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ABSTRACT
With the increasing computational facilities and data availability,
machine learning (ML) models are gaining wide attention in land-
slide modeling. This study evaluates the effect of spatial reso-
lution and data splitting, using five different ML algorithms (naïve
bayes (NB), K nearest neighbors (KNN), logistic regression (LR),
random forest (RF) and support vector machines (SVM)). The
maps were developed using twelve landslide conditioning factors
at two different resolutions, 12.5m and 30m. To identify the effect
of data splitting on model performance, 2162 landslide points and
an equal number of non-landslide points were used for training and
testing the models using k-fold cross-validation, by varying the num-
ber of folds from two to ten. Results indicated that the spatial reso-
lution of the dataset affects the performance of all the algorithms
considered, while the effect of data splitting is significant in KNN and
RF algorithms. All the algorithms yielded better performance while
using the dataset with 12.5m resolution for the same number of
folds. It was also observed that the accuracy and area-under-the-
curve values of 7, 8, 9, and 10-fold cross-validations with 30m reso-
lution was better than 2 and 3-fold cross-validations using 12.5m
resolution, in the case of RF algorithm.
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1. Introduction

Landslide is one of the most severe geohazards, and it has severe effects on human
life in mountainous terrain across the world. The recent increase in extreme climate
events, urban expansion and unplanned development due to rapid population growth
have increased the risk due to landslides. The hilly areas are being used for urban
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expansions and infrastructural developments, which in turn expose more elements to
the risk due to landslides. This scenario calls for the requirement of landslide hazard
zonation, for identifying the highly susceptible landslide zones that can help in land-
slide risk reduction and in framing the future land development strategies. The term
‘landslide susceptibility’ denotes the possibility of a landslide happening in a location,
subjected to some conditioning factors which includes the local hydro-meteor-geo-
logical conditions, which can help in estimating the locations where landslides are
expected to occur (Reichenbach et al. 2018). Landslide susceptibility maps are useful
in management of landslide hazards and decision making in vulnerable areas (van
Westen et al. 2006; Akgun 2012). Landslide susceptibility mapping (LSM) is carried
out by government and non-governmental agencies using different modelling
approaches. The earlier methods were based on expert opinions, which got replaced
by a variety of physical-based (Sorbino et al. 2010; Formetta et al. 2016), analytical
(Yalcin 2008) and statistical-based models (Bai et al. 2008; Akgun and T€urk 2010;
Pradhan 2013; Piciullo et al. 2018). The first attempts date back to the 1970s, and
since then, the methods used for LSM are being constantly updated with techno-
logical advancements. The data driven models based on machine learning (ML) have
proven to outperform all the conventional approaches in LSM (Pham et al. 2016).
The advancements in geographical information systems (GIS) and easy accessibility to
geospatial data have played a crucial role in the evolution of LSM using data driven
models. Different machine learning models are being used for LSM, since the mid-
2000s. Different ML techniques are widely accepted solutions for spatial analytics of
big data (Qiu et al. 2016; Zhou et al. 2017; Singh et al. 2018). They have outper-
formed other models, as the theoretical knowledge of the problem for wider extents
and presumptions in statistical models is unknown (Lary et al. 2016; Dou et al. 2019).
ML does not require a pre assumed model, as in the case of statistics, and the algo-
rithm learns the association between the landslides and the different conditioning fac-
tors, using the provided data. The initial studies using ML were based on Logistic
Regression (LR). LR is a statistical tool, used to solve binary classification problems,
later adopted by ML. For better accuracy, advanced ML models like Naïve Bayes
(NB), K Nearest Neighbors (KNN), Decision Trees (DT), Support Vector Machines
(SVM) and Random Forest (RF) are being widely used in LSM for more than a dec-
ade. Recently, many ensemble algorithms are being used for the performance
enhancement of ML models (Dou et al. 2020; Merghadi et al. 2020; Pham et al. 2020;
Wang et al. 2020), but an ensemble model does not necessarily result in better per-
formance. In this study, the focus is on the effect of spatial resolution and data split-
ting only, and Random Forest is the only ensemble algorithm discussed in this study.

The quality of the input data is a key factor in deciding the performance of any
machine learning model (Lima et al. 2021). In this study, the effect of the spatial
resolution and the ratio of training and testing data are explored in detail. Effect of
spatial resolution has been performed by evaluating scale effects of topographic varia-
bles in landslide susceptibility models using different resolutions of digital elevation
models (DEM). The DEM resolution is a key factor, as several other landslide condi-
tioning factors, like slope and aspect, are derived from the DEM layer. A general
observation is that fine resolution of DEM would result in better performance, but
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the previous studies do not agree with this statement (Pradhan and Sameen 2017). A
study on Sydney basin in Australia with different DEM resolutions varying from 2m
to 40m proved that the best performance was obtained for 10m DEM, using decision
trees, which used 80% data for training and 20% for testing (Palamakumbure et al.
2015). Pradhan and Sameen (2017) prepared susceptibility maps for Cameron
Highlands, in Malaysia for DEM resolutions varying from 1 to 30m. They have used
the elevation data from two different sources, i.e., LiDAR sensor and ASTER sensor,
and the comparison showed that the data collected from LiDAR generated better
landslide susceptibility maps. The study was conducted using LR method, and the
best results were obtained for a resolution of 2m. In a study conducted at Baxie river
basin in China (Chen et al. 2020), the spatial resolution of DEMs were varied from
30m to 90m and the best performance was obtained for DEM with 70m resolution.
Another study conducted for Arno river basin in Italy concludes that spatial reso-
lution of 50m to 100m has yielded optimum results, using RF algorithm (Catani
et al. 2013). The study was conducted by varying spatial resolution from 10m to
500m, and the resolution of 100m was further used for regional scale LSM for other
parts of Italy as well (Luti et al. 2020). This study used three different statistical
approaches, the frequency ratio, weights-of-evidence and index of entropy and the
training to test dataset ratio was 70:30. The effect of spatial resolution, data splitting
and their effects on different machine learning approaches are still less explored in
the previous studies. The recent literature shows a shift toward cross-validation tech-
niques for LSM using machine learning, but the number of folds is chosen randomly
(Merghadi et al. 2020). The value of ‘k’ or the number of folds determines the train:
test ratio, which highly influences the performance of any ML model. There is no
clear agreement about the best model for LSM, and hence the choice of model has to
be determined specifically for each case, through quantitative comparison. In this
study, the performance of different machine learning models (NB, LR, KNN, RF and
SVM) are evaluated with respect to the DEM resolution and number of folds used
for validation.

To check the effect of DEM resolution and data splitting in the performance of
different ML algorithms used for LSM, a study area in the Western Ghats of India
has been chosen. The location is Idukki district in the state of Kerala, which is highly
affected by landslides. More than 2000 landslides were reported in the recent disaster
that happened in 2018 August, and the severity is increasing every year (Abraham
et al. 2019). The increasing number of landslides is creating havoc during the mon-
soon seasons. The landslide inventory data of 2018 shows a significant number of
landslides have occurred outside the hazard zones, as depicted in the existing land-
slide susceptibility map for Idukki. Hence, the region direly needs an updated land-
slide susceptibility map, which can be used by the authorities as a tool for
risk reduction.

2. Study area

India contributes 16% of the total rainfall induced landslides across the world
(Froude and Petley 2018), and the Himalayas (Dikshit and Satyam 2018) and
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Western Ghats (Vishnu et al. 2019; Abraham et al. 2021; Meena et al. 2021) are two
highly susceptible landslide zones in the country. The Western Ghats runs parallel to
the western coast of the Indian peninsula, traversing from Gujarat in the North to
Tamil Nadu in the south. The occurrence of rainfall induced landslides are increasing
considerably and a notable increase is observed in the Western Ghats since 2018
(Abraham et al. 2021). The high intensity rainfalls have resulted in a notable increase
in the number of landslides since 2018. Idukki is a hilly district belonging to the
Western Ghats, spanning across an area of 4358 km2. This ecologically sensitive zone
has faced severe challenges from natural disasters, especially landslides during mon-
soon seasons. The unplanned infrastructural development and land use changes are
exposing more elements to landslide risk, and it is high time that proper risk reduc-
tion strategies are to be developed for the region (Kanungo et al. 2020; Jones
et al. 2021).

The district is drained by four major rivers and its tributaries, with a strong drain-
age network. Three of these rivers flow to the west and one towards east. The district
also houses many hydro-electric projects and serves as the major power source for
the state of Kerala. The topography of the district varies from north to south, result-
ing in varying climatic conditions across the district. The least rainfall in Idukki is
recorded in the northern parts and the amount increases towards south (Abraham
et al. 2021). More than 60% of the average annual rainfall is contributed by the
north-east monsoon season, which triggers landslides in the district due to extreme
rainfall events.

More than half of the area of Idukki belongs to forest and the rocks are composed
of peninsular gneissic complex, migmatite complex and charnockite group from north
to south (Department of Mining and Geology Kerala 2016). The rocks of the
Peninsular gneissic complex are found in the northern part of the district. The granite
gneiss rocks of Archean age are very hard and well foliated. The central area of the

Figure 1. Locations of the study area: a) India; b) Kerala; and c) Idukki.
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district is dominated by the migmatite complex, represented by biotite gneiss and
hornblende biotite gneiss. Similar to the peninsular gneissic complex, migmatite com-
plex is also very hard and foliated (Department of Mining and Geology Kerala 2016).
A major portion of the district in the southern and south central part is composed of
rocks of charnockite group, represented by pyroxene granulite, magnetite quartzite
and charnockite (Geological Survey of India 2010). Among these, charnockite is
spread across the area and the other two are found as linear bands, aligned parallel to
the foliation trend. Minor fraction of Khondalite group, acidic intrusive and basic
intrusive rocks are also found across the district, along with the other three major
groups. The lower elevation region in the western part of the district (Figure 1)
belongs to pediment complex, while the remaining area is formed by structural cum
denudational hills, on Precambrian rock formations. The region consists of hills with
thin cover of soil, laid over the basement rocks. The highly dissected hills and valleys
of the district are prone to landslides and cause severe destruction. The forest cover
of the region is composed of thick forest loam soil, formed by weathering of rock,
rich in organic matter (Department of Mining and Geology Kerala 2016). The mid-
lands of the district, with lesser elevation, are composed of lateritic soil with less
organic content and high permeability. The valley regions of the district are com-
posed of transported soil, with fine particle size, and the river banks are formed by
highly fertile alluvial soil (Department of Mining and Geology Kerala 2016).

Figure 2. Schematic diagram representing the methodology flow chart.
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Agriculture and tourism are the major income sources of this district, and the
transportation network requirements often lead to cutting of slopes without lateral
support. The regions with elevation up to 1500m are considered being plateau and
most of the district belongs to this category. Most of the built-up area in the district
falls in the midlands and the plateau region. The highest number of landslides in
Idukki occurs along the major roads, unsettling the transport facilities. The hill sta-
tions and plantations, which are tourist hubs, often witness slope failures during
monsoon seasons. The road and drainage network plays a substantial part in the trig-
gering of landslides in this region, which has to be explored in detail. The increasing
number of casualties due to landslides every year demands the necessity of proper
planning for further development and land use changes. Hence, this study attempts
to prepare data driven landslide susceptibility maps for Idukki, using different
machine learning approaches and explores the effect of resolution and data splitting
in the performance of different machine learning models.

3. Methodology

The study focuses on understanding the effect of spatial resolution and data splitting
in LSM, using different ML algorithms. The procedure is represented schematically in
Figure 2. The first step is the preparation of landslide inventory data. The landslides
were represented using point data, at the crown of each landslide. The data is split
into two parts, training and testing. The data splitting is carried out with different
train: test ratios and k-fold validation were performed. The methodology depicted in
Figure 2 has been repeated for different values of k, varying from 2 to 10.

The landslide conditioning factors selected for the study are: elevation, aspect,
slope, geology, rainfall, geomorphology, distance from roads, distance from streams,
distance from lineaments, Topographic Wetness Index (TWI), Normalized Difference
Vegetation Index (NDVI), and Stream Power Index (SPI). The definition of landslide
conditioning factors is not straightforward and requires detailed knowledge of the
geomorphological evolution of the study areas (Pradhan and Sameen 2017). Hence,
the factors were selected considering the different aspects that may trigger landslide:
– the elevation, slope, drainage characteristics, vegetation, geology, geomorphology
and rainfall. These layers were collected from remote sensing data and published
maps from different sources, rasterized and prepared the database using GIS software.
The layers were then used to develop the landslide susceptibility maps using different
machine learning models.

3.1. Data and preprocessing

The quality of data is the key factor in determining the outputs of every data-driven
model. Hence, data collection is a process to be carried out with utmost care and
accuracy (Bui et al. 2012). The landslide inventory data has been prepared using
Google earth imageries. The landslides were identified by comparing the images
before and after August 2018 and the crown point was identified using the elevation
profile of the terrain (Figure 3). The dataset has been prepared specifically for LSM,
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as the existing dataset available for the district (Abraham et al. 2021), is focused on
the time of occurrence of landslides, using approximate landslide locations. The pre-
pared dataset was found to be in good agreement with the database published by
Hao et al. (2020). By this procedure, a total of 2162 landslide points were recognized
in the administrative boundary of Idukki region. Out of the total landslides, 65.6%
were classified as shallow landslides, 31.3% as debris flows and remaining 3.1% as
rockslides. An equal number of points with no landslides were also created randomly
inside the polygon, using the existing landslide susceptibility map for Idukki and the
slope map of Idukki. The points were selected in flat terrains outside the existing sus-
ceptibility maps. These landslide and non-landslide points were used for training and
testing each machine learning model used in this study.

The DEM for the study area was derived from two different sources, the Alos
Palsar DEM (ASF DAAC 2015) and the Cartosat DEM (National Remote Sensing
Centre 2015). Alos Palsar DEM is a Radiometrically Terrain Corrected (RTC) product
from the Alaska Satellite Facility (ASF DAAC 2015). The high resolution DEMs are
available at 12.5m � 12.5m in the projected coordinate system. CartoDEM is devel-
oped using Augmented Stereo Strip Triangulation (ASST) by Indian Space Research
Organisation. The resolution of DEM is 1 arc second (approximately 30m) in the
geographic coordinate system. In this manuscript, the Alos Palsar DEM is referred to
as 12.5m resolution DEM and CartoDEM as 30m resolution DEM for convenience.
The difference in data collected from the two sources and the different conditioning
factors derived from DEM for 100 random points are plotted in Figure 4.

Slope, aspect, SPI and TWI layers were prepared from the DEM. The difference in
altitude values of the two different DEMs will affect the values of these layers as well
(Pradhan and Sameen 2017). As depicted in Figure 4, the variation in elevation values
is negligible when both layers are compared. However, this minor variation has severe
impacts on the DEM derived layers. Hence, the resolution of DEM is a critical factor
in determining the quality of results and all these layers were developed using the

Figure 3. Procedure of preparation of landslide inventory data: a) Google earth image before
event; b) Google earth image after event; and c) elevation profile.
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DEMs of two different resolutions. Slope is a significant parameter in the process of
LSM. It is the ratio of vertical distance to horizontal distance between two specified
points, expressed using the tangent angle. The slope angle varies from 0 to 90 degrees
and studies on LSM supports the consensus on the notion of considering slope as an
important parameter in the initiation of landslides. The term aspect indicates the
orientation of the slope face, expressed as an angle varying from 0 to 360 degrees,
starting from north, in the clockwise direction, they are classified into 8 categories
with a difference of 45 degrees each. The literature says that the slope aspect is crit-
ical when landslides are triggered after superficial cracks (tension cracks) are formed
in clay (Capitani et al. 2013). These types of landslides are detected in the study area,
and it is very common that long tension cracks can be identified at the crown of
landslides much before the occurrence of landslides. Hence, aspect maps are also pre-
pared using the DEM, for two different resolutions.

The drainage maps were developed for two different resolutions and were verified
using google earth and minor corrections were made. The stream network was then
used to calculate the distance from the stream layer of LSM. The flow accumulation
maps were also developed using both the DEMs, for the calculation of SPI and TWI.
SPI indicates the erosive power of flowing water, calculated using the slope and con-
tributing area. SPI estimates positions where a flow path or gully is likely to form on
the landscape. TWI is a wetness index, commonly used to quantify topographic con-
trol on hydrological processes. From the flow accumulation ðFAÞ map, SPI and TWI
were calculated using the equations listed below, where i is the index of each grid
cell of the DEM:

SPI ¼ FAi � tan ðSlopeiÞ (1)

TWI ¼ ln
FAi

tan ðSlopeiÞ
� �

(2)

The rainfall data for the study area was collected from the Indian Meteorological
Department (IMD) for four rain gauges in the study area. The average annual rainfall
data collected from these points were estimated using Inverse Distance Weighted
(IDW), which is a widely followed method of interpolation of rainfall data (Gilewski
2021; Jaya et al. 2021). In IDW, the cell values are determined using a linearly
weighted combination of the sample points. The weight is inversely proportional to
the remoteness from a point to the cell. The NDVI layer was prepared using Landsat
8 images, acquired on 21st January 2018. The NDVI values indicate the greenness of
a location. Higher NDVI values indicate the presence of vegetation, while the least
values are observed in water bodies. NDVI is computed as the ratio between the red
(R) and near infrared (NIR) values, and can be calculated from Landsat 8 images
using the following equation:

NDVI ¼ ðBand 5 – Band 4Þ
ðBand 5þ Band 4Þ (3)
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The road network, geology, geomorphology, and lineaments were collected from
maps published by GSI. The road network and lineaments were used to prepare the
distance from roads and distance from lineaments layers using proximity rasters. The
road network and the distance from roads are highly significant as the landslides
which affect the transportation facilities are highly critical.

The geology and geomorphology layers are vector files published by GSI. Both the
layers are highly significant in the initiation of landslides as the physical processes of
landslide triggering are related to the rock type and morphology. Geology explains
the bedrock type, while geomorphology explains the interaction of rock with the
environment (Youssef et al. 2015). The geology of the region is classified into six cat-
egories, viz charnockite group, khondalite group, migmatite complex, peninsular
gneissic complex, acid intrusive and basic intrusive (Geological Survey of India 2010).
Similarly, there are five prominent categories in geomorphology, i.e., highly dissected
hills and valleys, moderately dissected hills and valleys, low dissected hills and valleys,
anthropologic terrains and pediment and pediplain complex. From the landslide
inventory data, it was observed that more than 70% of the landslides have occurred
on terrain which is composed of the migmatite complex and peninsular gneissic com-
plex. These regions are geomorphologically classified as highly and moderately dis-
sected hills and valleys. The vector files were rasterized into two different resolutions,
according to the DEM, for a comparative study.

All other layers, except geology, geomorphology and aspect, were classified after
normalizing the values to a scale of 0 to 1, using the minimum and maximum values
in each case. The values of different layers compose a database of multiple orders and
normalizing has been done to avoid any biasness towards any particular layer (Bui

Figure 4. Comparison of different DEM derived layers using 12.5m resolution and 30m resolution:
a) elevation, b) slope, c) aspect, d) TWI, and e) SPI.
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et al. 2016). After normalizing, the values are classified into five equal categories,
from 0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8 and 0.8 to 1. Hence, the aspect layer is
classified into nine categories including flat areas, geology layer into six and all other
layers are classified into five classes.

The landslide and non-landslide points were used to extract data from the classi-
fied layers, to generate the training and testing data for LSM (Pourghasemi et al.
2013; Zare et al. 2013). Later, the derived model was applied on the whole data set to
develop landslide susceptibility maps for Idukki.

3.2. Machine learning models

Machine learning techniques are used to solve problems involving big data, when
there is limited knowledge on the theoretical part (Dou et al. 2019). ML models are
highly suitable for solving non-linear problems and hence are widely adopted for
LSM. From the landslide and no landslide data used for training, the ML algorithm
learns the association between the occurrence of the landslide and the different condi-
tioning factors. In this study, we explore in detail the performance of different ML
models in LSM for Idukki, using k-fold cross-validation. The different algorithms
used for analysis are explained as follows:

3.2.1. Naive Bayes
The term “Naive” came from the fact that the algorithm “naively” takes the features
to be independent of each other while calculating the conditional probabilities. NB is
an algorithm based on the Bayes’ theorem of mathematics. The algorithm takes cer-
tain features like events and calculates Bayesian probabilities, with a naive assump-
tion. Due to this assumption of independence between features, which is rarely true
in real-life problems, the NB’ Classifier can produce less accurate predictions in com-
parison to other classifiers. On the other hand, mathematical control over the model
helps us achieve results fast, unlike other models which require parameter tuning to
produce efficient results. The model is being used in LSM since 2010 (Miner et al.
2010) and has proved to obtain satisfactory accuracy values.

Bayes theorem states that the conditional probability of occurrence of any class
variable B subject to the occurrence of a vector of dependent features A ðA1 to AnÞ
is given by:

P BjA1,A2, ::::::Anð Þ ¼ PðBÞ � PðA1,A2, ::::::AnjBÞ
PðA1,A2, ::::::AnÞ (4)

The values of relative frequency of class B in the training dataset, PðBÞ and the
conditional probability PðAijBÞ can be determined by using the Maximum a Posterior
(MAP). The distribution of PðAijBÞ and the assumptions made on it decide the NB
classifier. The model is easy to implement and doesn’t need any hyper param-
eter tuning.
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3.2.2. Logistic regression
LR is an algorithm derived from regression analyses that form a linear relationship
between different features by means of coefficients. This popular ML algorithm was
initially borrowed from statistics. The regression output is passed through a mathem-
atical function that produces the probability of occurrence of Landslides. The name
logistic regression is derived from the logistic function or sigmoid function (Figure
5), which is the core element of this algorithm. According to this function, when the
value of any variable x is positive, the function sets off an asymptote to the
liney ¼ 1, and similarly, for negative values of x, an asymptote y ¼ 0 is set. LR
can be considered as a special case of a generalized linear model (McCullagh and
Nelder 1989), used to get results in binary form.

This parametric model is able to predict the solutions of a problem, using the
concept of probability, and hence it is actively used for LSM. The algorithm finds a
fitting function, to establish a non-linear relationship with the landslide and non-
landslide points and the input layers. LR does not require hyper parameter tuning
and hence can be used easily in predictive models like LSM. The equation used by
LR, to find the probability of occurrence of landslide (P) using the input layers can
be expressed as:

P ¼ ez

1þ ez
(5)

where z is a linear fitting function, using the different input layers, which can be
expressed as

Figure 5. The logistic function or sigmoid function.
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z ¼ a0 þ a1X1 þ a2X2 þ � � � þ anXn (6)

where a0 is the intercept, a1, a2::::::::: an are the regression coefficients and
X1, X2, :::::::Xn are the landslide conditioning factors, obtained from the input layers.
LR can be efficiently used for getting satisfac factory predictions if the dependent
variable is in binary form and the input data set is sufficiently large with minimum
duplicates and little multicollinearity.

3.2.3. K-Nearest neighbors
KNN as the name implies, is an algorithm that works by seeing the characteristics of
neighboring data values. KNN is one of the simplest ML algorithms which has wide
applications and is being used in LSM for a decade (Marjanovic et al. 2009). The
algorithm predicts a membership probability for each class, which indicates the prob-
ability of a given element can be allocated to any class (Br€ocker and Smith 2007). For
classifying an object, the algorithm observes KNN falling in the radius of the object.
The algorithm takes a poll of all neighbors and assigns the class, which has got the
maximum number of votes. The object will be classified as to how the maximum
number (K) of its nearest neighbors are classified. The value of K is a small positive
integer, given as a parameter, and a change in k value might affect the results of the
algorithm (Figure 6).

In KNN, the learning is deferred till a request is made, unlike the eager learning
algorithms. Hence, it is termed as a ‘lazy’ supervised algorithm. The computations of
the algorithm do not depend upon the data distributions and hence it is classified as
a non-parametric model. This is an advantage in case of LSM, when the number of
features is high, and the data is seldom fit to neat distributions. The algorithm
receives an unclassified dataset, and it computes the distance from each data point, to
determine the K closest neighbors (Figure 5). The labels of the K closest neighbors
are then used for voting and classification of the data point.

Figure 6. Graphical representation of K nearest neighbors algorithm.

3392 M. T. ABRAHAM ET AL.



3.2.4. Random Forest
RF is an ensemble algorithm. Just like a forest is created by many trees, this algo-
rithm works with a combination of many Decision Trees (DT) (Figure 7). A DT has
nodes and branches, the nodes make the decision to continue on a particular branch.
By taking consecutive decisions, including all the features, the DT decides which class
to assign to an object. The RF takes into account decisions of specified K number of
trees. It calculates the probability of landslide occurrence on the basis of votes. Each
tree in a RF contains a subset of the whole dataset, which is independently sampled
by means of bootstrapping (Breiman et al. 2006). RF in LSM is well known to pro-
vide highly accurate results owing to the random selection at each node.

RF algorithms can also decrease the overfitting issues by building several trees,
bootstrapping and splitting of nodes. As the tree grows, the randomness of the
model is also increasing. While splitting a node, the algorithm does not quest for
the most vital feature, but for the best one among the random subset of features.
This diversity results in a better model and it can be fine-tuned by changing the
maximum number of features taken at each node, the depth of trees and number
of trees to be combined.

3.2.5. Support vector machines
The support vector machines (SVM) algorithm finds a hyperplane in a multidimen-
sional space, which can classify the distinct data point. Hyperplanes can be termed as
the decision boundaries that aid in classifying the data point (landslides and no land-
slides in this case). The dimension of the hyperplane alters according to the number
of layers used for LSM. It is possible that multiple hyperplanes can be used to classify
the data points. Hence, the purpose of the SVM algorithm is to choose a hyperplane
with maximum margin or maximum distance between the data points of both classes
using the statistical learning theory (Cortes and Vapnik 1995). Maximum margin is

Figure 7. Graphical representation of RF algorithm.
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chosen to accommodate the possible data points that may be added in the future.
Those data points which are nearer to the hyperplane determine the position and
orientation of hyperplanes and are called as support vectors.

The required outputs in SVM are obtained by using different kernel functions,
which transform the input data into the required forms (Cristianini and Sch€olkopf
2002). The choice of the right kernel function is critical in the prediction perform-
ance of the model. Linear, radial basis function (RBF), polynomial and sigmoid are
some of the kernel functions employed in SVM. The localized and finite response of
the RBF kernel has made it the most popular in LSM applications. The difference
between two kernel functions, linear and RBF, is shown in Figure 8. Even though
both kernels can be used to define the hyperplane in figure, RBF kernel can provide
a classifier with a higher margin.

3.3. K-fold cross-validation

Cross-validation can be defined as a resampling technique used to assess the perform-
ance of ML models with a limited dataset. In k-fold cross-validation, the input is a
single parameter k, which defines the number of groups or fold the data is divided
into. Cross-validation is used in ML, to know the performance of a model on the
unseen data. The method is simple and provides a less biased estimate of the skill
scores of the ML model.

The procedure of k-fold cross-validation technique includes dividing the dataset
into k groups (folds) of equal size (Figure 9). Out of the k-folds, k-1 sets are taken
for training the model and the remaining 1 set for testing the performance of the
model. The process is repeated k-1 times more, so that each set of data is considered
as a test set.

Many studies have used k-fold cross-validation for LSM and most of the studies
follow 10-fold cross-validation (Sun et al. 2020) and some of them have used fivefold
cross-validation (Palamakumbure et al. 2015). However, these numbers are chosen
arbitrarily and the effect of the number of folds have not been explored in detail.

Figure 8. Graphical representation of SVM algorithm.
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Rodr�ıguez et al. (2010) points out that a lesser number of k (k¼ 2) can be used for
the comparison of different ML algorithms, due to the lower variance. It is said that
when a single algorithm is used, k¼ 5 or k¼ 1 0 are recommended, however, if com-
putationally feasible, repeated cross-validation shall be conducted (Rodr�ıguez
et al. 2010).

3.4. Performance evaluation of the models

The performance of ML models considered in this study is compared using the
accuracy values and receiver-operating characteristic (ROC) curves approach. The
comparison of different models can be done using a confusion matrix, in which the
probabilities estimated by each model are compared with the presence or absence of
landslide points in the test dataset. Accuracy of a model can be computed as the ratio
of the correct predictions to the total data points in the test dataset. Based on the
attributes attained from the confusion matrix, the true positive rate (TPR) and the
false positive rate (FPR) of the model can be calculated. TPR is the ratio of appropri-
ately predicted landslide points to the total count of landslide points in the test data-
set and FPR is the ratio of incorrect landslides predicted, to the total count of
nonlandslide points in the test dataset. The following equations are used for the cal-
culation of accuracy, TPR and FPR :

Accuracy ¼ TPþ TN
TPþ FNþ FPþ TN

(7)

TPR ¼ TP
TPþ FN

(8)

FPR ¼ FP
FPþ TN

(9)

Figure 9. Graphical representation of k-fold validation.
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where TP is the true positives, the number of landslides correctly predicted, FN is the
false negatives, the number of landslides missed by the model, FP is false positives,
the number of nonlandslide points in which landslides were incorrectly predicted by
the model and TN is true negatives, the correctly predicted non-landslide points. For
a perfect model, the TPR value should be 1 and FPR value should be zero. The plot
between these two is known as the ROC curve, and the area under this curve (AUC)
is used for comparing the performance of each model. The method is widely used for
quantitative comparison of performance of different models (Chen et al. 2021; Li
et al. 2021). ROC curves are plotted for each value of k in cross-validation, for each
ML model for both 12.5m and 30m resolution. The best performing model is then
chosen to develop the landslide susceptibility map for Idukki.

4. Results

The performance of all the machine learning models, for different DEM resolutions
and different number of folds in cross-validation were carried out using the AUC
approach. To enhance the performance of KNN, RF and SVM, the hyper parameters
were fine tuned. The ROCs for fine-tuned models are shown in Figure 10.

The NB algorithm showed a clear distinction between the results of 12.5m and
30m DEMs, while the different values of k did not have much consequence on the
model performance (Figure 10a). The maximum AUC was obtained at k¼ 7 (AUC ¼
0.848) for 12.5m resolution and the minimum value was obtained as 0.807, for 30m
resolution, when k¼ 3. The values of AUCs were varying from 0.807 to 0.810 for
30m resolution and from 0.846 to 0.848 in the case of 12.5m resolution. The

Figure 10. ROC curves using different ML algorithms: a) NB, b) LR, c) KNN, d) RF, and e) SVM.
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standard deviation of AUC values in each fold is found to be less in 12.5m reso-
lution. The value starts from 0.002 when k¼ 2 and increases to 0.157 in when k¼ 10.
For 30m resolution, the values vary from 0.005 to 0.020 as the value of k increases
from two to ten.

The AUC values obtained using LR algorithm were found to be higher than those
with NB, in all the cases. Similar to the case of NB, the results of 30m and 12.5m
were clearly distinct, but the AUCs obtained by a different number of folds were
found to be very close to each other (Figure 10b). Even though there was no signifi-
cant increase in the AUC values with respect to the number of folds, the maximum
value was obtained as 0.867 for both k¼ 7 and k¼ 10. While comparing both these
models, it can be observed that the standard deviation is almost four times for k¼ 10
(0.0190) when compared with that at k¼ 7 (0.005). The best performing model using
LR was chosen as the one with 12.5m resolution and k¼ 7, considering both the val-
ues of AUC and standard deviation. The maximum AUC obtained in the case of
30m resolution was 0.810 for both k¼ 7 and k¼ 10, while the minimum value of
AUC obtained in the case of 12.5m resolution was 0.865 when k¼ 3.

In KNN algorithm, the key parameter is the number of neighbors, K. The value of
K was first fine-tuned for both 12.5m and 30m resolutions. The hyper parameter
tuning was conducted for 12.5m and 30m separately and the best value of K was
obtained as 9 and 15, respectively. The AUC values for a different number of folds
were then carried out using the fine-tuned parameters. The AUC values obtained
using KNN were found to be higher than those obtained using NB in all cases and
were slightly higher than to those obtained using LR. Unlike LR and NB, the AUCs
for different number of folds are not very close in the case of KNN. The maximum
value of AUC was obtained as 0.888 when k¼ 9 for 12.5m resolution and the min-
imum value was 0.840 when k¼ 2, with 30m resolution.

RF is widely used for LSM, and the findings of this study also support RF as a
good tool for LSM. The AUC values obtained using RF method are higher than all
the other algorithms. It should also be noted that the AUC values for 30m resolution
obtained using RF are also higher than those obtained from all other algorithms. The
major limitation of RF model is the requirement of hyper parameter tuning. The
number of estimators, maximum depth of trees and minimum samples at each split
were fine tuned for 30m and 12.5m resolution separately as 200, 20, 2 and 400, 25,
2, respectively. The tuned parameters were then used for finding out the effect of sev-
eral folds. All AUC values obtained using RF algorithm are above 0.900, with the
minimum value 0.902 for 30m resolution with two folds and maximum value 0.920
for 12.5m resolution with seven folds. The standard deviation is also less when com-
pared with other models. The AUC values slightly differ from each other, with
respect to the number of folds (Figure 10d).

The most crucial criteria in deciding the performance of an SVM is the selection
of suitable kernel function. After multiple trials, RBF kernel was chosen as the suit-
able one to classify the dataset used in this study. SVM also needs hyper parameters
tuning, and the c value and gamma value were fine tuned for the two different reso-
lutions considered. The c value calibrated for both resolutions was obtained as 1000,
while the value of gamma was obtained as 0.0001 for 12.5m and 0.001 for 30m
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resolution. The AUC values for SVM were similar to those of LR and are slightly
lesser than those obtained using KNN. As in the case of LR, the distinction between
12.5m and 30m resolutions is clear, but the AUC curves for a different number of
folds overlap with each other (Figure 10e). The maximum value of AUC attained
using SVM is 0.867, for 12.5m resolution and 5 folds cross-validation. The AUC val-
ues are almost constant from k¼ 5 to k¼ 10, but the standard deviation increases
from 0.015 to 0.019. The standard deviations for all trials using SVM were found to
be higher than the other algorithms.

Next, the landslide susceptibility maps were plotted using the best performing
models developed using each algorithm (Figure 11) and were evaluated in detail to
understand the percentage distribution of spatial probability of occurrence of land-
slides in Idukki (Figure 12). The area is divided into five categories (very-low, low,
medium, high and very-high) according to the probability of occurrence of landslides.

The ratio of pixels in each category, to the total number of pixels is depicted as
total pixels percentage, and the ratio of number of landslides that happened in each

Figure 11. Best performing landslide susceptibility maps developed using different algorithms: a)
NB, b) LR, c) KNN, d) RF, and e) SVM.
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category, to the total number of landslides considered, is the landslide pixels percent-
age. The maximum number of pixels belongs to very-low category in all cases (Figure
12). The distribution is almost uniform among the other four categories in the case
of NB. For all other algorithms, the percentage pixels increase with a decrease in
probability of occurrence of landslides.

It can be understood from Figure 12 that the maximum number of landslides in
all cases, except LR, has occurred in the pixels with very-high probability of land-
slides. Among all the five, the best performing model is the one developed using RF
(Figure 11d), in which 4.40% of the total area is classified with very-high susceptibil-
ity, 10.53% with high susceptibility, 13.14% with medium susceptibility, 19.83% with
low susceptibility and 52.08% with very-low susceptibility. In this case, the maximum
number of landslides (43.29%) have occurred in locations classified with very-high
susceptibility and only 1.62% of the events have happened in locations with very-low
susceptibility. The effect of each conditioning factor on landslide susceptibility was
evaluated in detail for the best performing model, which clearly indicates how the
spatial resolution of DEM has affected the model performance.

From the best performing model derived using RF, it can be understood that the
probability of occurrence of landslides is highly influenced by the slope of the region,
with an importance factor of 0.220 (Figure 13). From Figure 4, it is evident that slope
values are highly influenced by the resolution of DEM. The rainfall is the next crucial
factor with importance factor 0.182 and then comes the elevation with importance
factor 0.105. Distance from roads is also a crucial factor, as most of the landslides

Figure 12. Percentage distribution of total pixels and landslide pixels for the best performing land-
slide susceptibility maps developed using different algorithms: a) NB, b) LR, c) KNN, d) RF, and
e) SVM.
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happen very close to the roads cut through the hillsides, without proper lateral sup-
port. The three different indices considered, TWI, SPI and NDVI, were found to
have very close importance factors, 0.649, 0.647 and 0.644, respectively. The values of
TWI and SPI were found to be more important than the distance from streams.
Geology and geomorphology were the least important features with a value of
importance factor 0.031 and 0.033, respectively, in this study. The importance factors
imply the relevance of using suitable DEM for LSM. The different conditioning fac-
tors like elevation, slope, TWI, SPI and aspect are derived from DEM, and all these
layers are having high importance factors. Thus, the quality of a majority of layers
depends upon the quality of DEM.

The evaluation indicates that the landslide susceptibility map derived using RF
model with 12.5m resolution and 7-fold cross-validation can be used as a reliable
tool by the planners and policy makers for making decisions regarding future devel-
opments. The impending risk due to landslides in Idukki must be controlled by mini-
mizing further development activities in very-high susceptible zones where the
maximum number of landslides are reported. Rainfall is one critical feature which
cannot be controlled manually, but any alteration to the features like slope, elevation,
TWI, SPI, NDVI, aspect through large-scale land use modifications should be strictly
controlled. Strengthening existing road cuttings, and effective planning of future
roads according to the susceptibility maps can also control the number of landslides
along the road corridors.

5. Discussion

From the results, the best performing model in case of all algorithms was obtained at
a resolution of 12.5m. While comparing the variation in accuracy and AUC values

Figure 13. Feature importance factors for the best performing model.
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with respect to the number of folds for each algorithm as shown in Figure 14, it is
clear that the resolution of DEM has influenced the performance of NB, LR and
SVM algorithms. There is a remarkable increase in the performance indicators of
these three algorithms when 12.5m DEM is used. In the case of KNN, the minimum
accuracy improved from 0.765 to 0.799 upon the usage of a finer resolution DEM,
but the variation between maximum accuracy obtained by 30m resolution and the
minimum accuracy obtained by 12.5m resolution is marginal. The values are 0.777
and 0.799, respectively (Figure 14). In the case of RF algorithm, this difference is

Figure 14. Comparison of minimum and maximum values of: a) accuracy; and b) AUC obtained for
12.5m and 30m resolutions.
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further less. The results of KNN and RF algorithms indicate the significance of data
splitting. The maximum accuracy obtained using 30m resolution is higher that
obtained by 12.5m resolution, by varying the number of folds used for cross-valid-
ation, or in other words, by changing the ratio of train to test dataset in the case of
RF algorithm. The performance of 7-, 8-, 9-, and 10-fold cross-validations with 30m
resolution was better than 2- and 3-fold cross-validations using 12.5m resolution, as
observed from Figures 10 and 14.

The general trend is an increasing accuracy with respect to the number of folds
for lesser values of k; i.e., when more data is used for training, but the optimum per-
formance was obtained for different algorithms at different values of k (Table 1).
Figure 14 shows that there is no notable increase in the accuracy and AUC values of
NB, LR and SVM algorithms with respect to the values of k. The accuracy of RF algo-
rithm improved from 0.830 to 0.847 in the case of 12.5m resolution and from 0.825
to 0.836 in the case of 30m resolution as mentioned in Table 1. In the case of KNN,
the accuracies improved from 0.799 to 0.813 and from 0.765 to 0.777 in the case of
12.5m and 30m resolution, respectively. From the analysis, all algorithms are per-
forming better with 12.5m resolution DEM. The maximum accuracy is obtained for
RF with 7 folds, as 0.847 when the resolution is 12.5m.

The comparison of different algorithms shows that the choice of a suitable algo-
rithm is the most crucial factor in LSM. The performance is highly influenced by the
algorithm and the response of each algorithm to the variation in spatial resolution
and the number of folds is different. The accuracy values are the highest in the case
of RF algorithm and the least in the case of NB. The assumption of NB algorithm
that the predictor variables are independent highly affects the prediction performance
of the model. This assumption has a significant effect on the results and the chances
of less accurate results are higher when the parameters are not independent. The val-
ues of LR and SVM are comparable, while the accuracies obtained by KNN are
slightly higher when compared with LR and SVM. LR algorithm results in lesser per-
formance when the problem is non-linear; and the algorithm does not provide good
results when the parameters are mutually related. The advantage of using LR is that
it does not require any hyper parameter tuning. Even though RF is providing the
highest accuracies, complex models like SVM and RF involve higher computational
time due to the hyper-parameter tuning. The variation in accuracy values with respect
to the number of folds is relevant in the case of KNN and RF only. The statistical
performance of the models can be further enhanced by employing ensemble learning
using single or hybrid models (Dou et al. 2019; Pham et al. 2020). While comparing
the different algorithms, it can be noticed that the optimum value of k is obtained as
same for both 30m and 12.5m resolution in all cases. Thus, the best suited number

Table 1. Comparison of accuracy and AUC values for different algorithms using 12.5m reso-
lution DEM.
Algorithm Accuracy ± SD AUC± SD Optimum value of number of folds

NB 0.767 ± 0.012 0.848 ± 0.006 7
LR 0.800 ± 0.010 0.867 ± 0.006 7
KNN 0.813 ± 0.012 0.888 ± 0.006 9
RF 0.847 ± 0.012 0.920 ± 0.001 7
SVM 0.801 ± 0.007 0.867 ± 0.010 5
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of folds depends upon the number of data points and algorithm, rather than the reso-
lution of data.

The study shows that RF algorithm performs better than all the other algorithms
considered, in all the cases. The findings of the study point towards the significance
of the choice of DEM resolution and data splitting for LSM. The resolution of DEM
clearly affects the data in all DEM derived layers and hence the importance of all
conditioning factors, which in turn affects the performance of ML model. However,
the results indicate that finer resolution data does not indicate better performance.
The performance is also influenced by the choice of algorithm and ratio of data split-
ting. The study proves that the performance of RF algorithm is affected by both the
resolution of DEM and number of folds. The important concern here is while using
RF algorithm, the wrong selection of train to test ratio might result in poor perform-
ance, even with a higher resolution DEM.

The representation of landslides may affect the prediction performance of data
driven approaches. However, studies have shown that single point data can satisfac-
torily represent landslides and different sampling strategies are less significant with
the use of advanced algorithms (Dou et al. 2020; Pham et al. 2020). Hence, this aspect
is not discussed in this manuscript. With the availability of better resolution DEMs,
the performance can be further improved, and the study points out that if computa-
tional facilities are available, the performance should be evaluated for different train
to test ratios, to obtain the best model. When the resolution of LSM is finer, it helps
in efficient management and planning, but the study shows that in the case of RF
algorithm (the best performing one), finer resolution does not always guarantee better
results. Random choice of the value of number folds might yield poor results irre-
spective of the resolution of the dataset. Hence, for each study area, the best suited
algorithm, spatial resolution and train to test ratio shall be selected after thorough
study, as the choice can significantly affect the performance of the derived landslide
susceptibility map.

6. Conclusion

Landslide susceptibility maps for Idukki district in southern part of India were devel-
oped using five different machine learning algorithms viz. NB, LR, KNN, RF and
SVM. Twelve conditioning factors were used to develop the models at two different
resolutions, 12.5m and 30m k-fold cross-validation were used to assess the perform-
ance. The effect of data splitting was also evaluated by varying the number of folds
used in k-fold cross-validation from 2 to 10.

The landslide susceptibility maps were plotted for the best performing models
using each algorithm, to understand in detail the spatial distribution of probability of
occurrence of landslides. The total area was classified into five categories, based on
landslide susceptibility. As per the best model developed using RF, 4.40% of the total
area is classified with very-high susceptibility, 10.53% with high susceptibility, 13.14%
with medium susceptibility, 19.83% with low susceptibility and 52.08% with very-low
susceptibility landslide zones. The slope, rainfall and elevation were found to be the
most critical features deciding the occurrence of landslides in Idukki.
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The analysis showed that the resolution has a significant effect on the performance
of model, and the 12.5m resolution models were performing better than the 30m
resolution models using all the algorithms. The effect of data splitting was found to
be significant in KNN and RF algorithms and was negligible in the case of all other
algorithms. The standard deviations of the results were the least for a smaller number
of folds and it increases along with the number of folds. The optimum performance
was obtained for k values 7, 7, 9, 7 and 5 for NB, LR, KNN, RF and SVM, respect-
ively. The ROC curve approach was used to compare the performance of different
algorithms and the maximum value of AUC was obtained as 0.920, for RF model
with k value 7 and 12.5m resolution. The results indicate that the spatial resolution
has a significant effect on the prediction performance of all algorithms, while the best
performing algorithms are also influenced by the number of folds. Hence, if computa-
tional facilities are available, it is advised to develop landslide susceptibility maps, by
comparing the performance of datasets using available DEM resolutions and different
train to test ratios.
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