbon emissions network is also characterized by “small world,” suggested by a small 

average path length and a large average clustering coefficient. The small average path length indicates 

that any two sectors in the emissions network can be connected through a small number of edges. In 

addition, the high overall clustering coefficient means that a sector’s transfer partner sectors are likely 

to transfer emissions directly between themselves. Finally, the small world characteristic suggests that 

the emissions can be easily transferred from a sector to others quickly.  

Table 3 Network structure of embodied carbon emissions from 2007 to 2012 

3.2 Carbon communities in China from 2007 to 2012 

Year 
2

007 
2010 2012 

Average degree (average number of each sector’ trade partners) 
5

8.809 

5

7.696 

6

1.704 

Average path length (the minimum number of embodied 

carbon trades to connect any two sectors in the emissions 

network). 

2.

363 

2.

391 

2.

38 

Average clustering coefficient (the probability that a sector’ 

partner sectors have emissions transfer directly between the 

partners themselves) 

0.

377 

0.

397 

0.

378 
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Carbon communities of sectors within provinces are outlined in the embodied carbon emissions 

network. In these carbon communities, the sectors have much more intensive embodied carbon 

emissions trades within their communities than outside. Multi-level modularity optimization 

algorithm(Blondel et al., 2008) and fast greedy modularity optimization algorithm (Clauset et al., 

2004) are used to detect the carbon communities and ensure robustness. There are 17 communities 

detected in the year 2007 and 2010, and 19 communities in 2012. In addition, the percentage of 

carbon flows captured within a community out of total flows ranges from 50.05% to 98.05%. It 

suggests that each community has a fairly distinct boundary, because more than half of the embodied 

carbon emissions are kept within the boundary. At the same time, some communities still have 

extensive embodied emissions trades with outside sectors. Take the community of 

Tianjin-Beijing-Inner Mongolia community in 2012 as an example. While 56.24% of the embodied 

carbon emissions were captured, the community also had significant emission trades with Hebei, 

Shanxi, and Shandong.  

The carbon communities generally formed within the traditional regional division in China from 2007 

to 2012. Figure 6 presents the community detection result on the map of China. China is usually 

divided into six to eight regions (i.e., North, Northeast, East, Central, South, Southwest, and 

Northwest) in official channels. This regional division is also frequently used in academic papers 

analyzing the inter-regional carbon emissions transfer from a consumption perspective (Duan et al., 

2018; Zhou et al., 2017). Thus, the carbon community detection results are consistent with the 

traditional wisdom. In addition, the sectors within the same province are usually grouped in the same 

community.  

Figure 6 Community of provinces in the embodied carbon emissions network from 2007 to 2012 

(Note: The same color is applied to the sectors within the same community. ) 

However, there is more than one carbon community within one region. Therefore, different targeted 

policies can be set for the carbon communities with the same region. For example, the northeast 

region consists of Inner Mongolia, Liaoning, Jilin, Heilongjiang. These four provinces were nearby 
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geographically and traditionally had intensive trades with each other. From the community detection 

results, these four provinces were put into the same community in 2007 and 2010. However, while 

Inner Mongolia had more carbon-intensive trade with Tianjin and Beijing, such as through the 

electricity sector, Inner Mongolia moved to a new community with Tianjin and Beijing in 2012. 

Therefore, low-carbon strategies with different focuses should be applied to the provinces within the 

same region in 2012.  

The majority of the provinces stayed in the same community throughout the three years. It was worth 

noting that while the 30 sectors of Beijing were put into six communities in 2012, while Beijing was 

put into the same community with Tianjin and Hebei in 2007 and 2010. In addition, the amount of 

in-flow was much more than outflow. It suggested that Beijing had a massive demand for goods and 

services and became increasingly interconnected with other provinces regarding the embodied carbon 

emissions transfer. Thus, though Beijing did not directly produce much carbon emissions, ranked the 

3
rd

 among 30 provinces in 2012, it indirectly consumed a considerable quantity of emissions from 

others.  

Figure 7 visualizes the embodied carbon emissions flows amid carbon communities from 2007 to 

2012. Each node represents a carbon community, and the node's size depends on the amount of 

embodied carbon emissions captured within it. Each edge's direction, color, and width represent the 

transmission direction, the source community, and the amount of the transmitted emissions, 

respectively. From 2007 to 2012, the number of communities increased from 17 to 19, and the 

embodied carbon emissions transmitted among communities became increasingly active during this 

period. In addition, the carbon communities which have more intensive embodied carbon trades are 

put in the center of the network, and the ones with fewer trades are placed on the periphery. Thus, 

communities' positions were in a dynamic procedure from 2007 to 2012, reflecting the dramatic 

changes in the trades in China.  

 

Figure 7 Visualization of communities in the carbon networks from 2007 to 2012 
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Two frequently used community detection algorithms in large networks are applied in this research to 

check the sensitivity of community division results to algorithms. Uncertainty may arise during the 

community detection procedure, whether the communities of sectors are outlined differently due to 

different algorithms applied to the networks. Both multi-level modularity optimization and fast greedy 

modularity optimization algorithms are based on modularity optimization, aiming to find the 

communities with the most distinct boundaries, with no assumption of the number and size. However, 

while the multi-level modularity optimization algorithm is a heuristic method, the fast greedy 

modularity optimization algorithm is a hierarchical agglomeration algorithm.  

The change of community detection algorithms does not affect the community significantly, and the 

community detection result is robust. The variation of information (VI) and adjusted rand index are 

introduced to evaluate the difference in community detection results (Hubert and Arabie, 1985; Meilă, 

2003). The more similarity the two community structures share, the less the VI is and the higher the 

adjusted rand index is. Table 4 suggests that the community structure detected by the two algorithms 

has a high degree of similarity for the embodied carbon emissions network in the years 2007, 2010, and 

2012.  

Year Variation of information (VI) Adjusted rand index 

2007 0.011 (6.7833) 0.998 

2010 0.059 (6.7844) 0.981 

2012 0.035 (6.786) 0.991 

Table 4 Community detection result comparison 

Note: the number in the bracket under VI measurement is the theoretical upper limit of the VI obtained from the 

underlying network. 

Some scholars have attempted to outline industrial clusters based on input-output analysis. However, 

there are some differences between network analysis-based community detection algorithms and 

input-output analysis-based cluster detection algorithms. The primary difference lies in the 

perspective of how clusters/communities are approached. Take the cluster detection algorithm 

proposed by Kanemoto et al. ( 2018) and the multi-level modularity optimization algorithm (Blondel 

et al., 2008) used by the current research as an example. Kanemoto et al. (2018) stated that the 

“clusters” should be sub-groups alongside the pre-defined supply chain. In contrast, the community 

detection algorithm takes communities as condensed sub-groups detected in the whole network 

without looking in detail at each supply chain. More specially, differences can be found in the 

objective function, optimization algorithms, assumption of community size, and the input treatment. 

Details are listed in table 5.  

 Cluster detection algorithm by Kanemoto et al. 

(2017) 

Community detection algorithm by Blondel et al. (2008) 

and two-step reduced network 

Objective function Minimize the normalized cut functions, Maximize network modularity, aiming to find the 
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aiming to detect clusters with the least 

inter-clusters connections along supply 

chains. 

communities that have the largest overall 

modularity from the whole network perspective 

Optimization 

algorithms 

Greedy, hierarchical, and move based 

algorithms 

Heuristic algorithm 

Cluster/community 

assumption 

Pre-define the cluster size, which is seven 

sectors in each cluster 

No assumption about the size and number of 

communities 

Treatment of input Whole dataset of the input-output table Two-step reduced network as input to reduce 

noise in the process of the community detection 

Table 5 Comparison between cluster detection method and community detection method 

Compared with Kanemoto et al. (2018)’s cluster detection method, the multi-level modularity 

optimization algorithm used by this research is more data-driven and more suitable in this research 

context. Our method does not pre-define supply chains and the community size. In addition, the 

community is detected based on the whole network, and almost all the sectors of provinces are 

grouped into communities instead of only focusing on the small critical clusters of seven sectors. The 

result can provide more insight for a synergistic effect among all sectors of provinces in China. In 

addition, our research extracts the backbone of the raw network, and it reduces noise in the process of 

community detection and has much less computation demand.  

4 The effect of carbon communities’ structure on emission changes 

4.1 Statistics summary and multi-level analysis 

Figure 8 shows the probability density distribution of sectors’ carbon emissions in logarithmic form 

for each year-community. The panels are sorted by the order of community number and by year. 

Significant differences can be observed for the distribution of each year-community. Take distribution 

of community 1 in 2007 (panel 2007_1), 2010 (panel 2010_1), and 2012 (panel 2012_1) as an 

example. Though they generally follow a normal distribution, there were two peaks in 2007, one 

relatively high peak in 2010, and no significant peak but a wide value range of direct carbon 

emissions in 2012. By adopting a multi-level linear model, the differences in each year-community 

are considered, thereby reducing estimation bias.  

 

Figure 8 Probability density of sector carbon emissions for each year-community in 2007, 2010 and 2012 
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Table 6 gives descriptive statistics for network structure metrics at the sector and community levels. 

Due to different measurement units, the differences in the range of variables are large. In addition, 

there are significant imbalances in the distributions of variables, which can be observed in the values 

of skewness and kurtosis. Consequently, this study standardizes all explanatory variables to improve 

reliability. 

 Minimum mean maximum S.D Skewness Kurtosis 

Individual level characteristics        

In-degree 0 59.66 797 73.253 4.894 33.097 

Out-degree 0 59.63 877 93.946 5.833 40.745 

In-strength 0 8603.6 263668.1 19094.51 5.065 39.45 

Out-strength 0 8603.6 477974.0 32633.23 7.607 74.773 

Clustering coefficient 0.2334 0.7957 1.1923 0.133 -1.146 4.615 

Upward closeness 0 6896.7 229363.7 16958.18 5.314 41.305 

Downward closeness 0 6895.2 375653.2 26786.03 7.572 75.033 

Betweenness  0 10084.1 369085.9 23892.76 6.386 63.58 

Group level characteristics       

Size 27 66.58 120 32.985 0.249 1.677 

Density 0.207 0.446 0.854 0.207 0.563 1.733 

Average path length 0.011 0.477 3.343 0.586 3.329 14.614 

Assortativity -0.097 -0.048 0.030 0.030 0.326 2.307 

Table 6 Descriptive statistics of the network structure variables (original values) 

Table 7 gives the partial correlation coefficients of each network structure variable to determine 

whether the model has an obvious multi-collinearity problem. The correlation between structure 

variables at the community level is relatively high because sectors of the same community have the 

same values of community network structure variables. This collinearity problem can be solved using 

the hierarchical linear model, which considers the objects in the same group to share variance 

according to their common group characteristics. The absolute values of the other network structure 

variables at the sector and community levels are all less than 0.5, indicating a weak correlation, except 

for the correlation between degree and strength. On the other hand, the coefficients between 

out-degree and out-weight, in-degree and in-weight are higher than 0.8, indicating a strong correlation. 

In addition, by including out-strength as an independent variable, endogeneity is a potential concern. 

This is mainly because both the dependent variable, i.e., a sector’s direct carbon emissions, and 

out-strength, i.e., the amount of embodied carbon emissions that a sector transmits outward, are 

determined or partly determined by a sector’s economic output and carbon emissions intensity. 

 

Out-degree In-degree Out-strength In-strength Clustering 

coefficient 

Closeness-Up 

Out-degree -      
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In-degree -0.048*** -     

Out-strength 0.893*** -0.035* -    

In-strength 0.123*** 0.823*** 0.153*** -   

Clustering Coefficient -0.576*** -0.407*** -0.484*** -0.450*** -  

Closeness-up 0.100*** 0.410*** 0.121*** 0.405*** -0.113*** - 

Closeness-down 0.449*** 0.027 0.447*** 0.132*** -0.377*** 0.275*** 

Betweenness 0.312*** 0.224*** 0.313*** 0.282*** -0.237*** 0.369*** 

Size 0.023 -0.005 -0.028 -0.069*** -0.007 -0.132*** 

Density -0.026 0.018 0.042** 0.101*** 0.017 0.170*** 

APL 0.014 0.037* 0.069*** 0.145*** -0.036** 0.081*** 

Assortativity -0.009 0.123*** 0.058*** 0.158*** -0.032* 0.195*** 

 Closeness-down Betweenness Size Density APL Assortativity 

Closeness-down -      

Betweenness 0.270*** -     

Size -0.072*** -0.140*** -    

Density 0.142*** 0.213*** -0.888*** -   

APL 0.162*** 0.180*** -0.343*** 0.356*** -  

Assortativity 0.173*** 0.265*** -0.711*** 0.720*** 0.393*** - 

Table 7 Partial correlation coefficient matrix of structural characteristics of China's carbon emissions transfer network 

(original variables) 

Note: ***, **, and * indicate that results are at 1%, 5%, and 10% significance levels, respectively; closeness-up, 

closeness-downward, and betweenness are logarithmically transformed values. 

This study uses the relative out-degree and relative out-strength as independent sector-level network 

structure variables rather than absolute values to deal with the high correlation between degree and 

strength and the potential endogeneity problem. Specifically, for sector 𝑖, the relative out-degree and 

relative out-strength are defined as  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑜𝑢𝑡 − 𝑑𝑒𝑔𝑟𝑒𝑒 =
𝐷𝑒𝑔𝑟𝑒𝑒𝑖

𝑜𝑢𝑡

𝐷𝑒𝑔𝑟𝑒𝑒𝑖
𝑖𝑛⁄  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑜𝑢𝑡 − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖

𝑜𝑢𝑡

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖
𝑖𝑛⁄  

Table 8 shows the partial correlation coefficients between variables after introducing the ratio 

variables. The partial correlation coefficients between sector-level and cross-level variables have 

decreased significantly and are less than 0.5, indicating a weak correlation. In addition, the high 

correlation between structure variables at the community level is solved by using the hierarchical 

linear model, which considers sectors in the same community to share common variance. 

 

Relative 

Out-degree 

Relative 

Out-Strength 

Clustering 

coefficient 
Closeness-Up  Closeness-down Betweenness 

Relative Out-degree -      
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Relative Out-strength 0.081*** -     

Clustering coefficient -0.200*** -0.076*** -    

Closeness-Up -0.477*** -0.291*** -0.113*** -   

Closeness-down 0.100*** 0.079*** -0.377*** 0.275*** -  

Betweenness -0.130*** -0.014 -0.237*** 0.369*** 0.270*** - 

Size 0.072*** 0.023 -0.007 -0.132*** -0.072*** -0.140*** 

Density -0.067*** -0.021 0.017 0.170*** 0.142*** 0.213*** 

APL 0.009 -0.003 -0.036** 0.081*** 0.162*** 0.180*** 

Assortativity -0.053*** -0.021 -0.032* 0.195*** 0.173*** 0.265*** 

 Size Density APL Assortativity   

Size -      

Density -0.888*** -     

APL -0.343*** 0.356*** -    

Assortativity -0.711*** 0.720*** 0.393*** -   

Table 8 Partial correlation coefficient matrix of topological characteristics of China's carbon emissions transfer network 

Note: ***, **, and * refer to significance levels of 1%, 5%, and 10%, respectively; closeness-up, closeness-downward, and betweenness are 

logarithmically transformed values. 

The multi-level nested data structure is verified before moving on to applying the hierarchical linear 

model. As presented in Table 9, three indexes are commonly used to determine whether data is in a 

multi-level structure and whether it is necessary to use a hierarchical linear model. ICC(1) measures 

the extent to which the effect variance of sector-level structure variables can be explained by 

community membership (Raudenbush and Bryk, 2002). ICC(2) measures the reliability of the mean 

values of each community (Bliese et al., 2002), and it is affected by ICC(1) and the community size. 

The 𝑟𝑤𝑔(𝑗) agreement index measure the interchangeability of individual sector’s response among 

communities. The higher the 𝑟𝑤𝑔(𝑗) value is, the lower the interchangeability is, indicating greater 

difference in one community member’s response to another community member’s response (Klein 

and Kozlowski, 2000). The three indexes range from 0 to 1. The larger the coefficient, the greater the 

need to use a hierarchical linear model. For the sector-level network structure variables, as presented 

in Table 9, ICC (1), ICC (2), and 𝑟𝑤𝑔(𝑗) values are all significantly non-zero, and in particular ICC (2) 

and 𝑟𝑤𝑔(𝑗) have large values. Therefore, it is justified and reliable to adopt the hierarchical linear 

model in this study.  

 ICC(1) ICC(2) 𝑟𝑤𝑔(𝑗) 

Relative Out-degree 0.0146 0.4265 0.8783 

Relative Out-strength 0.0018 0.0813 0.8958 

Clustering Coefficient 0.0228 0.5386 0.4878 

Upward closeness 0.0972 0.8435 0.6526 

Downward closeness 0.1044 0.8537 0.5727 

Betweenness 0.2140 0.9316 0.6629 

Table 9 ICC (1), ICC (2) and 𝒓𝒘𝒈(𝒋) estimates of sector-level emissions network structure variables 
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Note: closeness-up, closeness-downward, and betweenness are logarithmically transformed values. 

4.2 Regression results 

Table 10 presents the estimates of the influence of China’s embodied carbon emissions network 

structure on sectors’ emissions in each of the four models. The empirical results confirm that the 

structure of the carbon communities had significant roles on the sectors’ direct carbon emissions. 

From Model (1) to Model (4), the nested multi-level data structure for sector-level and 

community-level network structure variables have been verified. The fitting effect of the models has 

been significantly improved. While Model (1) only considers the sector-level transmission structure, 

the fitting effect of Model (2) has been increased (𝒳2 = 9.111，𝑃𝑟(> 𝐶ℎ𝑖𝑠𝑞) < 0.0584) by adding 

the community transmission structure variables. Through taking account of the nested multi-level data 

structure, Model (3) allows the effect of the sector-level structure on emissions to differ in each 

year-community, and the fitting effect has been improved significantly (𝒳2 = 966.66，𝑃𝑟(>

𝐶ℎ𝑖𝑠𝑞) < 0.0000). Model 4 further considers sectors’ own characteristics, such as industrial 

production processes and energy use as control variables. Moving from Model (1) to (4), both AIC 

and BIC decrease significantly, indicating an improved model fitting effect.  

 
Dependent variable: sectors’ production-based carbon emissions 

(logarithmic) 

 (1) (2) (3) (4) 

     

Fixed effect     

Community level characteristics      

Size  
0.0252** 

(0.0122) 

-0.0132 

(0.0098) 

-0.0199** 

(0.0099) 

Density  
0.0134 

(0.0116) 

-0.0120 

(0.0097) 

-0.0197* 

(0.0101) 

Average path length  
0.0094* 

(0.0049) 

-0.0034 

(0.0046) 

-0.0056 

(0.0045) 

Assortativity  
0.0059 

(0.0073) 

-0.0085 

(0.0065) 

-0.0130* 

(0.0068) 

Sector level characteristics     

Relative Out-degree 
0.0128* 

(0.0073) 

0.0117 

(0.0073) 

-0.0414 

(0.0391) 

0.0451** 

(0.0187) 

Relative Out-strength 
0.0277*** 

(0.0065) 

0.0288*** 

(0.0065) 

1.2068*** 

(0.2208) 

1.5889*** 

(0.2427) 

Clustering Coefficient 
-0.0795*** 

(0.0042) 

-0.0796*** 

(0.0042) 

-0.0736*** 

(0.0046) 

-0.0573*** 

(0.0041) 

Upward closeness 
0.2028*** 

(0.0064) 

0.2033*** 

(0.0064) 

0.3709*** 

(0.0187) 

0.2893*** 

(0.0168) 

Downward closeness 
0.9993*** 

(0.0069) 

0.9992*** 

(0.0069) 

1.0134*** 

(0.0097) 

1.0163*** 

(0.0106) 

Betweenness 
-0.1545*** 

(0.0089) 

-0.1564*** 

(0.0089) 

-0.2488*** 

(0.0191) 

-0.3061*** 

(0.0208) 

Sector economic characteristics     

Compensation of employees    
0.1117*** 

(0.0110) 

Net taxes on production    0.0009 
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Dependent variable: sectors’ production-based carbon emissions 

(logarithmic) 

 (1) (2) (3) (4) 

     

(0.0037) 

Depreciation of fixed capital    
-0.0583*** 

(0.0082) 

Operating surplus    
0.0074** 

(0.0034) 

Intermediate input/ final output 

ratio 
   

0.0119*** 

(0.0040) 

Coal/total fossil fuel ratio    
-0.0051* 

(0.0028) 

Gross output    
0.0608*** 

(0.0131) 

Time     

Year 2010 
-0.0264** 

(0.0124) 

-0.0267** 

(0.0121) 

0.0214** 

(0.0104) 

-0.0247** 

(0.0108) 

Year 2012 
-0.0352*** 

(0.0121) 

-0.0316** 

(0.0119) 

-0.0012 

(0.0103) 

-0.0379*** 

(0.0114) 

Sector     

Manufacturing sector 
0.0139 

(0.0087) 

0.0143 

(0.0086) 

0.0480*** 

(0.0115) 

0.1345*** 

(0.0144) 

Service sector 
0.0391*** 

(0.0116) 

0.0392*** 

(0.0115) 

0.0470 *** 

(0.0128) 

0.0892*** 

(0.0154) 

Random effects (variance)     

Relative Out-degree   
0.0501 *** 

(87.168) 

0.0073*** 

(34.831) 

Relative Out-strength   
1.6086*** 

(85.310) 

2.2486*** 

(42.987) 

Clustering Coefficient   
0.0003*** 

(19.709) 

0.0002* 

(13.300) 

Closeness-up   
0.0140*** 

(306.294) 

0.0109*** 

(204.423) 

Closeness-down   
0.0028*** 

(67.063) 

0.0037*** 

(108.134) 

Betweenness   
0.0139*** 

(298.257) 

0.0168*** 

(407.311) 

Model fitting information     

intra-class correlation (ICC) 0.021 0.018 0.989 0.993 

AIC -1438.91 -1406.68 -2332.11 -2623.15 

BIC -1368.31 -1312.545 -2079.121 -2328.98 

Observed sample size 2,653 2,653 2,653 2,653 

Table 10 Relationship between the embodied carbon emissions network structure 

 and sectors’ direct carbon emissions 

Note: ***, **, and * indicate that the data are significant at 1%, 5%, and 10% levels, respectively, and the standard errors of 

the estimated coefficients are in parentheses.  

For random effect (variance), the values in brackets are the likelihood ratio test statistics results.  

Upward closeness, downward closeness, betweenness, compensation of employees, net taxes on production, 

depreciation of fixed capital, operating surplus, and GDP are logarithmically transformed.  

 

Once the regression models consider the multi-level structure, the carbon community structure plays a 

significant role in sectors’ direct carbon emissions. In Model (2), although both the transmission 

characteristics at sector and community levels are considered, the multi-level data structure is not 

considered. In this case, the community-level structure variables have no statistically significant effect 

on emissions, except for the size of the community. Based on fixed effects, Models (3) and (4) allow 

the impact of sector-level structure variables on sectors’ carbon emissions to differ in each community, 

reflecting the multi-level data structure. The empirical results confirm that the effects of transmission 
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characteristics at the sector level are adjusted by their community structure, which is suggested by the 

significant random effects of sector-level transmission variables. In other words, the sectors with the 

same transmission characteristics at the sector level, such as the same number of embodied emissions 

trade partners, their impacts on sectors’ direct carbon emissions differ in each community. Thus, it 

provides empirical evidence support for tailored policies to accommodate local needs.  

When the scale of the community expands, and the embodied emissions trades get intensified, the 

carbon emissions directly produced by the sectors within the community decreases. When the 

multi-level structure is considered in Models (3) and (4), the regression coefficients of community 

size (the number of sectors contained in a community), community density (the ratio of the existing 

embodied carbon emissions trades to all possible trades), and assortativity (the likelihood that sectors 

with a large number of trade partners tend to be connected with each other) are significantly negative. 

When an existing community has more intensive trades of emissions with outside sectors, the size of 

the community grows. In addition, when the community density increases, there are more embodied 

emissions trades among sectors in a community. The increasing community scale and density can 

assist sharing of environmental protection facilities, energy-saving knowledge, and emission-reducing 

technology. Thus, the community of sectors can achieve scale effect, reduce carbon emission intensity, 

and encourage collective learning of upstream and downstream sectors in developing and utilizing 

low-carbon technology (Cohen et al., 2019).  

The outlined carbon community can be regarded as a special form of industrial agglomeration, where 

industries are geographically concentrated. While industrial agglomeration is usually pre-defined in a 

geographical or administrative region such as the Beijing-Tianjin-Hebei area, the carbon community 

is detected data-driven from the whole Chinese economy perspective. The empirical research results 

are consistent with the existing research that the industrial agglomeration brought emission-reduction 

effect in China (Chen et al., 2018; Wang and Wang, 2019).  

Moreover, when sectors with many trade partners get connected more with each other in a community, 

measured by assortativity, sectors’ direct carbon emissions are more likely to be reduced. At the same 

time, the connectivity between any two random sectors in the economy in terms of the average 

minimum number of embodied emissions trades, measured by average path length, has no significant 

role in sectors’ carbon emissions. It suggests that though embodied carbon emissions trades can 

reduce carbon emissions through collective learning and resource sharing, the reduction is more 

effective through the trade between a pair of sectors with many trade partners. Therefore, the 

connection between hub sectors in the embodied carbon emissions network needs to be paid close 

attention.  
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The embodied emissions transmission characteristics at a sector level also have significant effects on 

sectors’ direct emissions. The sectors with more out-ward trade partners (measured by relative 

out-degree) and more considerable emissions embodied in outward trade (measured by relative 

out-strength) tend to have more direct carbon emissions. It is consistent with the fact that for the top 

sectors in terms of direct carbon emissions in China, such as the electricity sectors, most of their 

products are used by other sectors, resulting in large relative out-degree and out-strength. In addition, 

relative out-strength has a more significant effect on the increase in carbon emissions than relative 

out-degree. It is probably because the top sectors in terms of direct carbon emissions production are 

not always the ones that are critical in directly transmitting emissions to an extensive breadth of 

others.  

The transmission hub sectors play a significantly negative role in their direct carbon emissions. The 

high-betweenness sectors are esteemed to be transmission hubs from a national perspective, with 

much embodied carbon emissions going through. In this process, the sectors with high betweenness 

do not ‘produce’ high carbon emissions by themselves. Instead, due to their broad transfer 

relationship, they directly and indirectly import a large number of emissions from other sectors, and 

this has the effect of reducing their direct emissions. Take the electricity sector of Beijing as an 

example, which reduces its direct carbon emissions through using electricity from other provinces 

such as Shanxi and Inner Mongolia provinces. Moreover, for sectors with high clustering coefficients, 

a large percentage of their embodied emissions trade partners are partners themselves. In other words, 

these sectors have formed an interconnected trade structure locally. This structure can enlarge the 

emissions reduction effect through the knowledge and resource sharing through upstream and 

downstream industries.  

A sector's position along the embodied carbon emissions transfer paths also significantly affects its 

direct carbon emissions. The importance of sectors as carbon consumers is measured by closeness-up, 

which calculates the total carbon emissions along the transfer paths ending in a sector. The positive 

correlation coefficient suggests that the closer the sector is to the consumers’ final demand, the sectors’ 

carbon emissions increase. This increase is probably driven by the ever-growing Chinese consumers’ 

final demand with the fast economic development, such as demand for more spacious apartments and 

more fine food. However, the importance of sectors as carbon consumers plays a much more 

significantly positive role, measured by closeness-down by calculating the total carbon emissions 

along the transfer paths ending in a sector. Take the electricity sector with high close-down as an 

example. The driving force coming from the downstream industries keeps these sectors’ production of 

carbon emissions at a high level. 

The empirical results of Models (1) to (4) show that compared to 2007, sectors’ carbon emissions in 

2010 and 2012 slowed down significantly. Many factors caused this decline in carbon emissions, but 
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there were two main reasons. First, China is accelerating low-carbon development to tackle climate 

change. In the performance evaluation of local governments, indicators such as carbon emissions 

intensity reduction have been added to push the low-carbon transformation further. Secondly, the 

upgrading of industrial infrastructure and the increasing proportion of the economy occupied by 

service sectors also contribute to the decline in carbon emissions.  

The sectors’ production processes and economic characteristics also influence carbon emissions. The 

gross output of a sector plays a significant role in its carbon emissions. Compared with primary 

industries, being the manufacturing sector plays a significant part in sectors’ direct emissions. In 

addition, the compensation of employees, net taxes on production, and operating surpluses all have 

significant positive impacts on sectors’ carbon emissions. In contrast, the depreciation of fixed capital 

has a significant inhibitory effect. Moreover, industries with higher intermediate input/ final output 

ratios produce more carbon emissions. In addition, the proportion of carbon emissions that comes 

from coal use plays a marginally significant impact on carbon emissions. The result is probably 

because a reduction effect brought by non-fossil energy is not reflected in the percentage due to data 

unavailability. Additionally, the emission factor among all the 17 fossil energy types is similar, 

ranging from 0.06 Mt CO2/PJ to 0.08 Mt CO2/PJ, except for coke and natural gas, which is 0.10 Mt 

CO2/PJ and 0.05 Mt CO2/PJ. Thus, while fossil fuel consumption contributes to carbon emissions as 

the primary source, the percentage of coal out from all fossil fuels only plays a marginally significant 

role.  

Two robustness checks are conducted to ensure the validity of the research results obtained by the 

hierarchical linear model. This first one is to test the temporal significance of the hierarchical linear 

model, which is tested by lagging one period of the sectors’ carbon emissions. The effect of network 

structure on sectors’ direct emissions may be subject to a time lag. Hence, this research explores the 

time lag effect of the network structure on sectors’ emissions. In addition, due to data unavailability, 

this study keeps the same independent variables and explores their influences on sectors’ carbon 

emissions in 2008, 2011, and 2013. The regression results presented in Appendix A.4 are consistent 

with Table 10, which indicates that the regression model is robust. Moreover, it demonstrates that the 

structure of China's embodied emissions network has a long-lasting and consistent impact on carbon 

emissions. Furthermore, regression in a yearly manner is conducted to check the stability of the 

embodied carbon emissions network structure’s effect on sectors’ carbon emissions. When all the data 

are pooled together with two time-effect dummy variables, the results in each year, presented in 

Appendix A.5, are consistent in the direction and scale of estimated coefficients. 

5. Conclusion and policy implications 
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This study applied the community concept from network analysis to detect the carbon communities in 

China, where sectors have intensive embodied carbon emissions trades in the embodied emissions 

transmission procedure. Unlike the traditional economics and management perspectives, the carbon 

community is detected data-driven with no pre-assumption using the hybrid input-output analysis and 

network analysis. In addition, network visualization presents the transmission patterns of emissions 

visually appealing from a meso perspective. Moreover, the detected around 19 carbon communities in 

China can provide new insights on provincial governments’ external collaboration. Unlike the 

input-output analysis-based cluster analysis identified along a pre-defined supply chain or industrial 

agglomeration studied in a pre-defined region, all the sectors of provinces are grouped into the 19 

carbon communities in a data-driven way from the whole Chinese economy perspective. Finally, the 

effect of community structure on sectors’ direct carbon emissions is examined by the hierarchical 

linear model to provide insights on climate change policy-making and planning.  

The results demonstrate that communities of sectors have formed in the highly imbalanced embodied 

carbon emissions trade network, and they can be targeted for leveraging emissions abatement efforts. 

Because the embodied emissions trades are much more active within a community, targeting the 

sectors of the same community may result in a synergy. In addition, the community structure changes 

over time, which needs constant attention to provide practical guidance. Moreover, regression results 

suggest that the increasing expansion and density of a community can bring an inhibitory effect on 

sectors’ carbon emissions. Furthermore, benefiting from pollution control resources sharing and the 

convenience of governmental regulation, the formation of communities can encourage low-carbon 

technology development and utilization, improve energy utilization efficiency, and thus reduce carbon 

emissions.  

The analysis can imply the following policy suggestions. 

First, to reduce the carbon emissions of a sector, the transmission characteristics of the sector and its 

community, which could be beyond the regional boundary, should be considered together. The 

transmission characteristics of emissions at sector-level and community-level interact with each other 

and affect sectors’ carbon emissions together. Apart from the fixed effect of the transmission structure 

at the sector level on sectors’ direct carbon emissions, there is also a significant random effect posed 

by their community structure. For example, the random correlation coefficient of relative out strength 

is more significant in Shanxi community than the average of all other communities. It suggests that 

the driving force of Shanxi’s export partners is larger than the average on Shanxi sectors’ direct 

carbon emissions. Therefore, more efforts should be made by Shanxi to identify the primary 

embodied carbon emissions partners to reduce carbon emissions effectively together. In addition, the 

trade partners ought to be considered for the communities with significant outside links, whose 

percentage of in-community carbon flows is relatively small. Take the Tianjin-Beijing-Inner 
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Mongolia community in 2012 as an example. The strong interactions with Hebei, Shanxi, and 

Shandong should not be missed for collaborative efforts. 

Secondly, a community-specific policy is required for effective carbon emissions mitigation. The 

community detection results advise provincial governments to focus on carbon emission mitigation 

efforts for self-reformation or external collaboration. For communities consisting of only one province, 

such as Hubei community and Hunan community in the central part of China, the provincial 

governments should prioritize internal improvement. Because most of the embodied carbon emissions 

from production to consumption are captured within the provinces, the responsibility for emissions 

abatement rests mainly on the provincial governments themselves. In addition, the collaboration 

among provinces within the same community shall be promoted for a synergistic policy benefit for 

communities with more than one province. For example, cooperation among Liaoning, Jilin, and 

Heilongjiang provinces should be encouraged, which stay in the same community from 2007 to 2012.  

Thirdly, the promotion of interaction among communities in these large components should also be 

taken into account. Policies should be developed to utilize the self-purification effect brought by 

communities fully. The inhibitory effect brought by the increasing expansion and density of a 

community can be targeted by promoting interactions among various sectors of provinces, such as 

establishing unified industry parks. In addition, one large component is emerging, with several 

communities overlapping with each other in the northern part of China from 2007 to 2012. As the 

Chinese economy develops and the sectoral interdependence intensifies, more large components may 

be observed in the future.  

Last but not least, the developed hub cities in a community or communities should be highlighted in 

low-carbon economic development. The developed hub cities generally have a much more 

considerable amount of imported carbon emissions than exported due to industrial structure and 

technology advantages. They also become more integrated with sectors of other provinces as the 

economy grows. For example, while Beijing, Tianjin, and Hebei were in the same community in 2007, 

the sectors of Beijing were divided into six communities in 2012. Thus, these developed hub cities 

can pull the low-carbon transition for a large region through clear preference and requirement of 

low-carbon inputs along supply chains. In addition, the knowledge sharing of hub cities can have a 

far-reaching impact on these communities. As big data technology develops, more hub cities can be 

identified at a higher data resolution network in the future. 

Our research was limited by data availability, especially due to the slow updating of MRIO tables. 

Therefore, the analysis could not be based on the latest sectoral emissions transmission data or long 

time series data in China. Nevertheless, the framework, models, metrics, and algorithms can be used 

more effectively once the data is made available. In the future, it will be possible to use this research 
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as a basis to construct dynamic network models based on real-time emissions data at higher data 

resolution. In addition, due to the scope and resource limitation, we chose to focus on the internal 

effort of China for the current research. While the Chinese economy has been increasingly integrated 

with the rest of the world, more future efforts can be made from a global perspective to leverage the 

collective efforts to tackle global climate change together. 
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Appendix 

Appendix A.1. Network structure variables 

Community-level network structure variables 

Community size. It is defined as the number of sectors contained within a community. 

Community density. The density of a community refers to the percentage of the existing edges to all possible 

edges contained within a community (Newman, 2003). The greater the community density, the higher the ratio of 

actual edges to possible edges. For community j with n nodes in the carbon network, the community density is 

defined as: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗 =
𝑙

[𝑛∗(𝑛−1)]/2 
 Eq. (A.5) 

where 𝑙 is the number of carbon emission transfer links actually observed in the community.  

The community average path length. The community average path length (APL) measures the closeness of nodes 

in a community. The shorter the APL is, the closer the nodes in the community are. For any two nodes m and n in 

the network, the path length 𝑑(𝑣𝑚 , 𝑣𝑛) between the two is defined as the number of edges on the shortest path 

from node 𝑚 to 𝑛 (Newman, 2003). Therefore, for community j, the average path length (𝐴𝑃𝐿𝑗) is equal to the 

expected value of the distance between any two nodes in the community, that is: 

𝐴𝑃𝐿𝑗 =
1

𝑛∙(𝑛−1)
∙ ∑ 𝑑(𝑣𝑚 , 𝑣𝑛)𝑖≠𝑗  Eq. (A.6) 

In this formula, n is the number of nodes in the community j. 𝑑(𝑣𝑚, 𝑣𝑛) refers to the shortest path length between 

nodes m and n. If there is no connection between nodes m and n, then 𝑑(𝑣𝑚, 𝑣𝑛) = 0. 

Assortativity. If nodes with a high degree tend to be connected with other nodes with high degrees, then the 

network is regarded as homogeneous (i.e., they possess assortativity); otherwise, the network is considered 

heterogeneous (i.e., they do not possess assortativity) (Newman, 2003),. By studying the assortativity of 

communities in the network, the emission transfer mode among sectors can be better understood. The assortativity 

coefficient of community j is defined as: 

 𝑟𝑗 =

1

|𝐷𝑗|
∙∑ 𝑘𝑚𝑘𝑛−[

1

|𝐷𝑗|
∙∑

1

2
∙(𝑘𝑚+𝑘𝑛)]

2

1

|𝐷𝑗|
∙∑

1

2
∙(𝑘𝑚

2+𝑘𝑛
2)−[

1

|𝐷𝑗|
∙∑

1

2
∙(𝑘𝑚+𝑘𝑛)]

2 Eq. (A.7) 

In this formula, |𝐷𝑗|is the total number of edges in community j, and 𝑘𝑚, 𝑘𝑛 are the degrees of sectors m and n in 

the community, respectively. If the assortativity coefficient 𝑟 > 0, the community is a homogeneous 

sub-network; if 𝑟 < 0, the community is a heterogeneous sub-network. 

1) Level 1: sector-level network structure variables 

Detailed descriptive studies of the sector-level network variables in the embodied carbon emissions network, 

including degree, strength, and betweenness, can be found in our previous work Carbon Communities and 

Hotspots for Carbon Emissions Reduction in China (Huang et al., 2019). Therefore, these three metrics, i.e., 
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degree, strength, and betweenness, are briefly introduced in this appendix. In addition, a detailed introduction 

about the clustering coefficient and closeness is provided in this appendix. 

Degree. The in-degree and out-degree of sector 𝑖 are given by the formulas Eq. (A.8) and Eq. (A.9), respectively. 

They refer to the number of a sector’s import and export partner sectors on embodied carbon emissions.  

𝐷𝑒𝑔𝑟𝑒𝑒𝑖
𝑖𝑛 = ∑ 𝐼[𝑞𝑗𝑖 > 0]𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)  Eq. (A.8) 

𝐷𝑒𝑔𝑟𝑒𝑒𝑖
𝑜𝑢𝑡 = ∑ 𝐼[𝑞𝑖𝑗 > 0]𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)  Eq. (A.9) 

In these formulas, 𝐼 is an indicator function, and its value equals 1 when the number of carbon emissions 

transferred between two sectors is larger than 0.  

Strength. The in-strength and out-strength of sector 𝑖 are given by the formulas Eq. (A.10) and Eq. (A.11). They 

refer to the quantity of embodied emissions a sector imports from others and the quantity a sector exports to 

others.  

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖
𝑖𝑛 = ∑ 𝑞𝑗𝑖𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)  Eq. (A.10) 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖
𝑜𝑢𝑡 = ∑ 𝑞𝑖𝑗𝑖≠𝑗,𝑖,𝑗∈𝒱(𝑁)  Eq. (A.11) 

 

Betweenness. The betweenness of sector i is given by the formula Eq. (A.13) 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖 = 𝑓𝑇𝐽𝑖𝑇𝑦 Eq. (A.13) 

In this formula, the row vector 𝑓 is the carbon emission intensity of each sector, 𝑇 = 𝐿𝐴 (where L is the Leontief 

inverse matrix, and A is the direct technical coefficient matrix), 𝐽𝑖 is an identity matrix. Column vector 𝑦 

represents the final demand for each sector’s products. It calculates the number of emissions passing a sector in the 

embodied carbon emissions network.  

Clustering Coefficient. In social networks, one phenomenon is widespread: Two people who are both friends of a 

third person are likely to know each other. This characteristic is called clustering and is usually measured by a 

clustering coefficient. Clustering can also be explained as the interconnectedness within a group of nodes. In a 

carbon emissions network, the clustering coefficient measures the completeness of a sector’s local network. The 

larger the clustering coefficient of a node is, the more likely that its transfer paths form a small-scale 

interconnected sub-network (Newman, 2003). The clustering coefficient (𝐶𝐶𝔾(𝑖) ) of sector 𝑖 is defined as  

𝐶𝐶𝔾(𝑖) =
# {𝑗𝑘|𝑘≠𝑗,𝑗∈𝑁𝔾(𝑖),𝑘∈𝑁𝔾(𝑖)}

𝑑𝔾(𝑖)(𝑑𝔾(𝑖)−1)/2
 Eq. (A.12) 

In this formula, 𝑁 is equal to the number of nodes contained in the network and 𝑑𝔾(𝑖) represents the sum of the 

in-degrees and out-degrees of sector 𝑖 in the network. 

Closeness. The closeness of a node measures its distance to other nodes based on the shortest path. In a carbon 

emission network, in reference to Liang’s (2016) adjusted betweeness algorithm, this research defines two forms 

of closeness: closeness-up and closeness-down. Closeness-up measures the total weights of the carbon emission 

transfer paths ending in a sector, and closeness-down measures the total weights of the carbon emission transfer 

paths starting in a sector. In other words, the two metrics measure the relative positions of a specific sector along a 

carbon emissions transfer path. Closeness-up measures a sector’s importance as a consumer of carbon emissions, 
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while closeness-down measures its importance as a producer. The closeness-up and closeness-down of sector 𝑖 

are defined in formulas Eq. (A.14) and Eq. (A.15), respectively: 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑈𝑝𝑖 = 𝑓 ∙ (∑ 𝐴𝑙∞
𝑙 ) ∙ 𝐽𝑖 ∙ 𝕐 = 𝑓𝑇𝐽𝑖𝕐 Eq. (A.14) 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝐷𝑜𝑤𝑛𝑖 = 𝑓 ∙ 𝐽𝑖 ∙ (∑ 𝐴𝑙∞
𝑙 ) ∙ 𝕐 = 𝑓𝐽𝑖𝑇𝕐 Eq. (A.15) 

Because the values of betweenness, closeness-up, and closeness-down are skewed and measured in kilotons, this 

research conducts a logarithmic transformation on the three variables to increase the model's reliability.  
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Appendix A.2. Communities of sectors in the carbon emissions network from 2007 to 2012 

Com. 

ID 
Community Name 

Number of 

Sectors 
Number of 

Provinces 

Total Flows 1  
 (Unit: Thousand 

Tons) 

Inflows 2 

(Unit: Thousand 

Tons) 

 Percent of 

inflows from 

total flows  
(Unit: Thousand Tons) 

Note 

2007_1 Shanxi community 2007 30 1 306,989.32 159,314.40 51.90% 30 sectors of Shanxi  

2007_2 Beijing-Tianjin-Hebei community 2007 89 3 665,177.64 394,872.31 59.36% 
30 sectors of Beijing, 29 sectors of Tianjin, and 30 sectors of 

Hebei  

2007_3 
Inner Mongolia-Liaoning-Jilin-Heilongjiang 

community 2007 
120 4 942,090.04 696,665.95 73.95% 

30 sectors of Inner Mongolia, 30 sectors of Liaoning, 30 

sectors of Jilin, and 30 sectors of Heilongjiang  

2007_4 Zhejiang community 2007 29 1 299,809.90 237,799.47 79.32% 29 sectors of Zhejiang  

2007_5 Anhui-Jiangsu-Shaanxi community 2007 60 3 612,819.87 457,543.56 74.66% 
29 sectors of Anhui, 30 sectors of Jiangsu, and the petroleum 

and gas sector of Shaanxi 

2007_6 Fujian community 2007 29 1 137,916.59 125,136.16 90.73% 29 sectors of Fujian  

2007_7 Shandong 30 1 615,869.61 486,838.69 79.05% 30 sectors of Shandong  

2007_8 Shanghai 27 1 154,645.35 136,276.68 88.12% 27 sectors of Shanghai  

2007_9 Hubei 30 1 213,210.84 164,672.68 77.23% 30 sectors of Hubei  

2007_10 Hunan community 2007 29 1 193,091.16 156,723.06 81.17% 29 sectors of Hunan  

2007_11 
Guangdong-Guangxi-Guizhou-Yunnan 

community 2007 
116 4 740,000.49 615,025.08 83.11% 

29 sectors of Guangdong, 29 sectors of Guangxi, 29 sectors of 
Guizhou, and 29 sectors of Yunnan  

2007_12 Hainan community 2007 28 1 18,294.25 16,456.02 89.95% 28 sectors of Hainan  

2007_13 Chongqing-Sichuan community 2007 60 2 259,488.01 231,481.18 89.21% 30 sectors of Chongqing and 30 sectors of Sichuan  

2007_14 Jiangxi community 2007 29 1 109,094.95 95,176.18 87.24% 29 sectors of Jiangxi  

2007_15 Henan-Shaanxi community 2007 59 2 497,863.78 269,565.19 54.14% 30 sectors of Henan and 29 sectors of Shaanxi  

2007_16 Gansu-Qinghai-Ningxia community 2007 86 3 150,999.44 108,195.74 71.65% 
28 sectors of Gansu, 28 sectors of Qinghai, and 30 sectors of 

Ningxia  

2007_17 Xinjiang-Gansu community 2007 32 2 102,364.38 77,962.76 76.16% 
30 sectors of Xinjiang and 2 sectors of Gansu, i.e., petroleum 

and gas sector and refining and coking sector of Gansu 

2010_1 
Beijing-Tianjin-Hebei-Shanxi community 

2010 
91 3 832,340.85 519,403.85 62.40% 

30 sectors of Beijing, 30 sectors of Tianjin, 30 sectors of 
Hebei, and the coal mining sector of Shanxi  

2010_2 Shanxi community 2010 29 1 338,565.38 186,731.18 55.15% 29 sectors of Shanxi  

2010_3 
Inner Mongolia-Liaoning-Jilin-Heilongjiang 

community 2010 
120 4 1,184,311.14 930,746.93 78.59% 

30 sectors of Inner Mongolia, 30 sectors of Liaoning, 30 
sectors of Jilin, and 30 sectors of Heilongjiang  

2010_4 Shanghai community 2010 27 1 161,330.24 151,492.69 93.90% 27 sectors of Shanghai  

2010_5 Zhejiang community 2010 29 1 315,033.89 252,608.21 80.18% 29 sectors of Zhejiang  

2010_6 Anhui-Jiangsu community 2010 59 2 759,936.60 607,230.70 79.91% 29 sectors of Anhui and 30 sectors of Jiangsu  

2010_7 Fujian community 2010 29 1 180,309.68 162,891.25 90.34% 29 sectors of Fujian  

2010_8 Jiangxi community 2010 29 1 123,940.37 91,710.02 74.00% 29 sectors of Jiangxi  

2010_9 Shandong 30 1 668,032.75 563,857.41 84.41% 30 sectors of Shandong  

2010_10 Hubei community 2010 30 1 280,006.47 225,546.26 80.55% 30 sectors of Hubei  

2010_11 Hunan community 2010 29 1 224,343.03 191,382.95 85.31% 29 sectors of Hunan  

2010_12 Hainan community 2010 28 1 24,136.55 22,571.90 93.52% 28 sectors of Hainan  

2010_13 Chongqing-Sichuan community 2010 60 2 382,756.71 336,965.16 88.04% 30 sectors of Chongqing and 30 sectors of Sichuan  

2010_14 
Guangdong-Guangxi-Guizhou-Yunnan 

community 2010 
116 4 914,679.27 793,350.52 86.74% 

29 sectors of Guangdong, 29 sectors of Guangxi, 29 sectors of 
Guizhou, and 29 sectors of Yunnan  
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Com. 

ID 
Community Name 

Number of 

Sectors 
Number of 

Provinces 

Total Flows 1  
 (Unit: Thousand 

Tons) 

Inflows 2 

(Unit: Thousand 

Tons) 

 Percent of 

inflows from 

total flows  
(Unit: Thousand Tons) 

Note 

2010_15 Shaanxi community 2010 30 1 183,457.65 128,053.72 69.80% 30 sectors of Shaanxi  

2010_16 Gansu-Qinghai-Ningxia community 2010 88 3 207,074.85 153,537.48 74.15% 
30 sectors of Gansu, 28 sectors of Qinghai, and 30 sectors of 

Ningxia  

2010_17 Henan-Xinjiang community 2010 60 2 596,600.33 411,816.05 69.03% 30 sectors of Henan and 30 sectors of Xinjiang  

2012_1 Hebei-Beijing community 2012 37 2 758,969.89 467,686.11 61.62% 30 sectors of Hebei and 7 sectors of Beijing  

2012_2 Shanxi-Beijing community 2012 31 2 483,149.25 244,003.97 50.50% 30 sectors of Shanxi and the coal mining sector of Beijing  

2012_3 
Tianjin-Beijing-Inner Mongolia community 

2012 
77 3 864,690.17 486,298.42 56.24% 

30 sectors of Tianjin, 29 sectors of Inner Mongolia, and 18 

sectors of Beijing  

2012_4 
Liaoning-Jilin-Heilongjiang-Beijing 

community 2012 
91 4 933,198.85 769,078.09 82.41% 

30 sectors of Liaoning, 30 sectors of Jilin, and 30 sectors of 

Heilongjiang, and the wood processing and furnishing sector of 
Beijing  

2012_5 Shanghai-Zhejiang community 2012 56 2 559,836.97 475,801.77 84.99% 27 sectors of Shanghai and 29 sectors of Zhejiang  

2012_6 
Jiangsu-Anhui-Beijing-Ningxia community 

2012 
61 4 1,034,650.91 828,555.78 80.08% 

30 sectors of Jiangsu, 29 sectors of Anhui, the coal mining 

sector of Ningxia, and the metallurgy sector of Beijing  

2012_7 Fujian community 2012 29 1 220,926.38 199,660.00 90.37% 29 sectors of Fujian  

2012_8 Jiangxi community 2012 29 1 158,945.48 121,113.88 76.20% 29 sectors of Jiangxi  

2012_9 
Shandong-Beijing-Inner Mongolia community 

2012 
33 3 845,017.86 791,041.29 93.61% 

30 sectors of Shandong, the metal mining sector of Beijing, the 

petroleum and gas sector of Beijing, and the petroleum and gas 
sector of Inner Mongolia  

2012_10 Henan community 2012 30 1 511,065.76 323,262.31 63.25% 30 sectors of Henan  

2012_11 Hubei community 2012 30 1 373,377.40 366,084.97 98.05% 30 sectors of Hubei  

2012_12 Hunan community 2012 29 1 272,280.80 214,643.94 78.83% 29 sectors of Hunan  

2012_13 Guangdong community 2012 29 1 459,988.24 418,628.72 91.01% 29 sectors of Guangdong  

2012_14 Guangxi-Hainan community 2012 58 2 226,869.60 181,912.54 80.18% 29 sectors of Guangxi and 29 sectors of Hainan  

2012_15 Sichuan community 2012 30 1 310,668.62 296,215.88 95.35% 30 sectors of Sichuan  

2012_16 Chongqing-Guizhou-Yunnan community 2012 88 3 585,524.86 436,197.93 74.50% 
30 sectors of Chongqing, 29 sectors of Guizhou and 29 sectors 

of Yunnan  

2012_17 Qinghai community 2012 30 1 41,777.12 36,804.02 88.10% 30 sectors of Qinghai  

2012_18 Shaanxi-Gansu-Ningxia community 2012 88 3 537,411.07 334,010.55 62.15% 
30 sectors of Shaanxi, 30 sectors of Gansu, and 29 sectors of 

Ningxia  

2012_19 Xinjiang community 2012 30 1 250,476.59 186,889.57 74.61% 30 sectors of Xinjiang  

Table A.1. Communities of sectors in the carbon emissions network from 2007 to 2012 

Note: (1) The embodied carbon emissions network in reduced form is used in these calculations. (2) Table heading explanation. 
1
 Total flow: The amount of 

embodied carbon emissions the sectors of a community import and export. 
2
 Inflows: The amount of embodied carbon emissions transmitted amid a community. 
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Appendix A.3. Random effect of the sector-level transmission variables in communities 

Com. 

ID 

Relative 

Out-Degree 

Relative 

Out-Strength 

Clusterin

g 

Closeness_u

p 

Closeness_dow

n 

Betweennes

s 

2007_1 0.0374 3.1272 -0.0505 0.4248 1.0206 -0.4240 

2007_2 -0.0375 0.0434 -0.0719 0.1078 0.9798 -0.1800 

2007_3 0.0370 0.0241 -0.0610 0.1495 0.9638 -0.1680 

2007_4 0.0952 -0.0557 -0.0628 0.2527 1.0157 -0.3047 

2007_5 0.1085 0.1398 -0.0617 0.2873 1.0269 -0.3392 

2007_6 0.0325 1.9277 -0.0619 0.3256 1.0552 -0.3738 

2007_7 0.0632 1.8684 -0.0457 0.2844 0.9585 -0.2321 

2007_8 0.0485 0.2981 -0.0692 0.2404 1.0435 -0.3232 

2007_9 0.0100 1.8456 -0.0610 0.2935 1.0219 -0.3310 

2007_10 0.0788 0.0336 -0.0593 0.2059 0.9847 -0.2264 

2007_11 0.1067 0.0645 -0.0581 0.2158 1.0089 -0.2295 

2007_12 0.0656 5.3869 -0.0534 0.6274 1.1898 -0.6662 

2007_13 0.0303 0.2902 -0.0694 0.2043 1.0328 -0.2801 

2007_14 0.0464 2.5288 -0.0542 0.3582 1.0394 -0.3649 

2007_15 0.1500 0.0445 -0.0563 0.3228 1.0133 -0.3526 

2007_16 0.2621 0.9365 -0.0214 0.3111 0.9181 -0.1289 

2007_17 0.0916 0.3824 -0.0423 0.1280 0.9006 -0.0302 

2010_1 0.0170 3.2727 -0.0553 0.3925 1.0577 -0.4081 

2010_2 -0.0033 3.5971 -0.0547 0.4212 1.0426 -0.4399 

2010_3 0.0645 3.3368 -0.0445 0.4175 1.0192 -0.3768 

2010_4 -0.0085 1.3346 -0.0717 0.2694 1.0619 -0.3656 

2010_5 -0.0092 1.5244 -0.0653 0.2443 1.0270 -0.2974 

2010_6 0.0047 1.9907 -0.0623 0.2991 1.0365 -0.3440 

2010_7 0.0130 1.8264 -0.0672 0.3162 1.0725 -0.3932 

2010_8 0.0791 2.2124 -0.0482 0.3471 1.0081 -0.3199 

2010_9 0.0414 1.7176 -0.0504 0.2742 0.9643 -0.2483 

2010_10 0.0297 1.8058 -0.0578 0.2940 1.0161 -0.3135 

2010_11 0.0360 2.1407 -0.0552 0.3239 1.0170 -0.3329 

2010_12 0.1335 1.0375 -0.0437 0.1921 0.9961 -0.1070 

2010_13 0.0826 0.1696 -0.0658 0.2583 1.0410 -0.3260 

2010_14 0.0515 2.5321 -0.0573 0.3892 1.0644 -0.4208 

2010_15 0.0316 2.3589 -0.0545 0.3256 1.0212 -0.3289 

2010_16 0.1857 0.3966 -0.0320 0.1538 0.9226 0.0012 

2010_17 0.0314 2.9528 -0.0510 0.3840 1.0167 -0.3772 

2012_1 -0.0044 2.4838 -0.0556 0.3100 0.9994 -0.3169 

2012_2 0.0594 0.0747 -0.0662 0.2509 1.0110 -0.3225 

2012_3 0.0371 3.2849 -0.0500 0.3850 1.0400 -0.3684 

2012_4 0.0262 0.5023 -0.0653 0.2409 0.9961 -0.3028 

2012_5 -0.0307 1.1330 -0.0741 0.2289 1.0526 -0.3316 

2012_6 -0.0456 1.6225 -0.0701 0.2509 1.0280 -0.3335 

2012_7 -0.0019 2.4490 -0.0669 0.3623 1.0835 -0.4440 

2012_8 0.0192 1.2762 -0.0606 0.2333 1.0058 -0.2583 

2012_9 0.0209 0.5297 -0.0590 0.1791 0.9542 -0.1900 

2012_10 0.0330 1.4259 -0.0554 0.2581 0.9808 -0.2590 

2012_11 -0.0156 2.2418 -0.0620 0.2832 1.0318 -0.3208 
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Com. 

ID 

Relative 

Out-Degree 

Relative 

Out-Strength 

Clusterin

g 

Closeness_u

p 

Closeness_dow

n 

Betweennes

s 

2012_12 -0.0266 2.6513 -0.0660 0.3447 1.0651 -0.4167 

2012_13 0.0572 0.2636 -0.0687 0.2586 1.0415 -0.3431 

2012_14 -0.0374 1.8055 -0.0758 0.2649 1.0983 -0.3784 

2012_15 -0.0236 1.3906 -0.0694 0.2304 1.0389 -0.3044 

2012_16 -0.0467 2.5339 -0.0690 0.3016 1.0705 -0.3810 

2012_17 0.1952 -0.2075 -0.0197 0.1226 0.7898 0.0996 

2012_18 0.0982 0.7656 -0.0568 0.2725 1.0225 -0.2872 

2012_19 0.0862 2.9550 -0.0431 0.4276 1.0026 -0.3851 

Table A.2 Random effect of the sector-level transmission variables in communities
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Appendix A.4 Robustness check - Relationship between the embodied carbon emissions network structure 

and sectors’ direct carbon emissions (one-year lag) 

 Dependent variable: total carbon emissions (logarithmic) 

 (1) (2) (3) (4) 

Fixed effect     

Community level characteristics     

Size  
0.0228 

(0.0187) 

-0.0165 

(0.0121) 

-0.0219 

(0.0132) 

Density  
0.0077 

(0.0176) 

-0.0087 

(0.0122) 

-0.0196 

(0.0135) 

Average path length  
0.0035 

(0.0070) 

-0.0134** 

(0.0057) 

-0.0176*** 

(0.0059) 

Assortativity  
0.0093 

(0.0107) 

-0.0122 

(0.0082) 

-0.0149 

(0.0089) 

Individual characteristics     

Relative Out-degree 
0.0133 

(0.0084) 

0.0124 

(0.0084) 

-0.0204 

(0.0368) 

0.0799*** 

(0.0182) 

Relative Out-strength 
0.0257*** 

(0.0074) 

0.0264*** 

(0.0075) 

1.2001*** 

(0.2226) 

0.3929*** 

(0.0706) 

Clustering Coefficient 
-0.0844*** 

(0.0048) 

-0.0846*** 

(0.0048) 

-0.0793*** 

(0.0055) 

-0.0631*** 

(0.0053) 

Closeness-up 
0.1950*** 

(0.0074) 

0.1953*** 

(0.0074) 

0.3599*** 

(0.0217) 

0.2645*** 

(0.0207) 

Closeness-down 
0.9806*** 

(0.0080) 

0.9808*** 

(0.0080) 

0.9909*** 

(0.0143) 

0.9755*** 

(0.0151) 

Betweenness 
-0.1369*** 

(0.0103) 

-0.1385*** 

(0.0103) 

-0.2260***  

(0.0226) 

-0.2507*** 

(0.0237) 

Sector economic characteristics      

Compensation of employees    
0.0958*** 

(0.0138) 

Net taxes on production    
0.0062 

(0.0045) 

Depreciation of fixed capital    
-0.0443*** 

(0.0103) 

Operating surplus    
0.0103** 

(0.0043) 

Intermediate input/ final output 

ratio 
   

0.0064 

(0.0050) 

Coal/total fossil fuel ratio    
-0.0095*** 

(0.0035) 

GDP    
0.0515*** 

(0.0163) 

Time     

Year 2010 
-0.0213 

(0.0170) 

-0.0214 

(0.0176) 

0.0244* 

(0.0129) 

-0.0330** 

(0.0143) 

Year 2012 
-0.0664*** 

(0.0166) 

-0.0636*** 

(0.0172) 

-0.0318** 

(0.0130) 

-0.0890*** 

(0.0148) 

Sector      

Manufacturing sector  
0.0137 

(0.0117) 

0.0152 

(0.0121) 

0.0487*** 

(0.0122) 

0.0812*** 

(0.0144) 

Service sector 
0.0822*** 

(0.0146) 

0.0835*** 

(0.0149) 

0.0896*** 

(0.0142) 

0.0757*** 

(0.0163) 

Random effects (variance)     

Relative Out-degree 
  

0.0447*** 

(37.155) 

0.0059** 

(16.785) 

Relative Out-strength 
  

1.3067*** 

(63.601) 

0.0893*** 

(23.075) 

Clustering Coefficient 
  

0.0004* 

(15.407) 

0.0004** 

(16.513) 
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 Dependent variable: total carbon emissions (logarithmic) 

 (1) (2) (3) (4) 

Closeness-up 
  

0.0188*** 

(231.712) 

0.0161*** 

(158.999) 

Closeness-down 
  

0.0080*** 

(107.565) 

0.0093*** 

(128.337) 

Betweenness 
  

0.0203*** 

(260.772) 0.0230*** (322.534) 

Model fitting information     

intra-class correlation (ICC) 0.040 0.043 0.980 0.846 

AIC -685.22 -650.36 -1311.75 -1455.43 

BIC -614.62 -556.23 -1058.76 -1161.26 

Observed sample size 2,653 2,653 2,653 2,653 

Table A.3. Relationship between the embodied carbon emissions network structure and sectors’ direct 

carbon emissions (one-year lag) 

Note: ***, **, and * indicate that the data are significant at 1%, 5%, and 10% levels, respectively, and the standard errors of 

the estimated coefficients are in parentheses.  

For random effect (variance), the values in brackets are the likelihood ratio test statistics results.  

Closeness-up, closeness-down, betweenness, compensation of employees, net taxes on production, depreciation of 

fixed capital, operating surplus, and GDP are logarithmically transformed.  

 

Appendix A.5 Robustness check - Relationship between the embodied carbon emissions network structure 

and sectors’ direct carbon emissions (regression in a yearly manner)  

 Dependent variable: total carbon emissions (logarithmic) 

 2007 2010 2012 

Fixed effect    

Community level characteristics    

Size 
-0.0353* 

(0.0157) 

-0.0226* 

(0.0121) 

-0.0256 

(0.0302) 

Density 
-0.0324* 

(0.0178) 

-0.0151 

(0.0125) 

-0.0306 

(0.0226) 

Average path length 
-0.0054 

(0.0060) 

0.0172 

(0.0102) 

-0.0038 

(0.0089) 

Assortativity 
-0.0297** 

(0.0137) 

-0.0143 

(0.0115) 

-0.0028 

(0.0110) 

Individual characteristics     

Relative Out-degree 
0.1414** 

(0.0450) 

-0.0814 

(0.0482) 

-0.0544 

(0.0393) 

Relative Out-strength 
0.0346*** 

(0.0083) 

3.0401*** 

(0.6280) 

1.8925*** 

(0.3972) 

Clustering Coefficient 
-0.0532*** 

(0.0091) 

-0.0564*** 

(0.0060) 

-0.0651*** 

(0.0069) 

Upward closeness 
0.2537*** 

(0.0425) 

0.3748*** 

(0.0172) 

0.2782*** 

(0.0202) 

Downward closeness 
0.9935*** 

(0.0208) 

1.0432*** 

(0.0097) 

1.0243*** 

(0.0218) 

Betweenness 
-0.2636*** 

(0.0429) 

-0.2315*** 

(0.0253) 

-0.3214*** 

(0.0353) 

Sector economic characteristics     

Compensation of employees 
0.1664*** 

(0.0241) 

0.0695*** 

(0.0151) 

0.0929*** 

(0.0160) 

Net taxes on production 
0.0145** 

(0.0070) 

-0.0073 

(0.0065) 

0.0026 

(0.0058) 

Depreciation of fixed capital 
-0.0636*** 

(0.0162) 

-0.0565*** 

(0.0116) 

-0.0681*** 

(0.0133) 

Operating surplus 0.0169** -0.0028* 0.0112** 
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 Dependent variable: total carbon emissions (logarithmic) 

 2007 2010 2012 

(0.0080) (0.0053) (0.0046) 

Intermediate input/ final output 

ratio 

0.0239*** 

(0.0082) 

-0.0132** 

(0.0059) 

0.0140** 

(0.0063) 

Coal/total fossil fuel ratio 
0.0007 

(0.0060) 

-0.0047 

(0.0038) 

-0.0013 

(0.0042) 

GDP 
0.0238 

(0.0264) 

-0.0038 

(0.0198) 

0.0847*** 

(0.0209) 

Sector     

Manufacturing sector  
0.0593*** 

(0.0124) 

0.1675*** 

(0.0392) 

0.1071*** 

(0.0214) 

Service sector 
0.0265 

(0.0185) 

0.1206*** 

(0.0379) 

0.0638 

(0.0234) 

Random effects (variance) 
   

Relative Out-degree 0.0258*** 

(29.276) 

0.0216*** 

(19.926) 

0.0167 

(6.278) 

Relative Out-strength 0.0003 

(0.906) 

148.6*** 

(70.813) 

2.3138*** 

(44.198) 

Clustering Coefficient 0.0003 

(4.908) 

0.0001 

(4.735) 

0.0004 

(10.426) 

Closeness-up 0.0255*** 

(75.651) 

0.0130*** 

(50.401) 

0.0050*** 

(22.318) 

Closeness-down 0.0044*** 

(25.673) 

0.0010 

(9.813) 

0.0071*** 

(83.440) 

Betweenness 0.0245*** 

(123.784) 

0.0105*** 
(105.107) 

0.0178*** 

(148.206) 

Model fitting information    

intra-class correlation (ICC) 0.753 0.999 0.995 

AIC -377.38 -1218.13 -1013.75 

BIC -147.78 -988.47 -783.99 

Observed sample size 883 884 886 

Table A.4. Relationship between the embodied carbon emissions network structure and sectors’ direct 

carbon emissions (2007, 2010,2012) 

Note: ***, **, and * indicate that the data are significant at 1%, 5%, and 10% levels, respectively, and the standard errors of 

the estimated coefficients are in parentheses.  

For random effect (variance), the values in brackets are the likelihood ratio test statistics results.  

Upward closeness, downward closeness, betweenness, compensation of employees, net taxes on production, 

depreciation of fixed capital, operating surplus, and GDP are logarithmically transformed.  
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Highlights 

 Interdisciplinary methods are used to detect and examine the carbon communities  

 The carbon communities are detected data-driven with no pre-assumption 

 The effects of communities on carbon emissions are examined to inform policy-making 

 Provide direction for local governments’ external collaboration for a synergy 
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