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Abstract: The efficiency of deep learning and tree-based machine learning approaches has gained im-
mense popularity in various fields. One deep learning model viz. convolution neural network (CNN),
artificial neural network (ANN) and four tree-based machine learning models, namely, alternative
decision tree (ADTree), classification and regression tree (CART), functional tree and logistic model
tree (LMT), were used for landslide susceptibility mapping in the East Sikkim Himalaya region of
India, and the results were compared. Landslide areas were delimited and mapped as landslide in-
ventory (LIM) after gathering information from historical records and periodic field investigations. In
LIM, 91 landslides were plotted and classified into training (64 landslides) and testing (27 landslides)
subsets randomly to train and validate the models. A total of 21 landslides conditioning factors
(LCFs) were considered as model inputs, and the results of each model were categorised under five
susceptibility classes. The receiver operating characteristics curve and 21 statistical measures were
used to evaluate and prioritise the models. The CNN deep learning model achieved the priority rank
1 with area under the curve of 0.918 and 0.933 by using the training and testing data, quantifying
23.02% and 14.40% area as very high and highly susceptible followed by ANN, ADtree, CART,
FTree and LMT models. This research might be useful in landslide studies, especially in locations
with comparable geophysical and climatological characteristics, to aid in decision making for land
use planning.

Keywords: landslide; deep learning model; tree-based machine learning model; ridge regression;
GIS; East Sikkim Himalaya

1. Introduction

In mountainous regions, landslides are regarded as one of the reoccurring natural haz-
ards affecting human property and lives. Landside susceptibility (LS) indicates the spatial
probability of landslides in an area [1]. Landslides are often triggered by earthquakes or
heavy precipitations within certain geomorphological, geological and hydrological settings.
However, other primary factors controlling landslide failure mechanisms, including in
situ stresses, weathering and heave, play vital roles. In mountainous regions, the effect of
landslides can change the topographic characteristic, forest, soil properties (consistence,
structure, density, temperature, etc.), road and farming land, depending on the magnitude
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of landslides [2]. Landslides in Indian Himalayas account for over 14% of the global
landslides as per Froude and Petley [3] database, and one of the understudied regions is
Sikkim, despite it having a huge landslide problem. Dikshit et al. [4] revealed that only 10%
of landslide studies are conducted in Sikkim, of total studies across the Indian Himalayan
states. The study area has witnessed destructive landslide events between 2007 and 2015
(https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4, accessed on
20 December 2020).

A landslide susceptibility map (LSM) delineates the spatial occurrence of landslides
that might occur in the future, based on present and past landslide occurrences. LSMs are
used as an important input for hazard and risk assessment and can be used for land use
management, civil constructions such as roads and railways, and decision making [5,6].
For the LSM assessment, qualitative and quantitative approaches have been utilised [7].
The qualitative methods include knowledge-driven and inventory-based techniques. The
statistical models used in LSM are frequency ratio [8], logistic regression [8], information
value [9], bivariate statistics [10], multivariate regression [10], multivariate adaptive re-
gression splines [11], weights-of-evidence [12], weighted linear combinations [13] and
generalised additive [14].

Recently, data-driven models, which are considered quantitative methods, have been
proved as an extremely effective tool for temporal and spatial mapping of landslides.
Machine learning (ML) and soft computing methods are commonly used to assess the
LSM [15]. Many hybrid ML methods, including support vector machine (SVM), Naïve
Bayes (NB), boosted regression tree (BRT), artificial neural network (ANN), decision tree
(DT), neuro-fuzzy and random forest (RF), have been widely used in LSM [16]. ML methods
are consistent in removing the overfitting and noise problems in modelling, to increase the
accuracy of a model [17].

Among the advanced artificial intelligence approaches, neural network (NN) models
are found to be capable and reliable for big data processing and modelling [18]. Effective
applications of ANNs have been achieved in various fields of domains [19]. ANN has
been acknowledged as an effective and powerful approach in different studies, such as
slope stability analysis [20], soil analysis [21] and rock characteristic studies [22], due to
its capacity to manage data without relying on the measurement scale or the way data
are organised. In previous studies, NN has shown good to very good accuracy in LSM
studies [23,24]. ML models need manual intervention, thereby affecting the results [25].
Therefore, more emphasis has been given on deep learning (DL) models to eliminate
these concerns. DL is one of the main branches of ML that differs from task-specific
methods focused on data representations that are supervised [18], semi supervised [18]
and unsupervised [26]. DL is used in several fields and provides superior results than
other models [4,26]. DL algorithms are a subset of ML algorithms that use several layers of
nonlinear information to model complicated data relationships, most frequently with the
use of a multilayer NN [27]. According to various literature, DL models outperformed the
benchmark ML models, notably in landslide susceptibility modelling [28]. Convolution
neural network (CNN) is one of the most popular DL approaches amongst the various
DL approaches for recognition of different classification problems [18,29]. In particular,
CNN can use convolution and pooling layers to identify patterns with extreme variability,
representing the translation-invariant nature of most images [30]. CNN has been used
widely to identify the vulnerability areas in the present scenario by using remote sensing
data [31]. Tree-based ML provides good results and has been used for modelling in
different fields of geoscience, engineering, and medical sciences. Taherdangkoo et al. [32]
used regression tree, BRT, least square SVM and Gaussian process regression-based four DT
models for methane solubility prediction, and obtained highly accurate results. In another
work, Gokgoz et al. [33] used CART, C4.5 and RF for classifying electromyogram signal and
obtained an excellent result with the area under the curve (AUC), of more than 90%. Park
et al. [34] used DT models in landslide susceptibility modelling. These models acquired
more than 82% AUC. DL and tree-based models are used separately in different fields

https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4


Water 2021, 13, 2664 3 of 30

for modelling, and provide good results. In the Indian Himalayan context, comparison
between DL techniques and tree-based models in landslide susceptibility mapping has not
been considered in the literature. The accuracy of the same model may differ for landslide
susceptibility modelling, and the characteristic selection of the best model is important for
managing landslides. The main research questions are: (1) is a DL model (CNN) applicable
in landslide susceptibility analysis in Indian Himalayan region, and, (2) can a CNN model
provide a better result than tree-based ML models in the Indian Himalayan region. A
research gap is found in this respect, as no comparisons have been made between the DL
model and tree-based ML models in the Indian Himalayan region. This study encourages
Indian researchers who are working in the landslide field. The findings of this study will
provide a solid foundation for earth scientists, government officials and other stakeholders
to enhance land management and disaster management.

Based on the aforementioned research gap, CNN, ANN, alternative DT (ADTree),
CART, functional tree (FTree) and logistic model tree (LMT) DL, and hybrid tree ML,
approaches were used for assessing landslide susceptibility in the East Sikkim Himalaya,
India, in the present study. Twenty statistical measures and a receiver operating character-
istic (ROC) curve were applied to evaluate the performance of the models.

2. Description of the Study Area

The study area of East Sikkim is a mountainous district of the state of Sikkim, in
India (Figure 1). The whole district is characterised by hilly terrain and rugged topog-
raphy [35]. The highest and lowest altitudes of the study area are 4695 m and 264 m,
respectively. Geographically, East Sikkim occupies the southeast corner of Sikkim, and
the latitudinal/longitudinal extensions are 27◦25′ N to 27◦8′ N and 88◦53′ E to 88◦26′ E,
respectively, with an area of 964 km2. The district is considered to be an extremely sensitive
area, sharing an international border with China and Bhutan. The state capital, Gangtok,
the hub of all administrative activities, is the main town of East Sikkim. In accordance with
the census of India, 2011, East Sikkim district has a population of 283,583 with a population
density of 295/km2 (Census of India, 2011). Frequent occurrences of landslides are the
main barrier to the development of the tourism industry and socioeconomic growth of this
state. The preparation of LSM by sound techniques could be an important method to tackle
this problem.
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Figure 1. Location map of the study area showing: (a) India, (b) Sikkim state, (c) East Sikkim district. 

3. Materials and Methods 
The steps and processes involved in the study (Figure 2) are as follows: 

(i) Landslide inventory map (LIM) construction-Landslide locations were firstly identi-
fied by using Google Earth images to produce a LIM. Subsequently, a detailed field 
survey was conducted on November 2019, and historical records were acquired for 
verifying the location of landslides. 

(ii) After a literature review, and based on the geoenvironmental condition of the study 
area, landslide conditioning factors (LCFs) were selected, and thematic layers of 
LCFs were prepared on a geographical information system (GIS) platform. 

(iii) After selecting the LCFs based on previous literature and the geoenvironmental con-
dition, a factor selection process was performed by using multicollinearity assess-
ment and chi-square attribute evaluation (CSAE) techniques to choose appropriate 

Figure 1. Location map of the study area showing: (a) India, (b) Sikkim state, (c) East Sikkim district.

3. Materials and Methods

The steps and processes involved in the study (Figure 2) are as follows:

(i) Landslide inventory map (LIM) construction-Landslide locations were firstly identi-
fied by using Google Earth images to produce a LIM. Subsequently, a detailed field
survey was conducted on November 2019, and historical records were acquired for
verifying the location of landslides.

(ii) After a literature review, and based on the geoenvironmental condition of the study
area, landslide conditioning factors (LCFs) were selected, and thematic layers of LCFs
were prepared on a geographical information system (GIS) platform.

(iii) After selecting the LCFs based on previous literature and the geoenvironmental
condition, a factor selection process was performed by using multicollinearity assess-
ment and chi-square attribute evaluation (CSAE) techniques to choose appropriate



Water 2021, 13, 2664 5 of 30

LCFs for landslide susceptibility modelling. A total of 21 LCFs were chosen as
appropriate factors.

(iv) LSMs were then generated by using DL (CNN) and hybrid tree-based ML approach
(ANN, ADtree, CART, FTree and LMT) models, and their results were compared.

(v) After modelling the landslide susceptibility, ridge regression (RR) was applied to
verify the importance of the selected LCFs in producing an LSM.

(vi) The accuracy of each model was assessed by applying the ROC curve and 21 statistical
measures. This process was performed to compare the results of the models and select
the best amongst them.

Water 2021, 13, x FOR PEER REVIEW 5 of 33 
 

 

LCFs for landslide susceptibility modelling. A total of 21 LCFs were chosen as appro-
priate factors. 

(iv) LSMs were then generated by using DL (CNN) and hybrid tree-based ML approach 
(ANN, ADtree, CART, FTree and LMT) models, and their results were compared. 

(v) After modelling the landslide susceptibility, ridge regression (RR) was applied to 
verify the importance of the selected LCFs in producing an LSM.  

(vi) The accuracy of each model was assessed by applying the ROC curve and 21 statisti-
cal measures. This process was performed to compare the results of the models and 
select the best amongst them.  

 
Figure 2. Flowchart representing the methodology. 

3.1. Data Used 
Primary and secondary datasets were used in this work. The primary data, such as 

size and location of the landslides, were collected through field observation by using a 
global positioning system (GPS) device on November 2019. The secondary data of the 
current study includes PALSAR DEM, geology map, soil map, Landsat 8 OLI/TIRS, topo-
graphical map and precipitation data collected from different organisations and govern-
ment departments. The high-resolution phased array type L-band synthetic aperture ra-
dar (PALSAR) DEM with 12.5 m × 12.5 m spatial resolution, dated 2011, was downloaded 
from Alaska Satellite Facility (https://asf.alaska.edu/, accessed on 20 December 2020). The 

Figure 2. Flowchart representing the methodology.

3.1. Data Used

Primary and secondary datasets were used in this work. The primary data, such as size
and location of the landslides, were collected through field observation by using a global
positioning system (GPS) device on November 2019. The secondary data of the current
study includes PALSAR DEM, geology map, soil map, Landsat 8 OLI/TIRS, topograph-
ical map and precipitation data collected from different organisations and government
departments. The high-resolution phased array type L-band synthetic aperture radar
(PALSAR) DEM with 12.5 m × 12.5 m spatial resolution, dated 2011, was downloaded
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from Alaska Satellite Facility (https://asf.alaska.edu/, accessed on 20 December 2020). The
geology map with the scale of 1:500,000 was collected from the Geological Survey of India
(https://www.gsi.gov.in/, accessed on 20 December 2020). Topographical maps with a
scale of 1:50,000 were collected from the Survey of India. Rainfall data were obtained from
the Indian Meteorological Department. The National Land Survey and Land Use Planning
Bureau provided the soil map. Landsat 8 OLI images were collected from the USGS Earth-
Explorer (https://earthexplorer.usgs.gov, accessed on 20 December 2020) with a resolution
of 30 m × 30 m. The resolution of the collected data is different. For preparing the LSMs, a
resolution of PALSAR DEM (12.5 m × 12.5 m) was selected as the base resolution for the
collected data, and other factors having a higher or lower resolution were resampled to
12.5 m × 12.5 m.

3.2. Preparation of LIM

LIM was constructed with the integration of past and present landslide events [36].
Several sources, including primary and secondary combinations, were used to construct the
LIM. Field investigation, identification of landslide location and coordinates of landslide
using GPS were used as primary sources to create LIM. The field survey was conducted on
November 2019. The secondary data sources, including historical landslide information
(Administrative Department of Sikkim), were used to build the LIM map. High-resolution
Google Earth images can easily detect landside locations in remote and inaccessible ar-
eas, and a total of 91 landslides were identified and mapped to produce the LIM layer.
For training and testing the models, the same number of non-landslide locations were
randomly selected. A total of 182 landslide and non-landslide samples were taken for mod-
elling and validation purposes. Landslide sample points were divided into two subsets,
namely, training and validation datasets. Various ratios were used to divide the inventory
dataset. However, most studies followed the 70:30 ratio to prepare training and validation
datasets [37], and a similar approach was used to divide the dataset. Dao et al. [38] and
Nhu et al. [39] used DL NNs for landslide susceptibility assessment and prepared the
LIM by considering 217 and 193 samples. These samples were divided into 70:30 ratio for
training and testing the LSMs. Measurement of the landslides disclosed that the smallest
was 153 m2, and the largest was 841 m2. The average maximum and minimum widths
of the landslides were 404 m2 and 94 m2, respectively. Four types of landslides were
found, namely, rock falls (37.1%), debris slides (31.08%), rotational slides (20.28%) and
complex and compound (combination in time and/or space of two or more principal types
of movement) slides (11.54%). Some field photographs are shown in Figure 3.

3.3. Preparation of LCFs

Consideration of relevant LCFs in the modelling process is extremely essential to
model the landslide susceptibility of a given area. Twenty-one LCFs were used for land-
slide modelling. Sixteen out of 21 factors, such as elevation, slope, aspect, plan curvature,
profile curvature, general curvature, tangential curvature, terrain ruggedness index (TRI),
topographic wetness index (TWI), cross sectional curvature, longitudinal curvature, to-
pographic position index (TPI), valley depth (VD) and relative slope position (RSP), are
topographical factors that were extracted from the PALSAR DEM. The other five factors,
namely, rainfall, geology, soil, land use/land cover (LULC) and normalised difference veg-
etation index (NDVI), were collected from different sources. These factors were categorised
as topographical factors, and other environmental factors are detailed below.

3.3.1. Topographical Factors

Elevation is regarded as an important factor because higher altitudes have been found
to be a major cause of landslide occurrence in mountain regions [40]. The LCFs, such
as slope, aspect, topographic position index, convergence index, plan curvature, terrain
ruggedness index, profile curvature, general curvature, tangential curvature, topographic
wetness index, longitudinal curvature, cross section curvature, surface area, VD, and RSP,

https://asf.alaska.edu/
https://www.gsi.gov.in/
https://earthexplorer.usgs.gov
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were extracted from ALOS PALSAR DEM by using the SAGA GIS tool [38]. Slope is
considered to be an important factor because it influences the occurrence of landslides
and speed of sliding materials. The slope value in the study area varies from 0 (flat) to
80.16◦, indicating an extremely steep gradient (Figure 4b) and the possibility of instability.
Slope aspect (Figure 4c) indicates the direction of the slope, and has a strong relationship
with landslide. It has an indirect influence because it determines the amount, duration,
intensity of insolation intake, intensity of rainfall received, vegetation cover, and soil
structure and texture [40]. Plan curvature is a horizontal plane and is considered the
hypothetical line that crosses the contour of a given cell and regulates the stability of a
landmass (Figure 4d). The surface curvature in the direction of the steepest slope is known
as the profile curvature. The flow velocity of surface water, soil erosion and deposition
are influenced by the profile curvature. The erosion prevails in the convex surface region,
and the concave curvature is the area to be deposited [41]. The spatial distribution of the
profile curvature ranges from −0.095 to 0.140 (Figure 4e). The general curvature, which
was proposed by Wood [42], is defined as the total curvature that has been created by the
intersection of the surface with a plan. It can be classified into three categories: convex,
concave, and flat surface, corresponding to the peaks, valley, and plain areas, respectively.
The spatial value of general curvature varies from −0.819 to 0.934 (Figure 4k). Wilson
and Gallant [43] suggested a tangential curvature, which is curvature to a steep gradient
along the orthogonal line. The value of tangential curvature in the present study ranges
from −0.115 to 0.167 (Figure 4l). A similar approach of tangential curvature is found in
longitudinal curvature [42]. The curvature of the line between the surface and the plane is
conceptually identical and defined by the direction of slope and aspect. It can be viewed
in the same way as curvature of the profile, indicating how a liquid substance is going to
accelerate or decelerate over a point. The spatial distribution of the longitudinal curvature
ranges from −0.585 to 0.627 (Figure 4n).
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Figure 4. LCFs used in modelling landslide susceptibility: (a) elevation, (b) slope degree, (c) slope aspect, (d) plan curvature,
(e) profile curvature, (f) convergence index, (g) topographic position index, (h) terrain ruggedness index, (i) topographic
wetness index, (j) surface area, (k) general curvature, (l) tangential curvature, (m) cross sectional curvature (n) longitudinal
curvature, (o) valley depth, (p) relative slope position, (q) rainfall, (r) NDVI, (s) LULC, (t) soil map and (u) geology map.

Cross section curvature was also introduced by Wood [42]. The spatial value of cross
section curvature ranges from −0.386 to 0.550 (Figure 4m). The calculation of the surface
area was conducted by the slope and slope aspects of a specific cell applying Berry’s
approach [44]. The surface area is the same as the planimetric area. The surface topography
inside the cell is defined by its value. The value of the surface area ranges from 156.25 to
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855.81 in the study area (Figure 4j). The convergence index is a terrain parameter showing
the relief structure as a collection of convergent (channel) and divergent (ridge) areas
(Equation (1)).

CI =

(
1
8

8

∑
i=1

θi

)
− 90◦ (1)

where θ denotes the average angle between the aspect of adjacent cells and the direction
to the central cell. In this field of analysis, the CI spatial value varies from −100 to 100
(Figure 4f). TWI represents the degree of wetness of the surface (Equation (2)). The TWI
value ranges from 1.25 to 21.42 in the study area (4i).

TWI = ln(
As

tan a
) (2)

where As is the upstream contributing area, and a is the slope gradient (in degrees). The
TPI is the certain gap between the cell elevation value (Z0) and the average surrounding
cell elevation (Z) (Equation (3)).

TPI = Z0 − Z (3)

The TPI varies from −23.91 to 26.23 (Figure 4g), with positive values indicating that
the cell is higher than its surrounding area, whereas negative values indicate that the cell
is lower. TRI was defined by Riley et al. [45] to show the amount of elevation difference
between adjacent cells in the digital elevation model (Equation (4)).

TRI =
√
|X|(max2 −min2) (4)

where x is the elevation of each neighbour cell to a specific cell, and max and min are the
largest and smallest elevations amongst the nine neighbouring pixels. VD is measured as
the vertical distance to the base level of the channel network. The algorithm consists of two
key steps: the interpolation of the base level of the network channel, and the subtraction
of the base level from the original elevations. The value of VD ranges from 0 to 787.27
(Figure 4o). RSP is another important factor for determining the stability–instability of a
land part (Figure 4p).

3.3.2. Other Environmental Factors

Rainfall is the triggering factor for the majority of landslides. The empirical relation-
ship between landslides and rainfall type has been identified in many previous studies [46].
Five-year annual average rainfall data were used for the spatial mapping of rainfall by
using the kriging method in GIS. The annual average rainfall is 2264 mm in this region
(Figure 4q). The spatial map of geology (Figure 4u) was prepared with the digitisation
process. Detailed geological descriptions are presented in Table 1. Ten soil categories were
mapped for this study area (Figure 4t). Amongst them, coarse loamy humic dystrudepts
associated with coarse loamy typic udorthents, and coarse loamy humicpachic dystrudepts
associated with fine loamy type udorthents, are the dominant types of soil (Table 2). The
LULC map was prepared by using Sentinel-2 satellite images through supervised classifi-
cation determined by a maximum likelihood classification algorithm (Figure 4s). Water
bodies (0.27%), wasteland (2.00%), settlement and built-up area (1.65%), grassland (5.47%),
evergreen forest (47.18%), agriculture (31.92%) and plantation vegetation glacier (11.51%)
are the major land use categories of the study area. The NDVI value ranges between −0.15
and 0.46 in the study area (Figure 4r) and indicates the concentration of vegetative cover.
The NDVI of the study area was calculated by using Equation (5).

NDVI =
Band5− Band4
Band5 + Band4

(5)
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3.4. Multicollinearity Assessment

A collinearity test must be performed between the LCFs because a linear association
reduces the predictive precision of the model [47]. The multicollinearity test is an important
step to investigate if a strong interrelationship may be found amongst the conditioning
factors in multiple regression. In this work, a multicollinearity test was performed by
applying the variance inflation factor (VIF) and tolerance (TOL) criteria to obtain the
relevant LCFs [48]. The thresholds of the TOL and VIF values are ≤2 and ≥5, and values
that exceed these thresholds suggest the existence of collinearity between or amongst the
LCFs [48].

Table 1. Lithological units, characteristics, and their areal extension of East Sikkim.

Sl.No Geo Unit Description Formation Age Area (km2) % of Area

1 Ptdr3 Verlegated cherty phyllite Reyong Formation,
Daling Group Proterozoic 0.81 0.08

2 Pt2I Granite gneiss (mylonitic) Lingtse Gneiss Meso-Proerozoic 78.08 8.10

3 Ptdb Dolostone, orthoquartzite, purple
phyllite/slat, chert Boxa Formation, Daling Group Proterozoic 2.08 0.22

4 Ptdg1 Interbanded chlorite-sericite
schist/phyllite and quartzite

Gorubathan Formation,
Daling Group Proterozoic 10.02 1.04

5 Ptdg6 Mica schist with garnet with staurollite Gorubathan Formation,
Daling Group Proterozoic 2.28 0.24

6 Ptdg4 Biotite phyllite/mica schist Gorubathan Formation,
Daling Group Proterozoic 3.95 0.41

7 Pollymetallic base metal 3.10 0.32

8 Ptcc3 Calc-granullite (locally gneissic) with
intercalculation of quartzite

Chungthang Formation,
Central Crystalline Gneissic

Complex (CCGC)
Proterozoic 1.51 0.16

9 Ptcc4 Graphitic schist
Chungthang Formation,

Central Crystalline Gneissic
Complex (CCGC)

Proterozoic 0.80 0.08

10 Ptcc1,3,4
1. Quartzite, 3. Calc-granullite (locally

gneissic) with intercalculation of
quartzite, 4. Graphitic schist

Chungthang Formation,
Central Crystalline Gneissic

Complex (CCGC)
Proterozoic 2.20 0.23

11 Ptck3 Sillimanite granite gneiss
Kanchenjunga gneiss, Central

Crystalline Gneissic
Complex (CCGC)

Proterozoic 1.09 0.11

12 Glacier 25.75 2.67

13 Ptcc2 Garnet kyanite sillimaite biotite schist/
gametiferous mica schist

Chungthang Formation,
Central Crystalline Gneissic

Complex (CCGC)
Proterozoic 1.10 0.11

14 Ptcc2,3

2. Garnet kyanite sillimaite biotite
schist/ gametiferous mica schist,

3.3. Calc-granullite (locally gneissic)
with intercalculation of quartzite,

Chungthang Formation,
Central Crystalline Gneissic

Complex (CCGC)
Proterozoic 2.02 0.21

15 Ptcc1,3
1. Quartzite, 3. Calc-granullite (locally

gneissic) with intercalculation
of quartzite,

Chungthang Formation,
Central Crystalline Gneissic

Complex (CCGC)
Proterozoic 1.47 0.15

16 Ptcc1 1. Quartzite
Chungthang Formation,

Central Crystalline Gneissic
Complex (CCGC)

Proterozoic 1.49 0.15

17 Ptcc1,2,3

1. Quartzite, 2. Garnet kyanite
sillimaite biotite schist/gametiferous
mica schist, 3. Calc-granullite (locally

gneissic) with intercalculation of
quartzite,

Chungthang Formation,
Central Crystalline Gneissic

Complex (CCGC)
Proterozoic 29.81 3.09

18 Pta amphibole schist/amphibolite Basic Intrusive Proterozoic 2.27 0.24

19 Ptdg1-7

1. Interbanded chlorite-sericite
schist/phyllite and quartzite,

2. Metagreywacke
(quartzo-feldspathic greywacke),

3. Pyritiferious black slate,
4. Biotite phyllite/schist, 5. Biotite

quartzite, 6. Mica schist with garnet
with/without staurolite,

7. Chlorite quartzite

Gorubathan Formation,
Daling Group Proterozoic 298.90 31.01

20 Ptck1

banded/ streaky migmatite, augen
bearing (garnet) biotite gneiss

with/without kynite silimanite with
palaeosomes or staurolite, kynite,

mica schist

Kanchenjunga gneiss, Central
Crystalline Gneissic Complex

(CCGC)
Proterozoic 495.27 51.38
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Table 2. Characteristics of soil types and soil textural classes of East Sikkim.

Code Soil Texture Soil Types Area (km2) % of Area

1 Coarse loamy humic pachic dystrudepts associated with fine loamy type udorthents Inceptisols 202.42 21.00
2 Loamy skeletal lithic udorthents associated with rocks Entisols 44.05 4.57
3 Loamy skeletal entic hapludolls associated with loamy skeletal type udorthents Mollisols 11.69 1.21
4 Fine loamy typic paleudolls associated with fine loamy typic hapludools Mollisols 27.77 2.88
5 Coarse loamy typic hapludols associated with coarse loamy entic hapludols Mollisols 57.14 5.93
6 Fine skeletal cumulic hapludolls associated with coarse loamy typic Udorthents Mollisols 49.91 5.18
7 Loamy skeletal typic udorthents associated with coarse loamy lithic dystrudepts Entisols 10.75 1.12
8 Fine loamy typic argludolls associated with fine loamy cumic hapludolls Mollisols 30.25 3.14
9 Fine loamy fluventic eutrodepts associated with loamy lithic haploudolls Inceptisols 23.34 2.42
10 Coarse loamy humic dystrudepts associated with coarse loamy typic udorthents Inceptisols 506.68 52.56

3.5. CSAE

CSAE method has been used to select the most predictive factors for LSM modelling.
CSAE has been used in different artificial intelligence approaches to choose a small number
of training datasets, to minimise the time and cost of the modelling process [49]. In this
method, zero average merit (AM) values of conditioning factors denote the significance
of less contribution to modelling. On the contrary, higher than zero average merit (AM)
values indicate the most important and suitable conditioning factors for LSM modelling.
The CSEA is calculated by using Equation (6).

X2 =
n

∑
i=1

(Oi − Ei)
2

Ei
(6)

where E and O are the expected and observed values. The higher the value of CSAE of a
given LCF indicates greater significance for occurrences of landslides [43].

3.6. Evaluation of Factor Importance by Using RR

RR was firstly developed by Hoerl and Kennard [50]. It belongs to a class of regression
that uses L2 regularisation to reduce the issue of overfitting. RR was developed to avoid the
extensive problems of instability and collinearity caused by the least square estimator [51].
RR predictions tend to be robust in the sense that minor variations in the data, in which
the fitted regression is found, are minimally influenced. At times, the ridge calculated
regression function can have strong estimates of the mean responses or forecasts of new
observations for independent variable thresholds beyond the area of the observations
where the regression function is built. The cost function is changed in RR by adding a
penalty equal to the square of the coefficients’ (w) size.

M

∑
i=1

(yi − ŷi)
2 =

M

∑
i=1

(
yi −

p

∑
j=0

wj × xij

)2

+ λ
p

∑
j=0

w2
j (7)

Similarly, the cost function in Equation (8) should be minimised under the following conditions.

c > 0, ∑P
j=0 w2

j < c (8)

Thus, RR constrains the coefficients (w). The penalty term regularises the coefficients
so that the optimisation function is punished if the coefficients take high values. In this
research, the R programming language ‘caret’ package (https:/cran.r-project.org/web/
packages/caret/caret.pdf, accessed on 20 December 2020) was used to determine the
importance of LCFs by using RR.

3.7. DL and Tree-Based ML Models
3.7.1. CNN

DL approaches are computational frameworks that are based on NNs, inspired by
human brains [18]. CNNs are widely applied in visual imagery processing [52]. They

https:/cran.r-project.org/web/packages/caret/caret.pdf
https:/cran.r-project.org/web/packages/caret/caret.pdf
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are recognised as shift invariant or space invariant ANNs due to their shared-weight
architecture and translation invariance functions [53]. CNN was first developed in 1980.
To date, the CNN model has been widely used in classification and prediction applications
in several branches, including the earth science discipline [54]. A CNN is made up of
input data, an output layer, and numerous hidden layers. The hidden layers of a CNN
usually consist of a sequence of convolutional layers (CLs) converging with a multiplication.
The activation function is normally a rectified linear unit (ReLU) layer, and additional
convolutions, such as pooling layers, fully connected layers and normalisation layers, are
subsequently adopted. These layers are referred to as hidden layers because the activation
function and final convolution mask their inputs and outputs. The input data of CNN are
images and can be interpreted as images. CLs train the convolutions and give the best
performance for data categorisation. PLs provide stable conversion, reduce overfitting
and increase computational performance by reducing the number of structures resulting
in the convolutions [55]. Using ReLU activation function, a ReLU increases the nonlinear
properties of the network. Various techniques based on the form, image and purpose
of data have been used by various researchers. The detailed description of these layers,
primary parameters and how the CNN handles training data can be found in the literature
of LeCun et al. [18]. One-dimensional image data are CNN input data used for optimal
initialisation performance. A 1D input data, which contain various characteristics, can be
converted into 2D images. The CNN’s linearity is decreased by using a ReLU for all linked
layers. With the aid of Equation (9), the loss value of the parameters is reduced by utilising
the loss function.

Loss = − 1
m

m

∑
i=1

[xi log(zi) + (1− xi) log(1− zi)] (9)

where xi and zi represent the predicted and true levels of the ith sample, respectively, and
m denotes the total number of landslide data. The variables are updated regularly until the
loss value converges. In the current study, this approach is used for susceptibility mapping
of landslides because images are larger, no data are classified, and analysis is continuous.
The CNN structures of the present study are shown in Figure 5. In this study, 3 convolution
kernels, 2 pooling kernels, ReLU activation, 600 epochs, AdaGrad and a 0.001 learning rate
are used for modelling the landslide by using the CNN DL method.

3.7.2. ANN

ANNs have been extensively used in classification operation [56]. The three main
structures of ANN are input layers, hidden layers and output layers (Figure 6). The input
layers are LCFs, the outcome layers reflect the outcomes of model predictions as a landslide
or non-landslide, and the hidden layers are the classifier layers that process and convert
the data from input to output. In ANN, no presumptions are required for the training
datasets. Determining the relative value of the different input measures is not needed, and
most input measurements are chosen on the basis of weight change during the training
process [57]. ANN is constructed with two main steps [58].

(i) The inputs are extended ahead through the hidden layers to estimate the differ-
ence and to generate the output values. The output values are compared with the
pre values.

(ii) The connection weights are adjusted to optimise the best results for the least variation.
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Let x = xi, i = 1, 2, .....21 the vector of the 21 LCFs, y = 1 or 0 indicates the landslide
and non-landside class. A nonlinear sigmoid feature is frequently used to the weighted
sum of input data until the data are passed to the next step. ANN function for classification
is calculated by using Equation (10).

y = f (x) (10)

where f(x) WW shows the hidden functionality that is enhanced during the modelling
by the adjustable weights to produce the ANN network structure. The sum of square
difference between the actual and expected result of neuron, that is, known as error, is
used to select the number of hidden layers and neuron in ANN. In each neuron, weight is
adjusted to reduce the error during the training process. In the present analysis, the trial
process was used to eliminate the overfitting and create the ANN model with 2 hidden
layers, 500 epochs and 20 number validation thresholds.

3.7.3. ADTree

An ADTree is a classification ML strategy that generalises DTs and links to boosting.
Freund and Mason [59] introduced this technique. An ADTree is an alternation of decision
nodes describing a predicate position, and prediction nodes containing a single number.
An instance is categorised by an ADTree by following all ways that all decision nodes
are valid and by combining any estimation nodes. This varies from binary classification
trees, such as CART or C4.5, in which an instance takes only one direction through the
tree. The ADTree model is more accurate in the event of a classification task than other tree
models [60]. Splitter node and prediction nodes are the two main types of ADTree model
nodes. The function of the splitter node is that it classifies data in accordance with the
selected attributes. The prediction node is the number score used to forecast [60]. The basic
principle that maps from instances to actual numbers is a prediction d1, a base situation d2,
with the result being p or q which are two real numbers. The prediction is p when d1 ∩ d2
or q when d1 ∩− d2. The values of p and q are calculated by using Equations (11) and (12).

p =
1
2

In
W+(d1 ∩ d2)

W−(d1 ∩ d2)
(11)

q =
1
2

In
W+(d1 ∩− d2)

W−(d1 ∩− d2)
(12)

where the best d1 and d2 are selected by minimising Zt(d1, d2) and is defined as Equation (13).

Zt(d1, d2) = 2
√

W+(d1 ∩ d2)W−(d1 ∩ d2) +
√

W+(d1 ∩− d2)W−(d1 ∩− d2) +W(d2) (13)

Assuming M is the base rule, then a new rule can be defined as Mt + 1 = Mt + rt.
rt(x) which shows the two prediction values (p and q) at each layer of the tree, and x is a
set of instances. The grouping can be used as an indication that accumulates prediction
values in Mt + 1 such as:

Class(x) = sign

(
T

∑
t=1

rt(x)

)
(14)

A set of routes is constructed for each pixel in the training dataset. When a path
hits a decision node, it will continue with the offspring that corresponds to the decision
outcome, but if the path encounters a prediction node, it will continue with all of the node’s
offspring [59]. A pixel’s susceptibility index is calculated by adding all the values from
any prediction nodes found as the pixel filters down through all applicable branches. A
parameter that must be determined is the number of boosting iterations. Larger trees
and overfitting may arise from a large number of boosting iterations, whereas a minimal
number of boosting iterations may result in a small tree with poor performance. The
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classification accuracies of the training and validation datasets were estimated by changing
from 1 to 14. The model was prepared by using the RWeka package in R environment.

3.7.4. CART

CART is a rule-based algorithm that constructs a binary tree by binary recursive
partitioning. Binary recursive partitioning is a method that partitions a node into a yes/no
response. The heterogeneity within each resultant subset is reduced on the basis of a
single factor and the rule generated for each phase, which divides them depending on the
various relationships of each division. Landslide susceptibility mapping using the CART
technique has been used in several studies [61]. A “terminal” node’s expected value is
considered the average of the answer values in that node [62]. The predictor variables are
extremely simple and can be comprised of different types: numeric, binary and categorical
types. The model’s results are not affected by monotonous transformations and different
measurement scales between predictors. In regression trees, independent variables are
insensitive to outliers and use surrogates to manage missing data [62]. The hierarchical
structure of a regression tree indicates that the response to one input vector relies on
higher input variables in the tree to model relationships between predictors automatically.
Regression trees typically lead to an overcomplex decision tree where only the most relevant
knowledge, that is, the nodes that illustrate the largest amount of deviance, needs to be
‘pruned’ to communicate [61]. CART, similar to other DT algorithms, does not need the
identification of independent variables in advance because the most relevant variables are
discovered during the selection of the optimal splitting characteristic in each node [62].
Thus, CART is appropriate for issues in which the correlation between input and output
parameters is unknown in advance, making the CART model’s outputs interpretable [61].
Depending on whether the output is qualitative or quantitative, CART can be used to solve
classification and regression issues. CART is used in this study as a classifier for landslide
susceptibility. “tree” package in R-studio was used for preparing the CART model.

3.7.5. FTree

FTrees were introduced by Gama [63]. FTree integrates a discriminating function
and multivariate decision trees through constructive induction [63]. It is regarded to be
a generalisation of multivariate trees. For learning classification trees, the FTree model
adjoins with attributes at leaf nodes, decision node and leaves [63]. Decision nodes are
built as the tree grows, and functional leaves are built as the tree prunes [63]. For prediction
evaluation, the FTree can predict the value of dependent factors from the unclassified
samples. The sample travels from the root node into a leaf over the tree in which the
constructor function built at the node is used for collecting the attributes of the sample.
Subsequently, the node’s decision test is used to define the path by which the sample will
take. With the help of the constructor function built on leaf and leaf-related constant, the
sample is classified as leaf [63].

Classification tree nodes are created by comparing the values of specific input charac-
teristics to a constant. Three important parts of the FTree are: the regression model (RM),
which is utilised in FTree for internal nodes and leaves; for inner nodes, inner FTree uses
RMs; and for leaves, FTree leaves utilise RM. FTree leaves were used in this study. FTree
applied the gain ratio as a criterion for splitting to determine the input attribute to separate.
To avoid overfitting, C4.5 pruning was used, and logit boost (iterative reweighting) was
applied to resemble the leaves with the least squares for each class in accordance with the
logistic regression functions [63].

3.7.6. LMT

LMT is a classification model in computer science that integrates logistic regression
with DT learning, with the related supervised training algorithm [64]. The earlier concept
of a model tree is used in logistic LMT. A DT on its leaves uses linear regression (LR) models
where a piecewise constant model is generated by ordinary DTs with constants on their
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leaves [64]. This process is performed to obtain a piecewise linear regression model. The
LogitBoost algorithm is used in the logistic version to generate a logistic regression model
at each tree node. The model uses cross-validation for searching the multiple LogitBoost
iterations to control overfitting of training data. For each Mi class, the LogitBoost model
utilises least-squares fitting additive logistic regression, and the later likelihood of leaf
nodes is measured by LR [65].

LM(x) =
n

∑
i=1

βixi + β0 (15)

where βi is the coefficient of the ith element of vector x, n is the total factors, and D is the
total classes.

In the LMT model, the posterior probabilities of leaf nodes were computed by using
the linear logistic regression technique [64].

P(M|x ) = exp(LM(x))
D
∑

M=1
exp(L′M(x))

(16)

3.8. Validation Methods

LSMs produced using CNN, ANN, CART, ADTree, FTree and LMT models were
evaluated through 21 statistical measures mentioned in Table 3. The ROC curve is con-
structed with the true positive rate (TPR) versus the false positive rate (FPR). The TPR
consists of landslide cells, which indicate the most susceptibility. The FPR consists of
non-landslide cells, which indicate the non-susceptibility. If the area under the ROC curve
remains extremely close to 100%, then the model reflects higher goodness-of-fit and ex-
cellent accuracy [66]. The AUC is indicative of the consistency of a calculated model [67].
The ROC curve consists of four elements, being, true positive (A), false positive (B), true
negative (C) and false negative (D) [68] (Equations (17) and (18)).

TPR = A/P (17)

FPR = B/N (18)

where FPR and TPR are the false positive rate and true positive rate. The AUC is computed
by using Equation (19).

AUC = (∑ A + ∑ C)/(P + N) (19)

where P and N are the total number of landslides and non-landslides, respectively.
Amongst the statistical measures, lower values of false negative rate (miss rate) and

misclassification rate designate a higher model accuracy. By contrast, higher values of
the remaining measures denote high model accuracy. The computation methodology of
these parameters is presented in Table 3. These various measures are computed to omit
the statistical error of using a single dimension. Based on these measures, prioritisation of
models in terms of accuracy is conducted by using the compound factor (CF) method to
determine the hierarchy of best-fit for this study. In the CF method, consecutive rank is
given in accordance with the relevance of the factors targeting the goal. The mean values
of the assigned ranks of each factor represent their relative priority [69]. CF method can be
formulated as:

CF = ∑Fn
i=1(R) (20)

where rank is represented by R of the factor, and Fn is the number of factors.
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Table 3. Formulas for the computation of statistical accuracy measures.

Measures Formula References

TPR or sensitivity A
P = A

A+D [66]

FPR or fall-out or 1-specificity B
N = B

B+C = 1− C
C+B [66]

TNR or specificity C
N = C

C+B [67]

Miss rate D
P = D

D+A = 1− TPR [70]

Accuracy A+C
T [67]

Misclassification rate B+D
T [70]

PPV or precision A
A+B [71]

False discovery rate (FDR) B
B+A = 1− PPV [71]

Negative predictive value (NPV) C
C+D [71]

False omission rate (FOR) 1− NPV = D
D+C [71]

F-score 2A
2A+B+D [71]

Matthews correlation coefficient (MCC) (A×C)−(B×D)√
(A+B)(A+D)(C+B)(C+D)

[71]

Bookmaker informedness (BM) TPR + TNR− 1 [71]

Markedness (MK) PPV + NPV − 1 [71]

Threat score (TS) A
A+D+B [71]

Equitable threat score
A−Arandom

A+D+B−Arandom

where, TPrandom = (A+D)(A+B)
T

[71]

True skill statistics (TSS) A
A+B −

B
B+C = Sensitivity + Speci f icity− 1 [71]

Heidke’s skill score
A+C−E

T−E
where, E = 1

T [(A + D)(A + B) + (C + D)(C + B)]
[71]

Odd ratio skill score (Yule’s Q) (A×C)−(B×D)
(A×C)+(B×D)

[71]

Cohen’s kappa (A+C)−[(A+D)(A+B)+(D+C)(B+C)]/T
T−[(A×C))(A+B)+(D+C)(B+C]/T

[71]

4. Results
4.1. Analysis of Multicollinearity

TOL and the VIF were used in this study to test the problem of collinearity amongst
the LCFs. The derived tolerance values were >0.2, and the VIF values were less than <5,
thereby confirming the nonexistence of linearity between the factors. The outcome of
the linearity test is shown in Table 4. A total of 21 LCFs were selected after the analysis
(Table 4). The highest TOI value and lowest VIF were derived from NDVI (Table 4).

4.2. Results of CSAE

The detailed results of CSAE are shown in Figure 7. Amongst the factors, rainfall
(AM = 94.52) was identified as the most important predictive factor, followed by the slope
aspect, elevation, NDVI, LULC, VD, soil map, TRI, slope, surface area, TPI, geology,
RSP, cross sectional curvature, general curvature, longitudinal curvature, CI, tangential
curvature, profile curvature, plan curvature and TWI (Figure 7).
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Table 4. Collinearity statistics of LCFs.

Factors
Collinearity Statistics

Tolerance VIF

Elevation 0.54 1.85
Slope 0.31 4.57

Profile curvature 0.21 4.74
Plan curvature 0.40 2.48

Convergence index 0.26 3.73
Cross sectional curvature 0.21 4.76

General curvature 0.23 4.35
Longitudinal curvature 0.23 2.19

Surface area 0.31 3.28
Tangential curvature 0.22 4.55

TRI 0.92 1.09
TPI 0.31 3.19
TWI 0.86 1.17

Valley depth (VD) 0.34 2.97
Aspect 0.81 1.23

Relative slope position (RSP) 0.59 1.69
Rainfall 0.84 1.19
NDVI 0.93 1.07
LULC 0.91 1.10

Soil map 0.83 1.17
Geology 0.71 1.90
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4.3. LSMs

LSMs were prepared by using DL and novel tree ML approaches, such as CNN, ANN,
CART, ADTree, CART, FTree and LMT tree models. The LSMs are shown in Figure 8. The
LSMs were divided into five susceptibility classes by using the natural break method of Jenk,
as depicted in Figure 9. The LSM of CNN model assumed that the very high susceptibility
class occupied an area of 23.02 and 14.40% under high, 23.07% under moderate, 24.34%
under low, and 15.17% under very low susceptibility level of the study area (Figure 9). In
the case of the ANN model, the very high, high, medium, low, and very low susceptibility
zones encompassed the area of 13.36%, 13.22%, 19.55%, 31.53% and 22.34%, respectively
(Figure 9). In the case of the tree ML models, the results were relatively different. For
instance, the LSM of ADTree model assumed only 11.80% of the district under very high
susceptibility zone and 20.86% under very low, 28.33% under low, 23.83% under moderate,
and 15.18% under high susceptibility classes (Figure 9). The percentage distributions of the
susceptibility classes of LSM of the CART model for very high, high, moderate, low, and
very low classes were 18.59, 28.38, 31.63, 18.17 and 3.23%, respectively (Figure 9). The FTree
model predicted 4.77% of the total area as very low, 12.18% as low, 20.70% as moderate,
27.44% as high, and 34.90% as very high susceptibility zones of landslides (Figure 9). The
LSM of the LMT model categorised 6.54, 16.71, 26.05, 26.65 and 24.05% of the district under
very low, low, moderate, high and very high susceptibility zones (Figure 9).
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4.4. Importance Analysis of LCFs by RR

A total of 21 LCFs were tested through RR to analyse their importance for landslide
modelling. The outcome of RR revealed that rainfall (RR = 0.377) had the highest predictive
capability in this study. Comparatively, other factors, such as elevation (RR = 0.077), slope
(RR = 0.153), aspect (RR = 0.161), plan curvature (RR = 0.021), profile curvature (RR = 0.131),
general curvature (RR = 0.089), tangential curvature (RR = 0.135), longitudinal curvature
(RR = 0.156), cross-sectional curvature (RR = 0.004), surface area (RR = 0.256), topographic
position index (RR=0.016), topographic wetness index (RR = 0.030), terrain ruggedness
index (RR = 0.247), valley depth (RR = 0.176), relative slope position (RR = 0.057), geology
(RR = 0.081), soil (RR = 0.140), LULC (RR = 0.214) and NDVI (RR = 0.282) played positive
and significant roles for the modelling of landslide susceptibility in this research (Figure 10).

4.5. Validation and Accuracy Assessment

The predictability of the models was validated by using the AUC of ROC and several
other statistical measures (Table 5). The success rate curve (using the training dataset)
was drawn for each model. The result showed that CNN was the best fit with an AUC of
0.918, followed by CART (AUC = 0.910), LMT (AUC = 0.905), FTree (AUC = 0.900), ANN
(AUC = 0.843) and ADTree (AUC = 0.745). The predictive capability of the models was
assessed by using the prediction rate curve, which provided a similar result to the success
rate curve. The AUC for the CNN model under the prediction rate curve was 0.933 and
0.925 for CART, 0.920 for LMT, 0.910 for FTree, 0.889 for ANN and 0.785 for ADTree model
(Figure 11). Table 5 contains the summary statistics of other measures. The outcome of CF-
based prioritisation provided the relative priority ranking of models by considering all the
exactness metrics calculated using the training and validation data sets. Using the training
dataset, most priority was assigned to the CNN model because it ranked 1, followed by
CART (rank 2), LMT (rank 3), ANN model (rank 4), FTree (rank 5) and ADTree (rank 6)
model. In the validation dataset, the result was the same as the training set (Table 5).
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Table 5. Accuracy statistics and prioritisation of models.

Using Training Dataset

Criteria
Results Rank

CNN ANN ADTree CART FTree LMT CNN ANN ADTree CART FTree LMT

TPR 0.9 0.75 0.71 0.84 0.76 0.79 1 5 6 2 4 3
FPR 0.07 0.13 0.23 0.14 0.15 0.12 1 3 6 4 5 2

efficiency 0.92 0.8 0.73 0.85 0.8 0.83 1 4 5 2 4 3
TSS 0.83 0.63 0.48 0.7 0.61 0.68 1 4 6 2 5 3
TNR 0.93 0.88 0.77 0.86 0.85 0.88 1 2 5 3 4 2
FNR 0.1 0.25 0.29 0.16 0.24 0.21 1 5 6 2 4 3

Misclassification rate 0.08 0.2 0.27 0.15 0.2 0.17 1 4 5 2 4 3
PPV 0.93 0.9 0.8 0.87 0.87 0.9 1 2 4 3 3 2
FDR 0.07 0.1 0.2 0.13 0.13 0.1 1 2 4 3 3 2
NPV 0.9 0.7 0.67 0.83 0.73 0.77 1 5 6 2 4 3

F-score 0.92 0.82 0.75 0.85 0.81 0.84 1 4 6 2 5 3
Matthews correlation coefficient (MCC) 0.83 0.61 0.47 0.7 0.61 0.67 1 4 5 2 4 3

BM 0.83 0.63 0.48 0.7 0.61 0.68 1 4 6 2 5 3
MK 0.83 0.6 0.47 0.7 0.6 0.67 1 4 5 2 4 3

Threat score (TS) 0.85 0.69 0.6 0.74 0.68 0.73 1 4 6 2 5 3
Odd ratio skill score 0.98 0.91 0.78 0.94 0.89 0.93 1 4 6 2 5 3

Equitable threat score 0.71 0.44 0.3 0.54 0.43 0.5 1 5 6 2 4 3
Heidke’s skill score 0.21 0.18 0.16 0.19 0.18 0.19 1 3 4 2 3 2

Cohen’s Kappa 0.83 0.6 0.47 0.7 0.61 0.67 1 5 6 2 4 3
AUC 0.918 0.843 0.745 0.91 0.9 0.905 1 5 6 2 4 3

Rank total 20 78 109 45 83 55
CF 1.00 3.93 5.45 2.25 4.15 2.75

Priority rank 1 4 6 2 5 3

Using Validation Dataset

TPR 0.86 0.71 0.64 0.79 0.71 0.79 1 3 5 2 4 2
FPR 0.08 0.25 0.33 0.17 0.31 0.17 1 3 5 2 4 2

efficiency 0.38 0.32 0.28 0.35 0.32 0.35 1 3 4 2 3 2
TSS 0.77 0.46 0.31 0.62 0.41 0.62 1 3 5 2 4 2
TNR 0.92 0.75 0.67 0.83 0.69 0.83 1 3 5 2 4 2
FNR 0.14 0.29 0.36 0.21 0.29 0.21 1 3 4 2 3 2

Misclassification rate 0.12 0.27 0.35 0.19 0.3 0.19 1 3 5 2 4 2
PPV 0.92 0.77 0.69 0.85 0.71 0.85 1 3 5 2 4 2
FDR 0.08 0.23 0.31 0.15 0.29 0.15 1 3 5 2 4 2
NPV 0.85 0.69 0.62 0.77 0.69 0.77 1 3 4 2 3 2

F-score 0.89 0.74 0.67 0.81 0.71 0.81 1 3 5 2 4 2
MCC 0.77 0.46 0.31 0.62 0.41 0.62 1 3 5 2 4 2
BM 0.77 0.46 0.31 0.62 0.41 0.62 1 3 5 2 4 2
MK 0.77 0.46 0.31 0.62 0.41 0.62 1 3 5 2 4 2

Threat score (TS) 0.8 0.59 0.5 0.69 0.56 0.69 1 3 5 2 4 2
Odd ratio skill score 0.97 0.76 0.57 0.9 0.7 0.9 1 3 5 2 4 2

Equitable threat score 0.63 0.3 0.18 0.44 0.26 0.44 1 3 5 2 4 2
Heidke’s skill score 0.09 0.08 0.07 0.08 0.07 0.08 1 2 3 2 3 2

Cohen’s Kappa 0.77 0.46 0.31 0.62 0.41 0.62 1 3 5 2 4 2
AUC 0.933 0.889 0.785 0.925 0.91 0.92 1 5 6 2 4 3

Rank total 20 61 96 40 76 41
CF 1.00 3.05 4.80 2.00 3.80 2.05

Priority rank 1 4 6 2 5 3
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5. Discussion

In this research, DL and tree ML models were chosen for the spatial susceptibility
assessment of landslides in the East Sikkim region. A comparative analysis was performed
with other state-of-the-art DL models and tree ML models. The DL model, namely, CNN,
and ML models, such as ANN, ADTree, CART, FTree and LMT, were used to produce
LSMs of the East Sikkim region. The results showed that the CNN model had the highest
goodness-of-fit and excellent predictive capability, followed by ANN, ADTree, CART,
FTree and LMT models. Several studies related to landsides have emphasised the different
modelling approaches, such as ML, DL and ensemble ML. The DL and ML approaches
have been considered as robust and efficient tools and have been used in different fields
of geographical research, geotechnical application, and natural hazards, including LS
mapping [72,73]. Wang et al. [74] applied DL and ML models, such as logistic regression,
SVM and RF models, for LS assessment. Their research proved that CNN had the highest
peak performance of predictive modelling, followed by the ML models. Moosavi et al. [75]
compared the ANN and SVM by using pixel-based methods to produce the predictive
model of landslides. CNN and texture shift recognition with pre and post landslide
optical images for automated landslide detection were introduced by Ding et al. [54].
Ghorbanzadeh et al. [76] applied DL and ML approaches, such as ANN, SVM, RF and
CNN models, to predict the most landslide-affected areas in Rasuwa District, Nepal. CNN
performs several convolution and pooling operations to retrieve the characteristics. These
features become more sophisticated and more abstract with the growth of convolutions
and pooling. The degree of susceptibility to landslides, which was the deciding factor in
assessing the susceptibility to landslides, is represented in these abstract features. CNN
decreases the number of weights that need to be trained and the numerical complexity
of the network [77]. The main advantages of the CNN model are that it considers all
neighbourhood information and can determine manifold stages of representations from
input data [77]. In agreement with the results of these prior studies, the present work
confirms the CNN model as achieving the relatively highest adaptability, as demonstrated
by the produced validation and accuracy measure results.

Using the mechanisms of factor selection is relevant to maximising the efficiency of
landslide models by eliminating unwanted or trivial variables before training them [78].
Multicollinearity analysis (MA) and CSAE methods were applied, thereby confirming 21
LCFs, amongst the selected factors, were suitable and appropriate for this study. Effective
application of the two methods can be found in various literature, such as [79]. Following
Jenk’s algorithm of natural breaks classification, LS maps were divided into five groups of
susceptibility classes. In LSMs, these classification techniques have been widely used in the
literature [80]. This strategy of clustering data helps to reduce the mean variance of each
class from the mean within the class range and to increase the discrepancy between each
class from the means of the other classes [81]. These studies have suggested the effective
use of these classification techniques for this research. In accordance with the natural break
classification method, 23.02 and 14.40% of areas were covered under very high to high
susceptibility classes by the best fitting CNN model. The area covered by the high and very
high susceptible classes of CNN model was greater than the ANN and ADTree models
(Figure 9).

An accurate LSM is a vital and reliable tool that helps to map the present, and predict
the future, landslides of an area. In this research, LSMs are justified by using the ROC
curve and several other accuracy measures. The ROC curve is a widely accepted validation
technique in various fields of research [82]. Consideration of various techniques can be
more effective and more justified in resolving the issue than a single approach of validation.
Therefore, a prioritisation approach using CF was performed amongst the models by
considering the ROC and 23 other measures to determine the best result. CF has been
widely accepted for prioritisation studies, especially in watershed analysis [69]. Many
researchers have emphasised the need to examine and compare susceptibility models
for landslides with different approaches and techniques, because a small percentage of
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improvement in precision can control the resulting susceptibility areas of landslide [83,84].
Compared with the use of traditional models, the implementation of a CNN model may
seem a more challenging task, but its slightly higher predictive efficiency is of considerable
significance [84]. The accuracy of a CNN model with regard to AUC is greater than
conventional ML models. In our study, CF-based prioritisation provided the relative
priority amongst the models in which CNN model ranked first (Table 5), designating the
best fit of this DL model, similar to previous studies.

Another significant part of this study is the factor contribution analysis in producing
LSM. All factors in a region are not equally responsible for causing landslides. Several
researchers have used different methods for the analysis of the importance of conditioning
factors [85–89]. These methods include Relief F test, CSAE, information gain ratio and RR.
All these methods have been applied successfully to determine the degree of association of
the factors with the goal. In this study, RR was adopted, confirming factors such as rainfall,
NDVI, LULC, slope aspect, elevation, and TRI, as the most important driving factors for
landslides occurring in the study area. The outcome showed that the most vulnerable
zones of the landslide are found in the northern portion of the district where soil condition,
weak geology, torrent runoff, high altitude, steep sloping, rugged topography and heavy
rainfall are the chief reasons for the occurrence of landslides. The East Sikkim district is
covered with high hill-slope mountains. Therefore, the topographical ruggedness and steep
sloping with certain geological structure, bears instability in landmasses in different parts
of the study area. During the monsoon period, heavy precipitations and thunderstorms
work as accelerating factors of landslides. Human activities, such as road construction,
building construction, tea plantation and other agricultural activities are disturbing the
balance of the slope gradient, thereby causing man-made landslides. The role of these
factors, especially in the hillslope regions, were found to be significant in the previous
literature [89,90]. However, every research work has a certain limitation. The limitation
of the present study is the absence of some geological properties, such as joint, foliation
and bedding. Only surface geology data were used. However, despite this limitation, the
current study has good scope to accurately demarcate the landslide-susceptible area for
future planning and management.

6. Conclusions

Every year, landslides cause tremendous damage to humans and their properties.
Therefore, a comprehensive strategy is urgently needed to resolve this phenomenon. Iden-
tifying the places where landslides have previously occurred, and regions that are prone to
landslides, is necessary to avoid future landslides. Different approaches and procedures
may be used to geographically forecast landslide-prone regions, with some being more
accurate than others. In this study, DL and hybrid tree ML models, such as CNN, ANN,
ADTree, CART, FTree and LMT models, were used to generate LSMs. The results showed
that DL models outperformed tree ML models in this analysis. These methods involved
identifying possible landslide sites and implementing preventative and management mea-
sures. The CNN DL model had the best prediction performance amongst the models in
this study, followed by ANN, ADTree, CART, FTree and LMT. Rainfall, NDVI and LULC
were found to have greatly contributed to making an area prone to landslide based on RR.
Therefore, future damage in mountainous areas or areas with comparable physiographic
characteristics may be prevented by generating more precise LSMs using DL techniques,
such as the CNN model, and selecting appropriate LCFs for generalisation. The major
benefit of the three DL and DT models is that they automate the task of searching numerous
databases for useful information. However, these methods have some drawbacks, includ-
ing that pre-processing might take a long time due to the numerous operations involved.
The LSMs developed in this study can be used for landslide mitigation strategies in the
East Sikkim district region. LSMs can assist decision makers in making development and
planning decisions. These maps can be used as a preliminary step for landslide risk man-
agement research. Landslide forecasting is relatively accurate because DL and tree-based
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modelling are paired with RS and GIS spatial data. We only considered the region of East
Sikkim in the Indian Himalaya for our study. The occurrence of landslides in other regions
of India should be investigated in future research to give data that are more relevant. If the
proper variables for measuring landslide incidence are identified, further study will enable
comprehensive management and control of landslides in vulnerable regions.
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