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The three major axes of terrestrial ecosystem 
function

Mirco Migliavacca1,2,55 ✉, Talie Musavi1, Miguel D. Mahecha1,2,3,4, Jacob A. Nelson1, 
Jürgen Knauer5,56, Dennis D. Baldocchi6, Oscar Perez-Priego7, Rune Christiansen8, 
Jonas Peters8, Karen Anderson9, Michael Bahn10, T. Andrew Black11, Peter D. Blanken12, 
Damien Bonal13, Nina Buchmann14, Silvia Caldararu1, Arnaud Carrara15, Nuno Carvalhais1,16, 
Alessandro Cescatti17, Jiquan Chen18, Jamie Cleverly19,20, Edoardo Cremonese21, 
Ankur R. Desai22, Tarek S. El-Madany1, Martha M. Farella23, Marcos Fernández-Martínez24, 
Gianluca Filippa21, Matthias Forkel25, Marta Galvagno21, Ulisse Gomarasca1, 
Christopher M. Gough26, Mathias Göckede1, Andreas Ibrom27, Hiroki Ikawa28, 
Ivan A. Janssens24, Martin Jung1, Jens Kattge1,2, Trevor F. Keenan6,29, Alexander Knohl30,31, 
Hideki Kobayashi32, Guido Kraemer3,33, Beverly E. Law34, Michael J. Liddell35, Xuanlong Ma36, 
Ivan Mammarella37, David Martini1, Craig Macfarlane38, Giorgio Matteucci39, 
Leonardo Montagnani40,41, Daniel E. Pabon-Moreno1, Cinzia Panigada42, Dario Papale43, 
Elise Pendall44, Josep Penuelas45,46, Richard P. Phillips47, Peter B. Reich44,48,49, Micol Rossini42, 
Eyal Rotenberg50, Russell L. Scott51, Clement Stahl52, Ulrich Weber1, Georg Wohlfahrt10, 
Sebastian Wolf14, Ian J. Wright44,53, Dan Yakir50, Sönke Zaehle1 & Markus Reichstein1,2,54 ✉

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 
revealed fundamental axes of variation in plant traits, which represent different 
ecological strategies that are shaped by the evolutionary development of plant 
species2. Ecosystem functions depend on environmental conditions and the traits of 
species that comprise the ecological communities4. However, the axes of variation of 
ecosystem functions are largely unknown, which limits our understanding of how 
ecosystems respond as a whole to anthropogenic drivers, climate and environmental 
variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface 
gas exchange measurements across major terrestrial biomes. We find that most of the 
variability within ecosystem functions (71.8%) is captured by three key axes. The first 
axis reflects maximum ecosystem productivity and is mostly explained by vegetation 
structure. The second axis reflects ecosystem water-use strategies and is jointly 
explained by variation in vegetation height and climate. The third axis, which 
represents ecosystem carbon-use efficiency, features a gradient related to aridity, and 
is explained primarily by variation in vegetation structure. We show that two 
state-of-the-art land surface models reproduce the first and most important axis of 
ecosystem functions. However, the models tend to simulate more strongly correlated 
functions than those observed, which limits their ability to accurately predict the full 
range of responses to environmental changes in carbon, water and energy cycling in 
terrestrial ecosystems7,8.

Terrestrial ecosystems provide multiple functions (for example, 
resource use and potential uptake of carbon dioxide, among others) 
and ecosystem services on which society depends5. To understand and 
predict the response mechanisms of ecosystems as a whole to climatic 
and other environmental changes, it is crucial to establish how many 
and which functions need to be measured to obtain a good representa-
tion of overall ecosystem functioning. So far, the key functional axes 
that control the behaviour of terrestrial ecosystems have not yet been 
quantified5. This can be achieved by identifying associations between 
a comprehensive set of ecosystem functions measured consistently 
across major terrestrial biomes and a range of climatic conditions.

Here, we identify and quantity the major axes of terrestrial ecosystem 
functions and sources of variation along these axes. First, we charac-
terize multiple ecosystem functions across major terrestrial biomes. 
Second, we identify the most important axes of variation of ecosystem 
functions using an exploratory analysis similar to that used for the 
global spectrum of plant forms and functions3. Third, we analyse which 
variables drive the variation along these axes, from a suite of climatic 
variables, and the structural and chemical properties of the vegetation. 
Fourth, we analyse the extent to which two state-of-the-art land surface 
models (models that simulate the states and exchange of matter and 
energy between the Earth’s surface and the atmosphere) reproduce 
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the key axes of ecosystem functions. Understanding and quantifying 
the main axes of variation of the multi-dimensional space of ecosystem 
functions, their drivers and the degree to which land surface models 
are able to correctly represent the axes is a crucial prerequisite for pre-
dicting which terrestrial functions are the most vulnerable to climate 
and environmental changes.

We use carbon dioxide (CO2), water vapour (H2O), and energy flux 
data from 203 sites (1,484 site years) from FLUXNET datasets9,10. 
These sites cover a wide variety of climate zones and vegetation types 
(Extended Data Figs. 1–3, Supplementary Table 1). A previous report6 
suggested a series of core ecosystem functional properties that can 
be derived from carbon, water and energy flux observations related 
to efficiencies or potential rates of key physiological and ecohydro-
logical processes (for example, evapotranspiration, photosynthesis 
energy partitioning and so on) that control land surface–atmosphere  
interactions. For each site, we calculated a single set of functional 
properties (see ‘Calculation of ecosystem functions from FLUXNET’ in 
Methods for details on the calculation and definition of abbreviations): 
maximum gross CO2 uptake at light saturation (GPPsat), maximum 
net ecosystem productivity (NEPmax), maximum evapotranspiration 
(ETmax), evaporative fraction (EF) (that is, the ratio between latent heat  
flux and available energy, indicative of energy partitioning), EF ampli-
tude (EFampl), maximum dry canopy surface conductance (Gsmax), 
maximum and mean basal ecosystem respiration (Rbmax and Rb, 
respectively), and apparent carbon-use efficiency (aCUE) (that is, the 
remaining fraction of carbon entering the ecosystem). We also com-
puted several metrics of growing season water-use efficiency (WUE) 
that account in different ways for physical evaporation and stomatal 
regulation effects: underlying WUE (uWUE), stomatal slope at eco-
system scale (G1), and WUEt, a second variant of WUE, but based on 
transpiration estimates11 (see Methods). We calculated average cli-
mate and soil water availability variables for each site, encompassing 

the following: cumulative soil water availability index (CSWI), mean 
annual precipitation (P), mean shortwave incoming radiation (SWin), 
mean air temperature (Tair), and mean vapour pressure deficit during 
the growing season (VPD). In addition, we compiled information on 
canopy-scale structural variables such as foliar nitrogen concentration 
(N%), maximum leaf area index (LAImax), maximum canopy height (Hc), 
and above-ground biomass (AGB), when available (Methods, Supple-
mentary Table 1).

The key axes of the multi-dimensional space of terrestrial ecosys-
tem functions were identified using principal component analysis 
(PCA; see Methods). We find that the first three axes of variation (the 
principal components; PCs) explain 71.8% of the multi-dimensional 
functional space variation (Fig. 1a, b, Supplementary Information 2). 
The first axis (PC1) explains 39.3% of the variance and is dominated 
by maximum ecosystem productivity properties, as indicated by 
the loadings of GPPsat and NEPmax, and maximum evapotranspiration 
(ETmax) (Fig. 1c, d). Also, Rb contributes with positive loadings to PC1 
(Fig. 1d), indicating the coupling between productivity and ecosystem 
respiration (both autotrophic and heterotrophic)12. The first axis runs 
from sites with low productivity and evapotranspiration to sites with 
high photosynthesis, high net productivity, and high maximum evapo-
transpiration; that is, from cold and arid shrublands and wetlands, to 
forests in continental, tropical and temperate climates (Fig. 2a, b). The 
second axis (PC2) explains 21.4% of the variance and refers to water-use 
strategies as shown by the loadings of water-use efficiency metrics 
(uWUE, WUEt, and G1), evaporative fraction and maximum surface 
conductance (Fig. 1c, d). Plant functional types do not explain clearly 
the variability of the second axis, with the exception of the evergreen 
and mixed forest, and the wetlands that are at the opposite extremes 
of the range (Fig. 2c). This axis runs (Fig. 2c,d) from temperate forests, 
dry and subtropical sites with a low average evaporative fraction (that 
is, available energy is mainly dissipated by sensible heat) but higher 
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Fig. 1 | Key dimensions of multivariate space of terrestrial ecosystem 
functions. a, Biplot resulting from the PCA. Different colours of the points 
represent different plant functional types (PFTs): CSH (closed shrublands); DBF 
(deciduous broadleaved forest); DNF (deciduous needleleaf forests); EBF 
(evergreen broadleaved forest); ENF (evergreen needleleaf forest);  
GRA (grasslands); MF (mixed forest); OSH (open shrublands); SAV (savannah); 

and WET (wetlands). Bigger points represent the centroid of the distribution 
for each PFT. b, Explained variance for each principal component. c, d, Bar plots 
of the contribution (c) and loading (d) of each ecosystem functional property 
(EFP) to each principal component. Orange bars represent the loadings and the 
contributions that are considered significant (Supplementary Information 2).
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water-use efficiency (Fig. 2d), to sites in cold or tropical climates, as 
well as wetlands with a high evaporative fraction (that is, available 
energy is used for evapotranspiration), high surface conductance and 
low water-use efficiency (Fig. 2c, d). The third axis (PC3) explains 11.1% 
of the variance and includes key attributes that reflect the carbon-use 
efficiency of ecosystems. PC3 is dominated by apparent carbon-use 
efficiency (aCUE), basal ecosystem respiration (Rb and Rbmax) and the 
amplitude of EF (EFampl) (Fig. 1c, d). Rb and aCUE contribute to PC3 with 
opposite loadings, indicating that the PC3 ranges from sites with high 
aCUE and low Rb to sites with low aCUE and high Rb. The third axis runs 
from Arctic and boreal sites with low PC values to hot and dry climates 
(Fig. 2f), potentially indicating the imprint of aridity and temperature 
over the efficiency of ecosystems to use the assimilated carbon. We 
find no clear relation to plant functional types, with the exception of 
deciduous and evergreen forests that are at the extremes of the PC3 
range (Fig. 2e).

We analyse the predictive relative importance of five climatic vari-
ables (Tair, VPD, CSWI, P, and SWin) and four vegetation structural char-
acteristics (LAImax, AGB, Hc and N%) on the predictability of the principal 
components using random forests (see ‘Predictive variable importance’ 
in Methods). We find that the maximum productivity axis (PC1) is largely 
explained by vegetation structure (LAImax, AGB, Hc  and N%) and VPD 
(Fig. 3a, Extended Data Fig. 4a–e). The water-use strategies axis (PC2) is 
mostly explained by maximum canopy height (Hc), followed by climate 
variables (Fig. 3b, Extended Data Fig. 4i–l). Structural and climate vari-
ables jointly explain the variability of the carbon-use efficiency axis 
(PC3). The most important structural predictors of PC3 are AGB and 
N%, whereas VPD, Tair and SWin are the most important climate drivers 
(Fig. 3c, Extended Data Fig. 4m–q).

The dependencies described above can only be interpreted caus-
ally if the regression models are in fact causal regression models 
(see Supplementary Information 3 for a formal definition). In many 
situations, this fails to be the case owing to the existence of hidden 
confounders; that is, unmeasured variables that influence both the 

principal components and the covariates (here climate and structural 
variables)13. Using an invariance-based analysis (see ‘Invariant causal 
regression models and causal variable importance’ in Methods), we 
find evidence that the full regression model including all the selected 
structural and climatic variables might be causal (Supplementary Infor-
mation 3.2.1, Supplementary Fig. 3.3). If this is indeed the case, we can 
make the following statements. When considering groupwise causal 
variable importance, we can conclude that vegetation structure is a 
stronger causal driver than climate of the spatial (that is, across sites) 
variability of the maximum realized productivity axis (PC1) (Supple-
mentary Fig. 3.7), and both are significant (Supplementary Table 3.2). 
Consider two contiguous plots of forest experiencing the same climate 
conditions, one disturbed and the other not. The undisturbed forest, 
which is likely to be taller, with higher LAI and carbon stocks, would 
probably have higher maximum photosynthetic rates and net eco-
system production, which are the most important variables loading 
on the first axis. Although, in time, the variability of climate controls 
the variability of gross and net CO2 uptake and productivity14,15, which 
are variables related to the maximum productivity axis (PC1), in space 
(that is, across sites) we find only a marginal control in very cold and 
radiation-limited sites (Extended Data Fig. 5a for a PC1 map), or for very 
warm and high atmospheric aridity (high VPD) conditions (Extended 
Data Fig. 4d based on predictive variable importance). Both vegeta-
tion structure and climate variables seem to have a joint direct causal 
effect on PC2 (Supplementary Fig 3.7). Although vegetation canopy 
height is constrained by resource availability16, particularly water, our 
results suggest that it acts itself as a control on the water-use strate-
gies axis (PC2) and that it has a stronger causal effect on PC2 than each 
of the climate variables (Supplementary Fig. 3.6). The importance 
of vegetation height for ecosystem water-use strategies is manifold. 
First, vegetation height controls the coupling between stomata and 
atmosphere by influencing surface roughness and then aerodynamic 
resistance17, which modulates leaf-to-air VPD and water use efficiency. 
Second, vegetation height reflects variation in water-use efficiency that 
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decreases as a consequence of progressive hydraulic constraints on 
stomatal conductance to water vapour and growth in taller vegetation16. 
Third, canopy height might reflect stand age and it is influenced by 
disturbances. Studies on forest chronosequence show a more conserva-
tive use of water in younger forests, which results in higher water-use 
efficiency18. We cannot exclude that our results are indirectly affected 
by the gradient from grass to forests, but postulate that these effects are 
likely to be minimal (Extended Data Fig. 6). Vegetation structure has a 
direct causal effect on the carbon-use efficiency axis (PC3; Supplemen-
tary Fig 3.7). Previous studies show that vegetation structure reflects 
climatic constraints but also the successional stage of an ecosystem 
after disturbance19. Increasing stand age—which is typically associated 
with higher above-ground biomass—is also associated with reduced 
forest production efficiency20. The negative partial dependence of PC3 
on above-ground biomass (Extended Data Fig. 4n, based on predictive 
variable importance) is likely to be related to higher autotrophic and 
heterotrophic respiration rates per unit of CO2 taken up by photosyn-
thesis as biomass increases21. The positive dependence of PC3 on N% 
(Extended Data Fig. 4q, based on predictive variable importance) sup-
ports previous findings that carbon-use efficiency might be controlled 
by the nutrient status of the vegetation22.

The two representative—yet complementary—land surface models 
examined here (OCN and JSBACH) partially reproduce the main axes 
of terrestrial ecosystem functions (Extended Data Fig. 7). This is shown 
when comparing the PCA calculated from FLUXNET data with simu-
lated ecosystem functional properties from 48 site-level runs, mostly 
in temperate and boreal sites (Extended Data Fig. 7). The models are 
broadly consistent with the FLUXNET observations in the description 
of the potential productivity axis (PC1), but diverge in the descrip-
tion of the water-use strategies (PC2) and the carbon-use efficiency 
(PC3) axes. Despite the overall good agreement between observed and 
modelled fluxes at a half-hourly timescale (Supplementary Table 4), 
we show that, first, models are limited in simulating the relationships 
between ecosystem functions (Extended Data Fig. 8); and, second, 
models tend to overstate observed correlation strengths among eco-
system functions, as shown by the larger variance explained by the 
PC1 in models compared to observations (Extended Data Fig 7h, i). 
As a result, the ecosystem functional space that can be simulated by 
the models, represented by the area shown in Extended Data Fig. 9, is 
smaller than that expected from observations, particularly in the plane 
spanned by the PC2 and PC3 (Extended Data Fig. 9d–f). The limited 
variability of the model output points to an insufficient representation 
of the actual variability of the vegetation properties by the average 
parameterization of plant functional types. Uncertain implementation 
of plant hydraulics and water acquisition or conservation strategies 
in land surface models is a key limitation23 that explains the observed 
discrepancy in PC2. With regard to PC3, one limitation is that models 

lack flexibility in representing the response of respiration rates and 
carbon-use efficiency to climate, nutrients, disturbances and substrate 
availability (including biomass and stand age)20,24.

The identification of the key axes of terrestrial ecosystem function 
and their relationships with climate and vegetation structure will help to 
support the development of the next generation of land surface models 
and complement their benchmarking25. By comparing the contribu-
tions of the functions and their loadings to the principal components, 
we can assess whether the representations of ecosystem functions in 
the models and in the ‘real world’ are coherent, and if not, which key 
processes or model formulations need improvement. For example, 
we show that vegetation height controls the water-use strategies axis 
(PC2), which is not well reproduced by the land surface models23. This 
suggests that future land surface models need to include a representa-
tion of water-use strategies that explicitly accounts for hydraulic limita-
tions to growth, vegetation stature, vertical and horizontal structures 
and microenvironments of the canopy, and a refined parameterization 
of stomatal control. Likewise, the inclusion of a flexible representa-
tion of carbon-use efficiency would enable models to reproduce the 
third axis of ecosystem functions24. The comparison of the variances 
explained by functional axes and the loadings of the functions in simu-
lated and observed data will indicate whether simulated ecosystem 
functions are appropriately coordinated. The overly tight coupling 
of ecosystem functions by models indicates a lack of flexibility in eco-
system responses to environmental drivers, such as adaptive carbon 
and water couplings.

In summary, by analysing a consistent set of ecosystem functions 
across major terrestrial biomes and climate zones, we show that three 
key axes capture the terrestrial ecosystem functions. The first and 
most important axis represents maximum productivity and is driven 
primarily by vegetation structure, followed by mean climate. The sec-
ond axis is related to water-use strategies, and is driven by vegetation 
height. The third axis is related to ecosystem carbon-use efficiency; it 
is controlled by vegetation structure, but shows a gradient related to 
aridity. We find that the plant functional type concept does not nec-
essarily capture the variability of ecosystem functions, because the 
majority of plant functional types are evenly distributed along the 
water-use strategies (PC2) and carbon-use efficiency (PC3) axes. Our 
approach allows the overall functioning of terrestrial ecosystems to 
be summarized and offers a way towards the development of metrics 
of ecosystem multifunctionality5—a measure of ecosystem functions 
as a whole, which is crucial to achieving a comprehensive assessment 
of the responses of ecosystems to climate and environmental vari-
ability, as well as biodiversity losses5. The analysis focuses on relatively 
few critical functions related to carbon, water and energy cycling of 
ecosystems. To attain a fully comprehensive characterization of the 
key axes of terrestrial ecosystem functions, more parameters related 
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to nutrient cycling, seed dispersal and chemical defences—among 
others—should be included. The concept of the key axes of ecosystem 
functions could be used as a backdrop for the development of land 
surface models, which might help to improve the predictability of 
the terrestrial carbon and water cycle in response to future changing 
climatic and environmental conditions.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03939-9.

1.	 Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827  
(2004).

2.	 Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in 
plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

3.	 Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171  
(2016).

4.	 Bruelheide, H. et al. Global trait–environment relationships of plant communities.  
Nat. Ecol. Evol. 2, 1906–1917 (2018).

5.	 Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 
(2018).

6.	 Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant  
and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA 111, 13697–13702 
(2014).

7.	 Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. 
Science 368, eaaz7005 (2020).

8.	 Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of 
forests. Science 320, 1444–1449 (2008).

9.	 Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global 
network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26 (2008).

10.	 Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for 
eddy covariance data. Sci. Data 7, 225 (2020).

11.	 Nelson, J. A. et al. Ecosystem transpiration and evaporation: insights from three  
water flux partitioning methods across FLUXNET sites. Global Change Biol. 26,  
6916–6930 (2020).

12.	 Janssens, I. A. et al. Productivity overshadows temperature in determining soil and 
ecosystem respiration across European forests. Global Change Biol. 7, 269–278  
(2001).

13.	 Pearl, J. Causality (Cambridge University Press, 2009).
14.	 Krich, C. et al. Functional convergence of biosphere–atmosphere interactions in 

response to meteorological conditions. Biogeosciences 18, 2379–2404 (2021).
15.	 Musavi, T. et al. Stand age and species richness dampen interannual variation of 

ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).
16.	 Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant 

Cell Environ. 29, 367–381 (2006).
17.	 De Kauwe, M. G., Medlyn, B. E., Knauer, J. & Williams, C. A. Ideas and perspectives:  

how coupled is the vegetation to the boundary layer? Biogeosciences 14, 4435–4453 
(2017).

18.	 Skubel, R. et al. Age effects on the water-use efficiency and water-use dynamics of 
temperate pine plantation forests. Hydrol. Processes 29, 4100–4113 (2015).

19.	 Law, B. E., Thornton, P. E., Irvine, J., Anthoni, P. M. & Van Tuyl, S. Carbon storage and  
fluxes in ponderosa pine forests at different developmental stages. Global Change Biol. 7, 
755–777 (2001).

20.	 Collalti, A. et al. Forest production efficiency increases with growth temperature.  
Nat. Commun. 11, 5322 (2020).

21.	 DeLucia, E. H., Drake, J. E., Thomas, R. B. & Gonzalez-Meler, M. Forest carbon use 
efficiency: is respiration a constant fraction of gross primary production? Global Change 
Biol. 13, 1157–1167 (2007).

22.	 Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest 
carbon balance. Nat. Clim. Change 4, 471–476 (2014).

23.	 Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. 
J. Adv. Model. Earth Syst. 11, 485–513 (2019).

24.	 Manzoni, S. et al. Reviews and syntheses: carbon use efficiency from organisms to 
ecosystems – definitions, theories, and empirical evidence. Biogeosciences 15,  
5929–5949 (2018).

25.	 Eyring, V. et al. Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set 
of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth 
system models in CMIP. Geosci. Model Dev. 13, 3383–3438 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons license and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

1Max Planck Institute for Biogeochemistry, Jena, Germany. 2German Centre for Integrative 
Biodiversity Research (iDiv),  Halle-Jena-Leipzig, Germany. 3Remote Sensing Center for Earth 
System Research, Leipzig University, Leipzig, Germany. 4Helmholtz Centre for Environmental 
Research – UFZ, Leipzig, Germany. 5CSIRO Oceans and Atmosphere, Canberra, Australian 
Capital Territory, Australia. 6Department of Environmental Science, Policy and Management, 
University of California, Berkeley, Berkeley, CA, USA. 7Department of Forest Engineering, ERSAF 
Research Group, University of Cordoba, Cordoba, Spain. 8Department of Mathematical 
Sciences, University of Copenhagen, Copenhagen, Denmark. 9Environment and Sustainability 
Institute, University of Exeter, Penryn, UK. 10Department of Ecology, University of Innsbruck, 
Innsbruck, Austria. 11Faculty of Land and Food Systems, Vancouver, British Columbia, Canada. 
12Department of Geography, University of Colorado, Boulder, CO, USA. 13Université de Lorraine, 
AgroParisTech, INRAE, UMR Silva, Nancy, France. 14Department of Environmental Systems 
Science, ETH Zurich, Zurich, Switzerland. 15Fundación Centro de Estudios Ambientales del 
Mediterráneo (CEAM), Paterna, Spain. 16Departamento de Ciências e Engenharia do Ambiente, 
Universidade Nova de Lisboa, Caparica, Portugal. 17European Commission, Joint Research Centre 
(JRC), Ispra, Italy. 18Landscape Ecology & Ecosystem Science (LEES) Lab, Center for Global 
Change and Earth Observations, and Department of Geography, Environmental and Spatial 
Science, Michigan State University, East Lansing, MI, USA. 19School of Life Sciences, University of 
Technology Sydney, Ultimo, New South Wales, Australia. 20Terrestrial Ecosystem Research 
Network, College of Science and Engineering, James Cook University, Cairns, Queensland, 
Australia. 21Climate Change Unit, Environmental Protection Agency of Aosta Valley, Aosta, Italy. 
22Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, 
WI, USA. 23O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, 
IN, USA. 24Research Group Plant and Ecosystems (PLECO), Department of Biology, University of 
Antwerp, Wilrijk, Belgium. 25Institute of Photogrammetry and Remote Sensing, TU Dresden, 
Dresden, Germany. 26Department of Biology, Virginia Commonwealth University, Richmond, VA, 
USA. 27Department of Environmental Engineering, Technical University of Denmark (DTU), 
Kongens Lyngby, Denmark. 28Institute for Agro-Environmental Sciences, National Agriculture and 
Food Research Organization, Tsukuba, Japan. 29Earth and Environmental Science Area, Lawrence 
Berkeley National Laboratory, Berkeley, CA, USA. 30Bioclimatology, Faculty of Forest Sciences 
and Forest Ecology,  University of Goettingen, Goettingen, Germany. 31Centre of Biodiversity and 
Sustainable Land Use (CBL), University of Goettingen, Goettingen, Germany. 32Research Institute 
for Global Change, Institute of Arctic Climate and Environment Research, Japan Agency for 
Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan. 33Image Processing 
Laboratory (IPL), Universitat de València, València, Spain. 34Department of Forest Ecosystems 
and Society, Oregon State University, Corvallis, OR, USA. 35Centre for Tropical, Environmental, 
and Sustainability Sciences, James Cook University, Cairns, Queensland, Australia. 36College of 
Earth and Environmental Sciences, Lanzhou University, Lanzhou, China. 37Institute for 
Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 
Helsinki, Finland. 38CSIRO Land and Water, Floreat, Western Australia, Australia. 39Consiglio 
Nazionale delle Ricerche, Istituto per la BioEconomia (CNR – IBE), Sesto Fiorentino, Italy. 
40Facoltà di Scienze e Tecnologie, Libera Universita’ di Bolzano, Bolzano, Italy. 41Forest Services of 
the Autonomous Province of Bozen-Bolzano, Bolzano, Italy. 42Department of Earth and 
Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy. 43Department for 
Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, 
Italy. 44Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South 
Wales, Australia. 45CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain. 46CREAF, 
Barcelona, Spain. 47Department of Biology, Indiana University, Bloomington, IN, USA. 
48Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA. 49Institute for 
Global Change Biology and School for Environment and Sustainability, University of Michigan, 
Ann Arbor, MI, USA. 50Department of Earth and Planetary Sciences, Weizmann Institute of 
Science, Rehovot, Israel. 51Southwest Watershed Research Center, USDA Agricultural Research 
Service, Tucson, AZ, USA. 52INRAE, UMR EcoFoG, CNRS, Cirad, AgroParisTech, Université des 
Antilles, Université de Guyane, Kourou, France. 53Department of Biological Sciences, Macquarie 
University, Sydney, New South Wales, Australia. 54Michael-Stifel-Center Jena for Data-driven and 
Simulation Science, Friedrich-Schiller-Universität Jena, Jena, Germany. 55Present address: 
European Commission, Joint Research Centre (JRC), Ispra, Italy. 56Present address: Hawkesbury 
Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia. 
✉e-mail: mmiglia@bgc-jena.mpg.de; mreichstein@bgc-jena.mpg.de

https://doi.org/10.1038/s41586-021-03939-9
http://creativecommons.org/licenses/by/4.0/
mailto:mmiglia@bgc-jena.mpg.de
mailto:mreichstein@bgc-jena.mpg.de


Methods

FLUXNET data
The data used in this study belong to the FLUXNET LaThuile9 and 
FLUXNET2015 Tier 1 and Tier 2 datasets10, which make up the global 
network of CO2, water vapour and energy flux measurements. We 
merged the two FLUXNET releases and retained the FLUXNET2015 
(the most recent and with a robust quality check) version of the data 
when the site was present in both datasets. Croplands were removed 
to avoid the inclusion of sites that are heavily managed in the analysis 
(for example, fertilization and irrigation).

The sites used cover a wide variety of climate zones (from tropical 
to Mediterranean to Arctic) and vegetation types (wetlands, shrub-
lands, grasslands, savanna, evergreen and deciduous forests). It should 
be noted though that tropical forests are underrepresented in the 
FLUXNET database (Extended Data Figs. 1, 3).

Sites were excluded in cases in which: (i) data on precipitation or 
radiation were not available or completely gap-filled; (ii) the calculation 
of functional properties failed because of low availability of measured 
data (see ‘Calculation of ecosystem functions from FLUXNET’); and (iii) 
fluxes showed clear discontinuities in time series indicating a change 
of instrumentation set-up (for example, changes in the height of the 
ultrasonic anemometer or gas analyser).

The final number of sites selected was 203 (1,484 site years). The geo-
graphical distribution is shown in Extended Data Fig. 1, the distribution 
in the climate space is shown in Extended Data Fig. 2 and the fraction 
of sites for each climate classes is reported in Extended Data Fig. 3.

For each site, we downloaded the following variables at half-hourly 
temporal resolution: (i) gross primary productivity (GPP, μmol CO2 m–2 s–1)  
derived from the night-time flux partitioning26 (GPP_NT_VUT_50 in 
FLUXNET 2015 and GPP_f in LaThuile), (ii) net ecosystem exchange 
(NEE, μmol CO2 m–2 s–1) measurements filtered using annual friction 
velocity (u*, m s−1) threshold (NEE_VUT_50 in FLUXNET 2015; NEE in 
LaThuile); (iii) latent heat (LE, W m−2) fluxes, which were converted 
to evapotranspiration (ET, mm); (iv) sensible heat (H, W m−2) fluxes; 
(v) air temperature (Tair, °C); (vi) vapour pressure deficit (VPD, hPa); 
(vii) global shortwave incoming radiation (SWin, W m−2); viii) net radia-
tion (Rn, W m−2); (ix) ground heat flux (G, W m−2); (x) friction velocity 
u* (m s−1); and (xi) wind speed (u, m s−1). For the energy fluxes (H, LE) 
we selected the fluxes not corrected for the energy balance closure 
to guarantee consistency between the two FLUXNET datasets (in the 
LaThuile dataset energy fluxes were not corrected).

The cumulative soil water index (CSWI, mm) was computed as a meas-
ure of water availability according to a previous report27. Half-hourly 
values of transpiration estimates (T, mm) were calculated with the 
transpiration estimation algorithm (TEA)28. The TEA has been shown 
to perform well against both model simulations and independent sap 
flow data28.

For 101 sites, ecosystem scale foliar N content (N%, gN 100 g−1) was 
computed as the community weighted average of foliar N% of the major 
species at the site sampled at the peak of the growing season or gathered 
from the literature29–32. Foliar N% for additional sites was derived from 
the FLUXNET Biological Ancillary Data Management (BADM) product 
and/or provided by site principal investigators (Supplementary Table 1, 
Extended Data Fig. 1). It should be noted that this compilation of N% data 
might suffer from uncertainties resulting from the scaling from leaves to 
the eddy covariance footprint, the sampling strategy (including the posi-
tion along the vertical canopy profile), the species selection and the tim-
ing of sampling. About 30% of the data comes from a coordinated effort 
that minimized these uncertainties29,30, and for the others we collected 
N% data that were representative for the eddy covariance footprint31,32.

Maximum leaf area index (LAImax, m2 m−2) and maximum canopy 
height (Hc, m) were also collected for 153 and 199 sites, respectively, 
from the literature32,33, the BADM product, and/or site principal inves-
tigators.

Earth observation retrievals of above-ground biomass (AGB, tons of 
dry matter per hectare (t DM ha−1)) were extracted from the GlobBiomass 
dataset34 at its original resolution (grid cell 100 × 100 m) for each site 
location. All the grid cells in a 300 × 300 m and 500 × 500 m window 
around each location were selected to estimate the median and 95th 
percentiles of AGB for each site. The median of AGB was selected to avoid 
the contribution of potential outliers to the expected value of AGB. The 
analysis further explored the contribution of higher percentiles in the 
local variation of AGB as previous studies have highlighted the contri-
bution of older and larger trees in uneven stand age plots to ecosystem 
functioning35. According to the evaluation against AGB measured at 71 
FLUXNET sites (Extended Data Fig. 10), we decided to use the product 
with median AGB values extracted from the 500 × 500 m window.

A total of 94 sites have all the data on vegetation structure (N%, LAImax, 
Hc, and AGB).

The list of sites is reported in Supplementary Table 1 along with the 
plant functional type (PFT), Köppen-Geiger classification, coordinates, 
and when available N%, LAImax, Hc and AGB.

In this study we did not make use of satellite information, with the 
exception of the AGB data product. Future studies will benefit from 
new missions such as the ECOsystem Spaceborne Thermal Radiom-
eter Experiment on Space Station (ECOSTRESS), the fluorescence 
explorer (FLEX), hyperspectral, and radar and laser detection and 
ranging (LiDAR) missions (for example, Global Ecosystem Dynamics 
Investigation (GEDI)), to characterize a multivariate space of structural 
and functional properties.

Calculation of ecosystem functions from FLUXNET
Starting from half-hourly data, we calculated at each site a single value 
for each of the ecosystem functions listed below. For the calculations of 
functional properties we used, unless otherwise indicated, good-quality 
data: quality flag 0 (measured data) and 1 (good-quality gap-filled data) 
in the FLUXNET dataset.

Gross primary productivity at light saturation (GPPsat)
GPP at light saturation using photosynthetically active radiation as 
driving radiation and 2,000 μmol m−2 s−1 as saturating light. GPPsat repre-
sents the ecosystem-scale maximum photosynthetic CO2 uptake15,30,36. 
The GPPsat was estimated from half-hourly data by fitting the hyperbolic 
light response curves with a moving window of 5 days and assigned at 
the centre of the moving window30,37. For each site the 90th percentile 
from the GPPsat estimates was then extracted.

Maximum net ecosystem productivity (NEPmax)
This was computed as the 90th percentile of the half-hourly net ecosys-
tem production (NEP = −NEE) in the growing season (that is, when daily 
GPP is higher than 30% of the GPP amplitude). This metric represents 
the maximum net CO2 uptake of the ecosystem.

Basal ecosystem respiration (Rb and Rbmax)
Basal ecosystem respiration at reference temperature of 15 °C was 
derived from night-time NEE measurements26. Daily basal ecosystem 
respiration (Rbd) was derived by fitting an Arrhenius type equation over 
a five-day moving window and by keeping the sensitivity to temperature 
parameter (E0) fixed as in the night-time partitioning algorithms26,38. Rbd 
varies across seasons because it is affected by short-term variations in 
productivity33,39, phenology40 and water stress41. For each site, the mean 
of the Rbd (Rb) and the 95th percentile (Rbmax) were computed. The cal-
culations were conducted with the REddyProc R package v.1.2.2 (ref. 38).

Apparent carbon-use efficiency (aCUE). The aCUE as defined in this 
study is the efficiency of an ecosystem to sequester the carbon assimi-
lated with photosynthesis39. aCUE is an indication of the proportion of 
respired carbon with respect to assimilated carbon within one season. 
A previous report6 showed that little of the variability in aCUE can be 
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explained by climate or conventional site characteristics, and sug-
gested an underlying control by plant, faunal and microbial traits, in 
addition to site disturbance history. Daily aCUE (aCUEd) is defined as 
aCUEd = 1 − (Rbd/GPPd), where GPPd is daily mean GPP and Rbd is derived 
as described above. For each site, aCUE was computed as the median 
of aCUEd.

Metrics of water-use efficiency (WUE)
Various metrics of WUE are described below: stomatal slope or slope 
coefficient (G1), underlying water-use efficiency (uWUE), and water-use 
efficiency based on transpiration (WUEt). The three metrics were used 
because they are complementary, as shown in previous studies11,42.

Stomatal slope or slope coefficient (G1). This is the marginal carbon 
cost of water to the plant carbon uptake. G1 is the key parameter of the 
optimal stomatal model derived previously43. G1 is inversely related to 
leaf-level WUE. At leaf level, G1 is calculated using nonlinear regression 
and can be interpreted as the slope between stomatal conductance 
and net CO2 assimilation, normalized for VPD and CO2 concentration43.  
A previous report42 showed the potential of the use of G1 at ecosystem 
scale, where stomatal conductance is replaced by surface conductance 
(Gs), and net assimilation by GPP. The methodology is implemented in 
the bigleaf R package44. The metric was computed in the following situ-
ations: (i) incoming shortwave radiation (SWin) greater than 200 W m−2;  
(ii) no precipitation event for the last 24 h45, when precipitation data 
are available; and (iii) during the growing season: daily GPP > 30% of 
its seasonal amplitude44.

Underlying water-use efficiency (uWUE). The underlying WUE was 
computed following a previous method46. uWUE is a metric of water-use 
efficiency that is negatively correlated to G1 at canopy scale44:

uWUE =
GPP VPD

ET
.

uWUE was calculated using the same filtering that was applied for the 
calculation of G1. The median of the half-hourly retained uWUE values 
was computed for each site and used as a functional property.

Water-use efficiency based on transpiration (WUEt). The WUE based 
on transpiration (T) was computed to reduce the confounding effect 
resulting from soil evaporation11,28:

T
WUE =

GPP
,t

where T is the mean annual transpiration calculated with the transpira-
tion estimation algorithm (TEA) developed by in a previous study28 and 
GPP is the mean annual GPP.

Maximum surface conductance (Gsmax). Surface conductance (Gs) was 
computed by inverting the Penman–Monteith equation after calculat-
ing the aerodynamic conductance (Ga).

Among the different formulations of Ga (m s–1) in the literature, we 
chose to use here the calculation of the canopy (quasi-laminar) bound-
ary layer conductance to heat transfer, which ranges from empirical to 
physically based (for example, ref. 47). Other studies48,49 suggested an 
empirical relationship between Ga, the horizontal wind speed (u) and 
the friction velocity, u*:

( )
G

u
=

1

+ 6.2 *
*
u

u

a
−0.67

2

Gs (m s−1) is computed by inverting the Penman–Monteith equation:

G
γ

R G S ρC G γ
=
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a
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where Δ is the slope of the saturation vapour pressure curve (kPa K−1),  
ρ is the air density (kg m−3), Cp is the specific heat of the air ( J K−1 kg−1),  
γ is the psychrometric constant (kPa K−1), VPD (kPa), Rn (W m−2), G (W m−2)  
and S is the sum of all energy storage fluxes (W m−2) and set to 0 as not 
available in the dataset. When not available, G also was set to 0.

Gs represents the combined conductance of the vegetation and the 
soil to water vapour transfer. To retain the values with a clear physiologi-
cal interpretation, we filtered the data as we did for the calculation of G1.

For each site, the 90th percentile of the half-hourly Gs was calculated 
and retained as the maximum surface conductance of each site (Gsmax). 
Gs was computed using the bigleaf R package44.

Maximum evapotranspiration in the growing season (ETmax). This 
metric represents the maximum evapotranspiration computed as the 
95th percentile of ET in the growing season and using the data retained 
after the same filtering applied for the G1 calculation.

Evaporative fraction (EF). EF is the ratio between LE and the available 
energy, here calculated as the sum of H + LE (ref. 50). For the calculation 
of EF, we used the same filtering strategy as for G1. We first calculat-
ed mean daytime EF. We then computed  the EF per site as the growing 
season average of daytime EF. We also computed the amplitude of the 
EF in the growing season by calculating the interquartile distance of 
the distribution of mean daytime EF (EFampl).

Principal component analysis
A PCA was conducted on the multivariate space of the ecosystem func-
tions. Each variable (ecosystem functional property, EFP) was stand-
ardized using z-transformation (that is, by subtracting its mean value 
and then dividing by its standard deviation). From the PCA results we 
extracted the explained variance of each component and the loadings 
of the EFPs, indicating the contribution of each variable to the compo-
nent. We performed the PCA using the function PCA() implemented in 
the R package FactoMineR51.

We justify using PCA over nonlinear methods because it is an explora-
tory technique that is highly suited to the analysis of the data volume 
used in this study, whereas other nonlinear methods applied to such 
data would be over-parameterized. For the same reason, PCA was used 
in previous work concerning the global spectrum of leaf and plant 
traits, and fluxes1,3,52.

To test the significance of dimensionality of the PCA, we used a previ-
ously described methodology53. We used the R package ade4 (ref. 54) 
and evaluated the number of significant components of the PCA to be 
retained to minimize both redundancy and loss of information (Supple-
mentary Information 2). We tested the significance of the PCA loadings 
using a combination of the bootstrapped eigenvector method55 and a 
threshold selected using the number of dimensions56 (Supplementary 
Information 2).

Predictive variable importance
A random forests (RF) analysis was used to identify the vegetation struc-
ture and climate variables that contribute the most to the variability of 
the significant principal components, which were identified with the 
PCA analysis (see ‘Principal component analysis’). In the main text we 
refer to the results of this analysis as ‘predictive variable importance’ 
to distinguish this to the ‘causal variable importance’ described below.

The analysis was conducted using the following predictor variables: 
as structural variables, N% (gN 100 g−1), LAImax (m2 m−2), AGB (t DM ha−1) 
and Hc (m); as climatic variables, mean annual precipitation (P, mm), 
mean VPD during the growing season (VPD, hPa), mean shortwave 
radiation (SWin, W m−2), mean air temperature (Tair, °C); and the cumu-
lative soil water index (CSWI, −), as indicator of site water availability.

We used partial dependencies of variables to assess the relationship 
between individual predictors and the response variable (that is, PC1, 
PC2 and PC3).



The results from the partial dependency analysis can be used to deter-
mine the effects of individual variables on the response, without the 
influence of the other variables. The partial dependence function was 
calculated using the pdp R package57.

The partial dependencies were calculated restricted to the values 
that lie within the convex hull of their training values to reduce the 
risk of interpreting the partial dependence plot outside the range of 
the data (extrapolation).

Invariant causal regression models and causal variable 
importance
We have quantified the dependence of the principal components on the 
different structural and climatic variables using nonlinear regression. 
Such dependencies can only be interpreted causally if the regression 
models are in fact causal regression models (see Supplementary Infor-
mation 3 for a formal definition), which may not be the case if there 
are hidden confounders. To see whether the regression models allow 
for a causal interpretation, we use invariant causal prediction58. This 
method investigates whether the regression models are stable with 
respect to different patterns of heterogeneity in the data, encoded 
by different environments (that is, subsets of the original dataset). 
The rationale is that a causal model, describing the full causal mecha-
nism for the response variable, should be invariant with respect to 
changes in the environment if the latter does not directly influence the 
response variable13,59. Other non-causal models may be invariant, too, 
but a non-invariant model cannot be considered causal.

How to choose the environments is a modelling choice that must sat-
isfy the following criteria. First, it should be possible to assign each data 
point to exactly one environment. Second, the environments should 
induce heterogeneity in the data, so that, for example, the predictor 
variables have different distributions across environments. Third, the 
environments must not directly affect the response variable, only via 
predictors, although the distribution of the response may still change 
between environments. The third criterion can be verified by expert 
knowledge and is assumed to hold for our analysis. In addition, if it 
is violated, then, usually, no set is invariant58, which can be detected 
from data.

In our analysis, we assigned each data point (that is, each site) to 
one of two environments (two subsets of the original dataset): the first 
includes forest sites in North America, Europe or Asia; and the second 
includes non-forest and forest ecosystems from South America, Africa 
or Oceania, and non-forest ecosystems from North America, Europe 
or Asia (see Supplementary Information 3.1.3.1 for details). Our choice 
satisfies the method’s assumption that the distribution of the predic-
tors is different between the two environments (that is, they induce 
heterogeneity in the data; see Supplementary Fig. 3.1). Environments 
that are too small or too homogeneous do not provide any evidence 
against the full set of covariates being a candidate for the set of causal 
predictors. Other choices of environments than the one presented 
here yield consistent results (Supplementary Information 3.2.1, Sup-
plementary Fig. 3.4).

For each subset of predictors, we test whether the corresponding 
regression model is invariant (yielding the same model fit in each 
environment). Although many models were rejected and considered 
non-invariant, the full model (with all the nine predictors and used in 
the predictive variable importance analysis) was accepted as invariant, 
establishing the full set of covariates as a reasonable candidate for the 
set of direct causal predictors. We used both RF (randomForest pack-
age in R60) and generalized additive models, GAM61 (mgcv package62 
in R) to fit the models. Both methods lead to comparable results but 
with a better average performance of the RF: GAM led to slightly better 
results than RF for PC1, whereas for PC2 and PC3 RF showed a much 
better model performance (Supplementary Table 3.1, Supplementary 
Information 3.2.2). Therefore, in the main text we showed only the 
results from the RF (except for PC1).

If, indeed, the considered regression models are causal, this allows us 
to make several statements. First, we can test for the existence of causal 
effects by testing for statistical significance of the respective predic-
tors in the fitted models. Second, we can use the response curves of 
the fitted model to define a variable importance measure with a causal 
interpretation. In the main text we refer to this variable importance as 
‘causal variable importance’. For details, see Supplementary Informa-
tion 3.1.2. More formally, we considered the expected value of the pre-
dicted variables (the principal components) under joint interventions 
on all covariates (AGB, Hc, LAImax, N%, Tair, VPD, SWin, CSWI and P) at once, 
and then, to define the importance, we quantified how this expected 
value depends on the different covariates. We applied the same analysis 
to groups of vegetation structural and climate covariates (see ‘Group-
wise variable importance’ in Supplementary Information 3.1.2.3, 3.2.3).

The details of the methodology and the results are described in Sup-
plementary Information 3, in which we also provide further details on 
the choice of environment variable and on the statistical tests that we 
use to test for invariance. An overview of the invariance-based meth-
odology is shown in Supplementary Fig. 3.1.

Land surface model runs
We run two widely used land surface models: Orchidee-CN (OCN) 
and Jena Scheme for Biosphere Atmosphere Coupling in Hamburg 
( JSBACH):

OCN. The dynamic global vegetation model OCN is a model of the 
coupled terrestrial carbon and nitrogen cycles63,64, derived from the 
ORCHIDEE land surface model. It operates at a half-hourly timescale 
and simulates diurnal net carbon, heat and water exchanges, as well as 
nitrogen trace gas emissions, which jointly affect the daily changes in 
leaf area index, foliar nitrogen, and vegetation structure and growth. 
The main purpose of the model is to analyse the longer-term (interan-
nual to decadal) implication of nutrient cycling for the modelling of 
land–climate interactions64,65. The model can run offline, driven by 
observed meteorological parameters, or coupled to the global circu-
lation model.

JSBACH. JSBACH v.3 is the land surface model of the MPI Earth System 
Model66,67. The model operates at a half-hourly time step and simulates 
the diurnal net exchange of momentum, heat, water and carbon with the 
atmosphere. Daily changes in leaf area index and leaf photosynthetic 
capacity are derived from a prognostic scheme assuming a PFT-specific 
set maximum leaf area index and a set of climate responses modulating 
the seasonal course of leaf area index. Carbon pools are prognostic 
allowing for simulating the seasonal course of net land–atmosphere 
carbon exchanges.

We selected OCN and JSBACH because they are widely used land 
surface models with different structures. JSBACH is a parsimonious 
representation of the terrestrial energy, water and carbon exchanges 
used to study the coupling of land and atmosphere processes in an Earth 
system model67. OCN has also been derived from the land surface model 
ORCHIDEE68, but it includes a more comprehensive representation 
of plant physiology, including a detailed representation of the tight 
coupling of the C and N cycling63. Both models contribute to the annual 
global carbon budget of the Global Carbon Project69 and have shown 
good performance compared to a number of global benchmarks. OCN 
was further used in several model syntheses focused on the interaction 
between changing N deposition and CO2 fertilization70–72. Both OCN 
and JSBACH can operate at a half-hourly timescale and simulate net 
and gross carbon exchanges, water and energy fluxes, and therefore 
are ideal for the extraction of ecosystem functional properties, as done 
with the eddy covariance data.

The models were driven by half-hourly meteorological vari-
ables (shortwave and longwave downward flux, air temperature and 
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humidity, precipitation, wind speed and atmospheric CO2 concentra-
tions) observed at the eddy covariance sites. OCN was furthermore 
driven by N deposition fields73. Vegetation type, soil texture and plant 
available water were prescribed on the basis of site observations, but no 
additional site-specific parameterization was used. Both models were 
brought into equilibrium with respect to their ecosystem water storage 
and biogeochemical pools by repeatedly looping over the available site 
years. We added random noise (mean equal to 0 and standard devia-
tion of 5% of the flux value) to the fluxes simulated by the models to 
mimic the random noise of the eddy covariance flux observations. 
An additional test conducted without noise addition showed only a 
marginal effect on the calculations of the functional properties and 
the ecosystem functional space.

We used runs of the JSBACH and OCN model for 48 FLUXNET sites 
(Supplementary Table 1). The simulated fluxes were evaluated against 
the observation to assess the performance of the models at the selected 
sites. From the model outputs and from each site we derived the eco-
system functions using the same methodology described above. Then 
the PCA analysis was performed on the three datasets (FLUXNET, OCN 
and JSBACH) and restricted to the 48 sites used to run the models. We 
ran the models only on the subset of sites for which the information for 
the parameterization and high-quality forcing was available. However, 
the different ecosystem functions emerge from the model structure 
and climatological conditions. Therefore, even with a smaller set of 
site we can evaluate whether models reproduce the key dimensions 
of terrestrial ecosystem function by comparing the PCA results from 
FLUXNET and the model runs.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data used for this study are the FLUXNET dataset LaThuile (https://
fluxnet.fluxdata.org/data/la-thuile-dataset/) and FLUXNET2015 (https://
fluxnet.fluxdata.org/data/fluxnet2015-dataset/). Biological, ancillary, 
disturbance and metadata information for the sites were collected from 
databases and the literature and are available at the following address 
together with the reproducible workflow (https://doi.org/10.5281/
zenodo.5153538). OCN and JSBACH model runs are available in the 
reproducible workflow (https://doi.org/10.5281/zenodo.5153538).

Code availability
The R codes used for this analysis are available at: https://doi.
org/10.5281/zenodo.5153538. The R codes for the causality analysis 
are available at: https://doi.org/10.5281/zenodo.5153534. The TEA algo-
rithm is available at https://doi.org/10.5281/zenodo.3921923.
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Extended Data Fig. 1 | Map of the 203 FLUXNET sites used in this analysis. 
Colours represent different plant functional types according to the IGBP 
classification. IGBP classes are: CSH (close shrublands); DBF (deciduous 
broadleaved forest), DNF (deciduous needleleaf forests), EBF (evergreen 
broadleaved forest), ENF (evergreen needleleaf forest), GRA (grasslands),  

MF (mixed forest), OSH (open shrublands), SAV (savannah), and WET (wetlands). 
The map was generated with the ggplot2 R package74. The shape files used to 
create the maps were downloaded from https://github.com/ngageoint/
geopackage-js.

https://github.com/ngageoint/geopackage-js
https://github.com/ngageoint/geopackage-js


Extended Data Fig. 2 | FLUXNET sites used in the analysis plotted in the 
precipitation–temperature space. The background represent climate space 
of the major biomes according to Whittaker75 and further modifications76. 

Biomes are defined as function of the mean annual temperature and mean 
annual precipitation (MAP). The figure is modified from Liu et al.,77 using the 
code available in git (https://github.com/kunstler/BIOMEplot).

https://github.com/kunstler/BIOMEplot
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Extended Data Fig. 3 | Distribution of the selected FLUXNET sites within the 
climate types. Climate types were defined according to Köppen-Geiger 
classification as follow: Tropical (Aw, Af, Am), Dry (BSh, BSk, BWh), Temperate 

(Cfb), Sub-Tropical (Cfa, Csa, Csb, Cwa), Temperate/Continental Hot (Dfa, Dfb, 
Dwa, Dwb, Dwc), Arctic (ET)], and Boreal (Dfc, Dsc).



Extended Data Fig. 4 | Results of the relative importance analysis 
conducted with the Random Forest and partial dependence. See ‘Predictive 
variable importance’ in Methods. The slopes of the partial dependence plot 
indicate the sensitivity of the response (PCs) to the specific predictor. The 
out-of-bag cross-validation leads to predictive explained variance of 56.76% for 
PC1, 30.24% for PC2, and 20.41% for PC3. The portion of unexplained variance 

might be related to missing leaf traits predictor such as leaf mass per area or 
phenological traits. The partial dependence plots of all variables are shown: 
top panels for PC1 (a–e), middle panels for PC2 (f–l), and bottom panels for 
PC3 (m–q). The blue lines represent the locally estimated scatterplot (LOESS) 
smoothing of the partial dependence. Tick marks in the x axis represent the 
minimum, maximum and deciles of the variable distribution.
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Extended Data Fig. 5 | Map of FLUXNET sites colour-coded for the value of 
PC1 and PC2. a, PC1. b, PC2. The map of the PC1 shows the areas of the globe 
with high productivity (positive values of PC1 in the temperate areas, Eastern 
North America, Eastern Asia, and Tropics), and areas characterized by lower 
productivity (Semi-arid regions, high latitude and Mediterranean ecosystems). 
The map of the PC2 shows the gradient of evaporative fraction and the spatial 
patterns of water use efficiency. This PC2 runs from sites with a high 

evaporative fraction (i.e. available energy is dissipated preferentially to 
evaporated or transpired water), high surface conductance, and low water use 
efficiency (positive PC2 values), to water limited sites (i.e. low evaporative 
fraction where available energy is mainly dissipated by sensible heat) that also 
show higher water-use efficiency (negative PC2 values). The maps were 
generated with the ggplot2 R package74. The shape files used to create the maps 
were downloaded from https://github.com/ngageoint/geopackage-js.

https://github.com/ngageoint/geopackage-js


Extended Data Fig. 6 | Biplot resulting from the principal component 
analysis. Plot as in Fig. 1. In panel a, points are colour-coded by grass vs. 
non-grass classes. In panel b, the points are colour-coded according to the 
logarithm of vegetation height. From these results we conclude that there is 

not a clear cluster in the biplot for grass and non-grass vegetation. In fact, in 
Extended Data Fig. 6a, the sites do not cluster according to the designation to 
grasslands or not, but there is a clear gradient as a function of the vegetation 
height (Extended Data Fig. 6b).
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Extended Data Fig. 7 | Comparing observed and modelled global ecosystem 
functional trade-offs. PCA for a subset of 48 FLUXNET sites mainly 
distributed in temperate and boreal regions and 2 different land surface 
models (Supplementary Table 1). The left column is FLUXNET, the centre 
column is OCN, and the right column is JSBACH. Panels a, b, c: the biplot 
resulting from the PCA. Panels d, e, f, bar plot of the loading of each ecosystem 
functional property to each principal component. Orange bars represent the 
loadings that are selected as significant and with high contribution 
(Supplementary Information 2). Panels g, h, i report the variance explained by 

each principal component. EFP acronym list: apparent carbon-use efficiency 
(aCUE), evaporative fraction (EF), amplitude of EF (EFampl), maximum 
evapotranspiration (ETmax), gross primary productivity at light saturation 
(GPPsat), maximum surface conductance (Gsmax), maximum net ecosystem 
productivity (NEPmax), maximum and mean basal ecosystem respiration (Rbmax 
and Rb, respectively), and growing season underlying water-use efficiency 
(uWUE). Note that the PCA results for FLUXNET (panels a, d, g) are different 
from Fig. 1 because here we use the subset of 48 sites used for the modelling 
analysis.



Extended Data Fig. 8 | Pairwise relationship between some key ecosystem 
functional properties derived from FLUXNET, and modelled with JSBACH 
and OCN. n = 48 sites; see Supplementary Table 1. The grey areas represent the 
95% confidence interval of the linear and nonlinear regression. Overall the 
correlation between modelled functions is larger than in the observations. 

Acronym list: evaporative fraction (EF), amplitude of EF (EFampl), gross primary 
productivity at light saturation (GPPsat), maximum surface conductance (Gs), 
maximum net ecosystem productivity (NEPmax), basal ecosystem respiration 
(Rb), and growing season underlying water-use efficiency (uWUE).
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Extended Data Fig. 9 | Representation of the 2D ecosystem functional 
properties space derived from FLUXNET observations and land surface 
model runs (OCN, JSBACH). The points represent the principal component 
(PC) value calculate for each site. The contour lines are computed using a 2D 
kernel density estimates. The contour lines show the area occupied by 
ecosystem functional properties and its boundary that, according to the 

results of the analysis, are set by vegetation characteristics (PC1), water 
availability, abiotic limitations, and vegetation height (PC2), and 
above-ground biomass, foliar nitrogen and atmospheric aridity (PC3). The 
areas computed for FLUXNET are wider than for the models, particularly for 
PC2 and PC3. This means that ecosystem functional properties as simulated by 
models are more constrained than for the observations.



Extended Data Fig. 10 | Evaluation of above-ground biomass satellite 
products against FLUXNET observation. n = 71. We evaluated the three 
above-ground biomass (AGB, t DM ha−1) products derived from the 
GlobBiomass dataset as reported in the Method section. From the product at 
its original resolution (100 x 100 m) we extracted the 95th percentile of the 
estimated AGB in 5 by 5 grid cell windows (AGB5x5, panel a with all sites, and 
panel b with the grasslands excluded) centered around the location of the 
FLUXNET sites used for the evaluation. Further, we extracted the median in 3 by 
3 and 5 by 5 grid cells centered around the location of the FLUXNET site (panels c  

and d). Total above-ground biomass observations were gathered from the 
BADM dataset downloaded from the AMERIFLUX network and from the 
FLUXNET LaThuile release. Only data with the clear indication of the unit of 
AGB expressed in in dry matter (t DM ha−1) were retained for the analysis. 
Results show that the median of the 5 by 5 grid cell window (panel c) is the best 
extraction method to characterize AGB at the FLUXNET sites, and therefore 
retained for further analysis. Adjusted determination coefficient (R2), linear 
regression function, and p-value calculated with the F-test are also reported.
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Data used for this study are the FLUXNET dataset LaThuile (https://fluxnet.fluxdata.org/data/la-thuile-dataset/) and FLUXNET2015 (https://fluxnet.fluxdata.org/
data/fluxnet2015-dataset/). Biological, Ancillary, Disturbance and Metadata for the sites were collected from databases and literature and available at the following 
address together with the reproducible workflow (https://doi.org/10.5281/zenodo.5153538). OCN and JSBACH model runs are available in the reproducible 
workflow (https://doi.org/10.5281/zenodo.5153538).
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Study description The study analyze the key dimensions of terrestrial ecosystem multifunctionality and the main associated drivers. We derive 
ecosystem functional properties from a global dataset (203 sites and 1484 site-years) of surface gas exchange measurements across 
the major climate zones and biomes (with the exclusion of managed croplands)

Research sample The data used in this study belongs to the FLUXNET La Thuile12 and FLUXNET2015 Tier 1 and Tier 2 dataset15, the global network of 
CO2, water and energy flux measurements. The sites used cover a wide variety of climate zones (from tropical to arctic) and 
vegetation types (wetlands, shrublands, savannahs, grasslands, evergreen and deciduous forests boreal, temperate and tropical 
forests). 
The FLUXNET LaThuile is available at: https://fluxnet.fluxdata.org/data/la-thuile-dataset/. FLUXNET2015 is available at https:// 
fluxnet.fluxdata.org/data/fluxnet2015-dataset/. Biological, Ancillary, Disturbance and Metadata for the sites were collected from 
databases and literature and are released in the supplementary information (Supplementary Table 1).

Sampling strategy All the data available were used with the exception of data coming from croplands to avoid the inclusion of managed sites. Sites were 
also removed in case the data quality was not enough to fulfill the required criteria described in the Methods section

Data collection Data were recorded using the eddy covariance technique, which is based on a combination of a gas analyzer and ultrasonic 
anemometer associated with a meteorological station. FLUXNET is global network of site principle investigators and collaborators and 
processed with standardized 
procedures.

Timing and spatial scale The dataset used are half-hourly and we selected sites with at least 3 years of data. The start and end of measurements is differen 
site by site and depends on the date of installation of the equipment. The sites used cover a wide variety of climate 
zones and vegetation types . The total number of sites is 203 for a total of 1484 site years. Each site is representative of a spatial 
scale randing from ~200 m for grasslands to ~1 km for forests, depending on the measurements height.

Data exclusions From the original FLUXNET datasets we excluded croplands to avoid the inclusion of sites heavily managed in the analysis (e.g. 
fertilization, irrigation, etc). Sites were additionally excluded if data on precipitation or radiation were not available, or if the 
calculation of functional properties failed because of low availability of measured data (due to malfunctioning of the systems). This is 
described in the Method section.

Reproducibility We did not collect measurements directly but used a widely documented global dataset and literature data. We will also release a 
reproducibility work flow for the data processing.

Randomization Permutation and randomization were used to test the number of components to be retained with the Principal Component Analysis 
and the significance of the loadings to each component. Permutation and bootstrap was used to assess the statistical significance and 
the standard errors of the fittings presented in the analysis.

Blinding Blinding was not needed in this study because we do not have treatments

Did the study involve field work? Yes No
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Materials & experimental systems
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Eukaryotic cell lines
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging
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