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Abstract: Autonomous vehicles (AVs) are being extensively tested on public roads in several states
in the USA, such as California, Florida, Nevada, and Texas. AV utilization is expected to increase
into the future, given rapid advancement and development in sensing and navigation technologies.
This will eventually lead to a decline in human driving. AVs are generally believed to mitigate crash
frequency, although the repercussion of AVs on crash severity is ambiguous. For the data-driven
and transparent deployment of AVs in California, the California Department of Motor Vehicles
(CA DMV) commissioned AV manufacturers to draft and publish reports on disengagements and
crashes. This study performed a comprehensive assessment of CA DMV data from 2014 to 2019 from
a safety standpoint, and some trends were discerned. The results show that decrement in automated
disengagements does not necessarily imply an improvement in AV technology. Contributing factors
to the crash severity of an AV are not clearly defined. To further understand crash severity in AVs,
the features and issues with data are identified and discussed using different machine learning
techniques. The CA DMV accident report data were utilized to develop a variety of crash AV severity
models focusing on the injury for all crash typologies. Performance metrics were discussed, and
the bagging classifier model exhibited the best performance among different candidate models.
Additionally, the study identified potential issues with the CA DMV data reporting protocol, which
is imperative to share with the research community. Recommendations are provided to enhance the
existing reports and append new domains.

Keywords: autonomous vehicles; crash severity; disengagements

1. Introduction

Autonomous vehicles (AVs) have the potential to revolutionize the transport industry
by alleviating congestion, improving safety, and reducing accidents. Consequently, the
transport industry will benefit from AV deployment, but the impacts on the auxiliary
industries are debatable. As AV manufacturing companies move from research to prototype
to production, the generation of data increases exponentially. This data lake (conditional to
availability) could elucidate the ambiguity around crash risk.

The ability of AVs to mitigate crash risk caused by human error has raised the expec-
tation of a downtrend in conventional critical safety events. However, the inclusion of AVs
within the system can result in new safety challenges associated with poorly maintained
road markings and light reflections affecting the vehicle sensors. AV communication faults,
cybersecurity, and disengagements also influence crash prevalence [1]. Furthermore, it is
essential to note that there is even less understanding about the influence these and other
AV features have on crash severity.
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The estimation of the economic and social burden caused by road traffic crashes in-
volving AVs requires a thorough understanding of the factors affecting the crash frequency
or, given that a crash has occurred, the attributes that can alleviate or aggravate the cost and
injury in the crash. Although AV trials generate a vast amount of data, these data cannot
be acquired because of data privacy: especially when personal information is involved.
Furthermore, synthetic data created by traffic microsimulation models (e.g., [2,3]) and
surrogate safety assessment models cannot represent the new or unprecedented crash
sources present in AVs. As a result, these models are advantageous but not necessarily an
exact representation of the AV scenario. For the safe and transparent deployment of AVs
in California, the California Department of Motor Vehicles (CA DMV) commissioned AV
manufacturers to draft and publish two reports: a disengagement report and a crash report.
A disengagement report is a summary of events where the software (“brain”) of a car dis-
engages automatically (automated) or the disengagement is initiated by the human driver
(manual). A crash report is a detailed rundown of events that resulted in a collision and/or
damage to property and injuries. These reports are filed by manufacturers conforming
to guidelines given by the CA DMV. Whilst there are few implicit fields and fewer data
points than typical crash datasets in the literature, it is the best accessible dataset because
of open-source availability. Additionally, these data represent the real-world scenario since
they comprehend the unprecedented crash causes, unlike microsimulation models. For
these reasons, we used CA DMV data, which have been used in a few recent studies [4–14].

This paper provides a detailed review of critical issues associated with crash severity
and develops a model for crash severity of AVs. Consequently, the model performance is
presented. Furthermore, a detailed review of the limitations of reporting protocol is dis-
cussed. Additionally, a comprehensive analysis of the DMV crash data and disengagement
data is performed, and expansion on previous studies’ conclusions is presented. This study
will aid AV manufacturers and actuarial organizations to evaluate the risks and associated
burden in an AV crash. Necessarily, this study also assists the policymakers in updating
the present reporting system. The following sections provide a literature review, study area
and data description, data analysis and crash model formulation, discussion, limitations,
and extension.

2. Literature Review

Before detailing the data and modelling exercise, it is essential to acknowledge
recent relevant literature concerning the focal topics of the research. The following
Sections 2.1 and 2.2 present a background to the development of crash severity models in
the AV landscape and the application of CA DMV data by other researchers.

2.1. Existing Crash Severity Models and Their Limitations in AV Deployed Scenario

Since the number and severity of crashes affect overall road safety, numerous studies
have investigated these measures. Existing crash severity models have been developed for
different combinations of dependent (outcome) and independent (explanatory) variables.
These studies can be clustered into three significant brackets: transport viewpoint, crash
analysis viewpoint, and medical viewpoint [15].

The transport viewpoint studies concentrated on transport-related explanatory vari-
ables, e.g., traffic (speed, flow, and density), road, and weather characteristics [16–19]. Some
of these characteristics are expected to alter with AV penetration, and existing severity
models need alteration. For instance, AVs are expected to manoeuver efficiently in platoons
with decreased headways resulting in different network throughput, compared to the
present scenario [20,21]. In addition, AVs’ negligible or absent reaction time stipulates
to revise roadway design manuals [4], e.g., implementation of taut turning radii because
of negligible minimum sight distances of AVs [21]. Additionally, road maintenance (e.g.,
repainting markings) could reduce the disengagements [6], affecting crash frequency and
severity. In CA DMV reports, Waymo and Mercedes specifically reported the weather as a
disengagement cause, indicating the pivotal association of weather and AV performance.
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The second category is the crash analysis [22–24] viewpoint, which focused on vehicle
characteristics such as vehicle’s mass, size, age, and facilities [25] and impact characteristics
such as impact speed, collision type, and angle of crash. Increase in manual/conventional
vehicle age is found to elevate crash severity [26]. It is speculative that AV hardware’s age
should elevate crash severity; however, the age of software (AV “brain”) should alleviate
crash severity since AV brains have more training data and have been exposed to a greater
variety of hazards. Additionally, an old study [27] evaluated the severity and frequency
of rear-end crashes for automated and human driver highway systems. They concluded
that automated systems are anticipated to collide at less than 30% of the velocity of the
human driver system. In addition, AV technology is competent in preventing all other
collision typologies except rear-end crashes [5]. These studies exhibit a change in crash
dynamics in the AV deployed environment, which stipulates the necessity of AV-focused
crash severity models.

The third category of researchers approached severity from a medical point of view.
A severity level (dependent variable) was quantified using the Abbreviated Injury Scale
and Injury Severity Score [26,28–30]. The exploratory variables encompassed are human
behaviour, demographics, and safety facility usage. Existing medical studies fail to incor-
porate a few issues, for instance, the “driver in the loop” concern in AVs. Automation
could make tasks more difficult by removing the easy parts of a task [31]. The out-of-loop
performance problems are a salient issue that has been widely documented as a potential
negative consequence of automation [32]. Drivers’ increasing trust in AV systems be-
comes disconcerting on the grounds of “driver in loop” concern [4], and thus new studies
examining this concern are vital.

2.2. Previous Studies Employing CA DMV Data

CA DMV data are the best open-source data available for external validation. Our
study attempted to use the crash data involving AVs to investigate the safety impact of
AVs on the transport system. To date, CA DMV data have been predominantly examined
for trends in disengagements, crashes, human trust and reaction time [4], crash frequen-
cies, dynamics, and damage analysis using crash reports [5], triggers and contributory
factors of disengagements [6], potential causal relationships between the crashes and dis-
engagements [9], and reliability of AVs by assessing the failures across a wide range of AV
manufacturers [8]. Table 1 provides a summary of past research utilizing CA DMV data,
including significant findings and insights.

Table 1. Summary of past studies employing CA DMV data.

Study Significant Findings/Insights

Dixit et al. (2016)

• The number of accidents observed has a significantly high correlation
with the autonomous miles travelled.

• Differences were observed in reaction times based on the autonomous
miles covered, disengagement type, and type of roadway.

• With an increase in the vehicle miles travelled, the reaction times
were increased, which proposes an increased level of trust with more
vehicle miles travelled. This is coined as the “trust effect”.

Favarò et al. (2017)

• Did not support the argument that the prototype (anthropomorphic
design) may be any “safer” (having a lower accident frequency) than
the other make currently tested by Google.

• Sixty-two percent of autonomous vehicle accidents are rear-ended type.
• The number of accidents observed is strongly correlated with the

autonomous miles travelled.
• Put forward the idea that plateau region of cumulative accident trend

as a function of cumulative miles will signify that the AV technology
is improving and getting close to “accident-free”.



Sustainability 2021, 13, 7938 4 of 22

Table 1. Cont.

Study Significant Findings/Insights

Favarò et al. (2018)

• Google Inc. adopted a distinction between two disengagement
modes: failure detection and safety operations. The two categories
can be tied back to the distinction between manual and automated
initiation. The proposed wording dissociates the cause of the
disengagement (failure detection and/or safety operations) from the
actual modality of occurrence (manual vs. automated). The study
stated that the definition provided by the DMV mixed these two.

• Proposed a distinction between exogenous and endogenous
contributory factors of disengagements as an additional mandatory
category that would need to be reported to the DMV.
Exogenous/external factors are factors outside the control of the
driver and/or manufacturer (e.g., weather, infrastructure condition,
outside traffic), while endogenous/internal factors can be acted upon.
The difference lies within the possible controllability of the factor.

Banerjee et al.
(2018)

• Drivers of AVs need to be equally vigilant as drivers of non-AV vehicles.
• With the widespread deployment of AVs, reaction-time-based

accidents would become a recurrent failure mode due to the small
size of the overall action window. Action window is the sum of
detection time and reaction time.

• Sixty-four percent of disengagements were the result of issues in or
inapt decisions made by the machine learning system.

• In terms of reliability per mission, AVs are 4.22 times worse than
aeroplanes and 2.5 times better than surgical robots. These findings
indicate that while individual modules of AV technology (e.g., control
systems, vision systems) may have fully developed, entire AV
systems are still in a “burn-in” phase.

Favarò et al. (2019)

• “Trust effect” put forward by [4] was argued to be premature in the
light of new data.

• Correlation between time to takeover and cumulative autonomous
miles driven per month was statistically insignificant, indicating no
improvement in trust with more experience.

• Correlation between the reported incidents per month and the
mileage driven was analysed to investigate the “learning effect” of
safety operation drivers, with seasoned drivers prone to negative
correlation (considering that the Waymo fleet has higher miles than
Mercedes-Benz).

Khattak et al.
(2019)

• Crash proportions between more recent and older tests were
compared. Results display no statistically significant change in crash
proportions over the two periods observed.

• Disengagements without crashes are more likely to be caused by
factors related to other road participants.

Xu et al. (2019)

• The property damage only (PDO) was taken as the reference level of
the dependent variable.

• Bootstrap-based binary logistic regressions models were developed to
investigate the factors contributing to the collision type and severity
of AV-involved crashes.

• Significant variables contributing to the severity level of AV-involved
crashes are driving mode, collision location, roadside parking,
rear-end collision, and one-way road.

• Rear-end and sideswipe crashes account for 57.5% and 28.8% of total
AV-involved crashes.

• Two vehicle movements were found to be a predominant occurrence
that may lead to crash: (1) stopped AV and proceeding straight
movement of conventional vehicle, (2) passing of following
conventional vehicles over the ahead CAV vehicles.
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Table 1. Cont.

Study Significant Findings/Insights

Boggs et al. (2020)

• Fixed and random parameters binary logistic regression models were
developed for disengagement initiation. Location (highway or street),
cause (environmental, another road user, hardware or software
discrepancy, and planning discrepancy), and maturity of testing
(month of testing) were found to be significant. The marginal effects
of each explanatory variable were also illustrated. A random
parameter model was found to be a better fit for the data.

• ADS testing maturity parameter emphasises that as the maturity of
the testing increases by a month, the probability of a disengagement
being initiated by ADS increases by 0.014. Unobserved heterogeneity
is accounted for by encompassing the random parameter. The model
underlines essential information that would cause inappropriate
interpretations if the random parameter is not used. For example, the
“trust” effect argued by (Dixit et al. 2016).

Wang et al. (2020)

• Statistical analysis was applied for AV accidents on public roads,
where over 3.7 million miles were tested by various manufacturers
from 2014 to 2018.

• Results show that disengagement frequency varied from 2 × 10−4 to
3 disengagements per mile.

• Between 2014 and 2018, 63% of accidents were caused in autonomous
mode, and roughly 6% were AVs, with 94% of accidents were by
other parties.

• Most accidents are caused by other parties, and alerting and avoiding
safety risks can improve safe decisions to prevent fatal accidents.

Das et al. (2020)

• Bayesian latent class model identified six classes that correlated based
on different variables and collision traits. Such variables included
collision type, vehicle damage, operator injury severity, lighting
conditions, number of vehicles involved, weather conditions, event
prior to the collision, and if the vehicle was moving or stopped.

• Higher proportion of injury severity level was found to associate with
turning, multi-vehicle collisions, sideswipe and rear-end collisions,
and dark lighting conditions with streetlights.

• A higher likelihood of adverse weather-related accidents whilst the
vehicle was in autonomous mode and stopped.

• The authors stated that there is a need for more advanced and robust
collision narrative reporting to better assess collision likelihoods of
autonomous vehicles.

Khattak et al.
(2020)

• Nested logit model was used with: (1) disengagement with a crash,
(2) disengagement with no crash, and (3) no disengagement with a
crash. Endogenous switching regime models were further used to
find relationships of disengagements and crashes with consideration
to endogeneity effects.

• Results found that factors relating to AV systems and other roadway
participants increase the tendency of disengagement without a crash.
Moreover, it was observed that disengagements lessen over time.

• Authors posited that disengagements are a part of AVs’ safe
performance, and disengagement warnings should be used to avoid
certain failures with current technology.

Building on the findings presented in Table 1, the novelty of our study was the
investigation of the contributory and explanatory factors of AV damage crash severity and
formulation of the AV crash damage severity model. Additionally, this study exhibited the
dissonant implications of disengagement trends and proposed recommendations based on
the rationales.
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3. Study Area and Data Description
3.1. Study Area

CA DMV disengagement reports summarize failure events, categorized as autonomous
disengagement or manual disengagement, albeit the distinction between these categories
is implicit [6]. Our study used Google disengagement data because Google contributed
63.04% of total autonomous miles travelled (including 2019). Additionally, these data
provide comprehensive details of disengagement events as compared with other manu-
facturers. On the other hand, the crash reports are a detailed description of the events
that incurred property damage or injuries. From 2018, a new category of “vehicle damage
description” has been appended in the crash reports. The vehicle damage description is
perceived damage by the manufacturer’s authorized representative and hence not explicit.
The data used in this study are the DMV disengagement and crash reports and Google
traffic data. AV testing is permitted in San Francisco and San Jose cities in Silicon Valley,
California, and the crash locations are mapped in Figure 1.
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3.2. Data Description

A brief description of all the variables used in developing the AV damage severity
model is presented in Table 2. Further, details of the data explicitly used during the
modelling process are discussed in Section 4.3.1. A few important notes regarding the
dataset are mentioned below.

• The observed damage severity levels sustained by autonomous vehicles during the ex-
amination period have the following distribution: no damage (7.14%); minor damage
(71.43%); moderate damage (20.41%); major damage (1.02%).
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• The kinetic energy of a crash plays a crucial role in gauging crash severity [33,34]. The
relative velocity of vehicles involved in the crash is missing for 176 out of 259 incidents.

• Vehicle type is the representation of vehicle size derived from the vehicle model stated
in the reports. “Two wheels” type refers to vehicles with two wheels such as bikes,
motorcycles, and scooters. Subcompact and compact cars are slightly smaller than
mid-size cars with an inside volume between 2.4 m3 and 3.1 m3 by combining cargo
and passenger volume. Mid-size vehicles are identified as possessing an interior
volume of between 3.1 m3 and 3.4 m3. The last category is large vehicles, which
represents trucks and buses in this study.

Table 2. Descriptive statistics of variables.

Variable Type Definition Descriptive Statistics

Vehicle number Categorical Number of vehicles involved
F(1) = 5%
F(2) = 92%
F(3) = 3%

Intersection Categorical = 1 if crash location was intersection;
= 0 otherwise

F(0) = 37%
F(1) = 63%

Signalized Binary = 1 with signals; = 0 without F(0) = 51%
F(1) = 49%

Parking provision Binary = 1 with parking provision;
= 0 without or no information

F(1) = 56%
F(0) = 44%

Mode Binary = 1 autonomous;
= 0 conventional

F(1) = 54%
F(0) = 46%

Fault Binary = 1 AV at fault; = 0 not at fault
F(1) = 12%
F(0) = 88%

AV status Binary = 1 moving; = 0 stopped F(1) = 57%
F(0) = 43%

Other party’s vehicle status Binary = 1 moving; = 0 stopped F(1) = 95%
F(0) = 5%

Vehicle type Categorical

= 1 two wheels (i.e., bicycle, scooter); F(1) = 12%
= 2 sub-compact/compact cars; F(2) = 41%
= 3 mid-size cars; F(3) = 36%
= 4 trucks/buses/trailers F(4) = 12%

Collision type Categorical

= 1 head-on; F(1) = 6%
= 2 sideswipe; F(2) = 21%
= 3 rear-end; F(3) = 62%
= 4 others F(4) = 11%

Intersection type Categorical

= 0 straight road F(0) = 9%
= 1 Y-intersection F(1) = 11%
= 2 T-intersection F(2) = 15%
= 3 Cross intersection F(3) = 59%
= 4 Complex intersection F(4) = 5%

4. Data Analysis and Crash Model Formulation

CA DMV data from 14 October 2014 to 15 June 2020 were used for crash analysis and
developing crash damage severity model. For disengagement analysis, we utilized CA
DMV reports from 2014 to 2019 since disengagement reports were not available for 2020 at
the time of this study. Testing was halted for a while due to the COVID-19 pandemic, and
hence 2020 data were not considered for disengagement.
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4.1. Crashes

The main concern regarding the adoption of AVs has been based on the grounds of
safety. In this section, we perform an in-depth analysis, revisit some of the results, and
expand on what was concluded in previous studies [4,5].

Figure 2 exhibits the distribution of crash typologies. Table 3 shows the distribution
of crash typologies, driving mode, and party at fault. There were just two crash events
where the AV was on autonomous mode and found to be at fault, highlighting the dearth
of data related to at-fault AV crashes. In 88.42% (229/259) of all cases, the other party was
found to be at fault. Within these cases, 52.90% (137/259) of the time the AV was found to
be in autonomous mode. Of total crashes, 61.78% (160 out of 259) were rear-ended. Among
these 160 rear-end cases, on 103 occasions, AV was on autonomous mode and not at fault.
Rear-end crashes were the most prevalent (105 out of 160) of all the crashes when the AV
was on autonomous mode. Authors posit that the dissonant and incompatible reaction
time of AV and a human driver in a conventional car was the cause of several rear-end
crashes. AVs are very efficient in avoiding collision with the leader (none or negligible
reaction time involved). However, follower non-AV drivers cannot react efficiently and
thus bump into the leader AV, which was postulated by [5]. Consequently, there is a need
to revisit roadway design manuals and safety manuals, which still use the reaction time
values determined empirically for manually operated vehicles [4]. Additionally, during
location examination, 143 out of 259 rear-end crashes occurred at an intersection, and 83 of
them were signalized. The cause of multiple rear-end crashes at signalized intersections
could be attributed to the AVs’ homogenous translation of amber light time to green and
the heterogeneity of this aspect by human drivers [35].
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Table 3. Distribution of crash typologies, driving mode, and at-fault party.

Rear-End Crashes:
Mode

Total
Conventional Autonomous

Number of rear-end crashes 47 103 150

Number at fault 8 2 10

Percentage of total rear-end
crash with AV at fault 5.333% 1.333% 6.667%

Sideswipe Crashes:
Mode

Total
Conventional Autonomous

Number of sideswipe crashes 24 23 47

Number at fault 6 2 8

Percentage of the total sideswipe
crash with AV at fault 12.77% 4.26% 17.02%

Sideswipe crashes with AV on autonomous mode constitute half of the sideswipe
crashes. Out of 55 sideswipe crashes, the AV was found at fault in only 8 cases. However,
in 6 out of these 8 incidents, the AV was not on autonomous mode; thus, the incidents
occurred while the driver was manually operating the vehicle. Rear-end collisions (62.55%)
and sideswipes (20.46%) make up nearly 83.01% of recorded crashes. There are less than
5.79% (15/259) of crashes categorized as head-on. This is consistent with the previous
study [5], which stated that AV technology can prevent all other crash typologies effectively,
leaving rear-end collisions with AV as the most crucial failure scenario to be addressed.
The Insurance Institute for Highway Safety (IIHS) notes that head-on crashes accounted for
56% of motor vehicle deaths, and 42% of deaths were caused by rear-end and side-impact
accidents [36]. Thus, as AV technology can alleviate head-on collisions, it will have a
positive effect on road fatality rates, a significant advantage for overall road safety.

4.2. Disengagements

Before presenting the disengagement analysis, it is essential to define some key terms.
Dixit et al. (2016) stated that the AV disengagements could be initiated manually by the
driver or autonomously. This distinction is crucial from a safety standpoint. Manual
disengagements are cautionary in nature; for instance, if a driver feels uncomfortable in a
specific situation and/or adopts a proactive approach to prevent a potential autonomous
disengagement. On the other hand, automated disengagements represent a design limita-
tion of the car and constitute a potential safety concern for the consumer and the general
public. Google Inc. categorizes disengagements into two categories: Failure detection and
safety operations. This study assumed that failure detection and safety operation indicate
autonomous and manual disengagement, respectively. This ambiguous terminology is
one of the limitations of this study; nevertheless, it is a sensible assumption for producing
relevant and valuable disengagement trends.

Previous studies stated that the number of crashes observed is highly correlated
with the autonomous miles travelled. The cumulative accident trend as a function of
cumulative miles can reach a plateau. This plateau will signify that the AV technology
training has been effective and is approaching a “crash-free” status with the more miles
travelled [5]. Similar conclusions can be derived from the cumulative disengagements trend
as a function of cumulative miles [6]. However, this theory can be contended as the road
environment evolves with differing infrastructure, technology, and vehicle composition.
More importantly, how humans interact with AVs is also changing; this is described in
more detail in the following paragraph.

Figure 3 represents the plot of cumulative disengagements with cumulative miles.
The blue-coloured plot represents the trend of manual disengagements, and the orange-
coloured plot represents automated disengagements. The slope of the automated disen-
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gagement curve approaches zero (the curve plateaus) as the number of cumulative au-
tonomous miles increases. Assuming that cumulative autonomous miles serve as a proxy
for time/experience, we can infer that automated disengagement events are dropping
and approaching zero with time/experience. Since automated disengagements indicate
a design limitation and the system performance of the AV, we can infer that the system
performance of AV is improving, and the AV “brain” can handle driving tasks, which were
intractable before.
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Additionally, the non-decreasing slope of the manual disengagement curve indicates
relative consistency in the degree of manual disengagement; in fact, the curve indicates that
the rate of disengagement increases slightly as the cumulative autonomous miles increase.
“Trust effect” can be defined as a phenomenon where the driver’s reliance on technology
increases with increased miles driven, attributed to an increase in driver’s trust in the AV
system [4]. Since manual disengagements initiated by the driver are cautionary in nature
(manual disengagements can be potential automated disengagements that were avoided
by quick and brisk action of safety operation driver), the trend implies no improvement
in trust of drivers in AVs, and the “trust effect” may not be present in the light of new
data. This implication is based on the conjecture that the set of potential automated
disengagements and set of manual disengagements are mutually exclusive (A∩ M = φ,
where A is the set of potential automated disengagements and M is the set of manual
disengagements). Alternatively, the above trends can also be explained on the grounds of
drivers increasing acquaintance. The underlying assumption for this implication is that a
set of manual disengagements is a proper subset of potential automated disengagements
(M ⊆ A). With more experience (cumulative autonomous miles) with the system, drivers
can anticipate the potential intractable situations and decide to exercise caution and hence
initiate manual disengagement. As a result, the number of automated disengagements
decreases, despite no inordinate improvement in AV technology. Authors propose that in
reality, the set of potential automated disengagements and set of manual disengagements
are not mutually exclusive A ∩ M 6= φ. In addition, the set of manual disengagements
is not a proper subset of potential automated disengagements, and in reality, the sets are
situated somewhere between two extremes. These postulations can be revised in the light of
new and improved data since manufacturers are implicitly and not clearly reporting events
resulting in ambiguity. A recommendation from this study is that manufacturers should
provide camera and sensors data at the time of the critical event for clarity. Furthermore,
the research also supports the development of a driver survey that could be issued with
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current reporting requirements. Ultimately, it is essential for the CA DMV to include the
cause of the disengagement, given that the crash occurred after a disengagement. These
recommendations were also proposed in the previous study [6]; however, this was based
on a different argument. The study categorized disengagements into macro (human factors,
system failures, external conditions, and others) and micro categories. The study found
that Tesla’s disengagement falls under the “others” category, indicating the necessity of
providing a detailed explanation. Further, the study observed that Mercedes-Benz primarily
reports human factors-related disengagement and recommends other manufacturers report
contributory factors. Lastly, a reporting protocol similar to what is used in the aviation
industry is recommended to enhance consistency.

4.3. Models
4.3.1. Methodology and Data Brief

The crash model developed in this study considered a binary dependent variable
signifying the crash and 15 independent variables which are also referred to as features. The
dependent variable has two categories: 0 stands for crashes with no injury and 1 for crashes
with an injury. The authors investigated the data and discovered a few complications.
Firstly, all the independent variables are categorical, and the sample size corresponding
to each category is small. Additionally, there is a disparity in sample size in each class.
The number of samples in classes 0 (no injury) and 1 (injury) are 224 and 35, respectively.
This raises the problem of skewed distributions of a binary task known as an imbalance.
The total sample size is 259, with 15 explanatory variables (features) after removing rows
with empty entries. The independent variables are primarily associated with the AV, other
party’s vehicle, traffic conditions, and roadway features stated in the CA DMV crash
reports. The Shapiro–Wilk ranking [37] was used to rank features and is presented in
Figure 4a. This ranking assisted in selecting the crucial features in the model. The variable
names are presented in Appendix A.2.

To handle the imbalanced data, we used stratification while dividing the data into
training and testing sets. The stratification preserves the percentage of samples for each
class. Two models were developed: model excluding relative velocity as a feature and
model including relative velocity since the sample size is different. Out of 200 instances,
only 68 instances were reported with relative velocity. The class balance of respective
models is presented in Figure 5a,b. Further, we provided class weights in the models,
which adjust weights inversely proportional to class frequencies in the dataset. One of
the elementary ways to address the class imbalance is to provide a weight for each class.
This provides more emphasis on the minority classes such that the end result is a classifier
that can learn equally from all classes [38]. Class weight uses the formulae presented in
Equation (1).

nsample

nclasses × np.bincount(y)
(1)

where nsample is the number of samples (259), nclasses is the number of classes, and
np.bincount(y) counts the number of occurrences of element y.

The model performance is gauged by accuracy, but in the case of class imbalance,
accuracy might not be the best representation of the performance of the model. Considering
a user preference bias towards the minority class examples, accuracy is not suitable. If
the bias is neglected, the impact of the least represented but more important examples is
reduced when compared to that of the majority class [39]. Therefore, balanced accuracy is
reported, which performs better with imbalanced data. False positive (FP) or type 1 error
means there was an injury, but the model reported no injury, and false negative (FN) or
type 2 error indicates that there was no injury recorded, but the model predicted an injury.
Precision TP

TP+FP and recall TP
TP+FN are both important in model evaluation. Inevitably,

higher values in FP can be dangerous and hence deploy more importance to the precision
metric ( TP

TP+FP ) rather than recall. Consequently, the authors proposed to use modified
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F1 score similar to previous studies [40], presented in Equation (2), for evaluating the
performance.

Fβ =
(

1 + β2
)
× precision× recall

β2 × precision + recall
(2)

where Fβ is the modified F1 score, and β is a parameter; when 0 < β < 1, more emphasis
is put on precision, and when β > 1, recall is given priority. Precision is defined as
the percentage of results that is relevant, while recall is the percentage of total relevant
results retrieved by the algorithm. This research uses a β of 0.5 to put more weighting
on precision as it utilizes FP, and as aforementioned, FP is a crucial aspect in assessing
model performance. Resampling is another technique widely used to handle imbalanced
data. Khattak et al. (2020) resampled the data by oversampling the two minor classes and
under-sampling the major category for balancing the dataset. However, they concluded
that this dataset did not provide satisfactory results in comparison to the original data.
The methodology applied for this study is presented in the flowchart shown in Figure 6.
Appendix A.3 presents more information about the methodology.
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4.3.2. Crash Severity Model

Crash severity models were developed using the DMV data and new extracted vari-
ables such as vehicle type. The most conservative model was selected as the final model.
The confusion matrix and metric of the best-performing model based on modified F1 are
presented in Table 4. The results for the lesser performing models used are provided in
the appendix (refer to Appendix A.1). Models were developed using pre-built libraries
available [41,42]. Feature importance was evaluated to rank them based on their in-model
performance and is presented in Figure 4b. A bagging classifier was applied and used base
estimators; in this case, the decision tree was used as a base estimator. Model-independent
methods were used for computing feature importance. In the case of decision trees as
base estimators, feature importance was computed by taking the average of tree’s fea-
ture importance among all trees in bagging estimators. Lastly, the precision–recall curve
was used because there was a moderate to large class imbalance [43] and is presented in
Appendix A.4.
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Table 4. Severity model.

Confusion Matrix Balanced Accuracy Precision Recall Modified F1 Score
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Vehicle 1 damage and Vehicle 2 damage rank high in feature importance, presented
in Figure 4b, which is unequivocal. It is highly likely that if the vehicles are damaged
to a higher degree, the passenger might get injured. The intersection geometry and
intersection management (signalization) are essential features exhibited by rank in feature
importance. Additionally, 143 out of 259 rear-end crashes occurred at an intersection,
and 83 of them were signalized, indicating that signalized intersections are a hotspot for
crashes. As mentioned previously, an explanation could be that the percentage of amber
light time translated as green by AVs and human drivers is incongruous, resulting in
crashes (idealistic behaviour of AVs.). These results highlight the importance of details
such as the lantern state at the time of the crash, and signal phasing should be provided
within the reporting. Road type is another factor that is ranked highly. It is clear that
road infrastructure elements play a crucial role in the severity and require immediate
attention from a transport engineering perspective. It is further recommended that these
reports also have additional information such as camera images and Lidar cloud points
to assess the dynamic location characteristics such as traffic lights, parking occupancy,
advertising structure, etc. Rich AV datasets available [44–47] currently fail to provide data
of critical events.

Figure 7a shows the relative speed values for each category of severity. The severity
categories used are the same as in the original crash reports, which are different from the
developed crash severity model. The graph indicates that higher levels of severity are
related to higher relative velocity values. Previous studies also showed that relative velocity
is an important explanatory variable for predicting crash severity [34] and can be useful
for predicting injury. Relative velocity was used as one of the explanatory variables during
model formulation, but it decreased the sample size (83 instances). Out of all the manu-
facturers, only a few reported the relative velocity. Additionally, collision type is ranked
high in feature importance. The authors recommend the CA DMV includes mandatory
fields such as relative velocity, time-to-collision, and post-encroachment time to get better
insights into the severity of the crashes. The non-parametric distribution was estimated
using a Gaussian kernel function calculated using [48] and is presented in Figure 7b. The
figure illustrates that the relative velocities during a crash are generally below 15 miles per
hour (lower values), indicating less severe accidents. Consequently, another model was
developed, including relative velocity as one of the explanatory variables. The training
and testing data class balance is provided in Figure 5b. Logistic regression was developed
using the features based on feature ranking (Figure 4) and best parameters.
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The solver used for the model was LIBLINEAR, and the penalty was L2 [42]. The
explanatory variables used were “Vehicle Type”, “Road Type”, “Intersection”, “Intersection
Geometry”, “Parking Provision”, “Mode”, “Vehicle1 Status”, “Vehicle1 Damage”, “Vehi-
cle2 Damage”, “Signalized”, and “Relative Speed”. The model performance was found
to be weak with a balanced accuracy of 0.46 and confusion matrix [[11 1], [2 0]]. Further,
incrementally trained logistic regression and logistic regression with cross-validation were
also developed [42]. Nevertheless, these models also indicated poor model performance.
As mentioned in Section 2, the severity can be gauged from three perspectives: transport
viewpoint, vehicle damage viewpoint, and medical viewpoint. Relative speed is consis-
tently considered a salient explanatory variable in all the three abovementioned assessment
perspectives. Nevertheless, manufacturers are not reporting this critical variable due to
optional and voluntary reporting of relative speed. Due to the lack of enough sample size,
the model performed poorly when relative velocity was included.

5. Concluding Remarks and Future Work

Since automated disengagement events reduce and approach zero with time/experience,
we can infer that the system performance of AV is improving, and the AV “brain” can
handle driving tasks, which were intractable before. Additionally, the data reveal that there
has been no reduction in manual disengagement events implying no improvement in the
trust of humans with regards to AV technology. An alternate explanation for these trends
is that with more experience (cumulative autonomous miles) drivers have with the system,
they can anticipate the potential intractable situations better. In these scenarios, the driver
decides to exercise caution and hence disengages the vehicle. With greater experience, the
test drivers are actively shifting between autonomous and manual driving as they can
better anticipate scenarios that AVs cannot negotiate.

Consequently, there is a decrease in automated disengagements, yet no inordinate
improvement in AV technology. Additionally, increased disengagement frequency could
mean that the manufacturer has broadened the conditions/scenarios in which the car is
tested [6]. This explains the subsidence in plateauing in the graph of Figure 3. Using similar
reasoning, it can be stated that any conclusions on technological improvement based on cu-
mulative disengagements with cumulative miles plots are prone to indiscretion. As a result,
the authors recommend averting from this approach to infer the findings of technological
advancement and argue that the results in previous studies are premature. Furthermore,
the authors also recommend the CA DMV includes mandatory spatial information in their
reporting system.

The previous study by Xu et al. (2019) attempted to use the DMV data. The study
investigated property damage only (PDO) and non-PDO crashes. They found that roadside
parking, crash typology (rear-end or not), and the application of one-way roads were
significant. The class imbalance of data was not considered by Xu et al. (2019), which is
necessary. Additionally, the authors opine that a clear distinction between road parking
provision and actual parked vehicle during the crash should be made. This was a limitation
for Xu et al. (2019) and the current study. This reinforces the recommendation of appending
image data at the crash locations (critical events). Additionally, further crash data must
be collected to avoid any premature results due to limited data points. Consequently,
the authors recommend extending this study with new data continuously collected and
appended to the database.

Psychological attributes such as the risk attitude of the drivers could play a vital role
in the control of AVs but are not available in the reports [49]. These would reveal other
significant variables governing the damage severity. Therefore, developing a driver survey
and issuing it along with the current reporting mechanism are also recommended. The
crash severity field in the CA DMV reports fails to indicate the assessment outlook used to
gauge severity level. The authors recommend using a specific assessment tool for potential
vehicle crash damage, as stated in this study [50]. Such tools are utilitarian as their aim
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is to automatically make a decision for autonomous vehicles, which decide in a specific
accident scenario, which type of crash is the least detrimental.

The ambiguous terminology of manual and automated disengagements because of
implicit data is one of the limitations of this study. Regardless, rational assumptions
are made for producing acceptable interpretations. Since the crash data are considered
over a prolonged period, the time-varying explanatory variables may change significantly.
Neglecting latent within-period variation may result in the loss of crucial explanatory
variables. This loss of information using discrete-time intervals can institute error in
model estimation because of unobserved heterogeneity [51]. Although this study provides
valuable insights into AV crashes, the advancement of this technology may change the
currently observed trends [14]. Additionally, using data collected over prolonged periods
can also bring temporal instability to the crash severity models. The study can be improved
in the future by considering temporal elements. Temporal elements can play a salient
role in explaining accident trends [52]. They are typically overlooked which can lead to
inaccurate and unreliable results [53]. In the future, the period for data collection can be
long (over a decade). Different models can be developed for different periods instead of a
single model due to temporal instability [54].

The authors identified that the available data lacked consistency. For example, crash
severity levels required further processing; therefore, it is recommended that the DMV
standardize data for future use.

Furthermore, improved, explicit, detailed, and increased quantities of data will in-
evitably produce credible and well-founded interpretations. For instance, if data from more
locations (say different countries representing different driver behaviour) are available,
the models could incorporate the explanatory variables such as human demographics
and safety facilities (namely, medical viewpoint crash studies). This study captured the
driver–AV interaction and the AV–conventional vehicle interaction. Due to limited data,
it did not account for AV–AV interactions. For further investigation of the severity of
AVs’ accidents, more research is required to explore AV–driver, AV–infrastructure, and
driver–surrounding environment interactions, which are salient factors responsible for
many crashes.

Lastly, the authors also propose that the testing location is a crucial factor that needs to
be accounted for. The number of autonomous miles is a proxy for experience for a particular
location. Due to the diverse nature of road infrastructure and driver behaviour in different
parts of the world, it is not possible to generalize these empirical findings. It is clear from
this research and that of Das et al. (2020) that there is a fundamental requirement for more
advanced and robust collision narrative reporting to better assess collision likelihoods of
autonomous vehicles.
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Appendix A

Appendix A.1. Performance Comparison of Different Models

Table A1 presents the performance of different models. Bagging classifier and random
forest have similar performances, and the final model is selected based on the best adjusted
F1 score.

We attempted to choose the most conservative model. In this study context, false
negative (type II error) is the event where there was an actual injury, but the model
predicted no injury. The most conservative model should have the minimum number of
false negatives. The true positives and false positives are the same in both the bagging
classifier and random forest. Therefore, the final model selection was made based on false
negatives, and the bagging classifier has fewer false negatives (4 < 5). Furthermore, it has a
better adjusted F1 score as well.

Table A1. Performance of different models.

Models Balanced
Accuracy Confusion Matrix Evaluation Metric

TP FP FN TN FPR FDR FOR Precision Recall F1 Adjusted
F1 Score

Decision Tree 0.62 32 3 4 2 0.60 0.09 0.67 0.91 0.89 0.45 0.91

Decision Tree
with Weights 0.51 30 5 5 1 0.83 0.14 0.83 0.86 0.86 0.43 0.86

Bagging Classfier 0.65 34 1 4 2 0.33 0.03 0.67 0.97 0.89 0.47 0.96

Balanced Bagging
Classifier 0.59 24 11 3 3 0.79 0.31 0.50 0.69 0.89 0.39 0.72

Random Forest 0.57 34 1 5 1 0.50 0.03 0.83 0.97 0.87 0.46 0.95

Balanced Random
Forest Classifier 0.38 21 14 5 1 0.93 0.40 0.83 0.60 0.81 0.34 0.63

Easy Ensemble
Classifier 0.73 16 19 0 6 0.76 0.54 0.00 0.46 1.00 0.31 0.51

RUSboost Classfier 0.73 22 13 1 5 0.72 0.37 0.17 0.63 0.96 0.38 0.67

Extra Trees Classifier 0.62 32 3 4 2 0.60 0.09 0.67 0.91 0.89 0.45 0.91

In the above table, TP = true positive; FP = false positive; FN = false negative; TN = true negative; FPR = false positive rate; FDR = false
discovery rate; FOR = false omission rate.

Appendix A.2. Variables Used in the Modelling

Table A2 lists all the variables used in the modelling exercise. Details are presented in
Table 2.

Table A2. Variables used in the modelling.

Vehicle Type Vehicles Involved Collision Type

Road Type Mode Vehicle1 Damage

Intersection Vehicle1 Status Vehicle2 Damage

Intersection Geometry Vehicle2 Status Signalized

Parking Provision Fault Relative Speed
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Appendix A.3. Methodology

This section provides additional details for Section 4.3.1. Skewed distributions of a
binary task known as imbalance were found in the data. Stratification is used to handle
the distribution of training and testing datasets and prevents sampling bias. Stratification
preserves the percentage of samples for each class, which enables creating a test set with
a population that best represents the original data. Sampling bias is an issue that occurs
when testing a model. Model performance can be poor as test data are not representative
of the whole population. Sampling bias is often observed because specific values of the
variable are underrepresented or overrepresented with respect to the true distribution of
the variable. Stratification, to prevent sample bias, is achieved by splitting the data into
strata. The right number of instances are then sampled from each stratum to guarantee
that the test set is representative of the original data. The next step is the training and
development of the model. Most learning algorithms are incompetent with imbalanced
data (biased class data). The training algorithm can be modified by providing different
weights to the majority and minority classes. During the training, more weightage is given
to the minority class in the cost function of the algorithm. Hence, it will provide a higher
penalty to the minority class, and the algorithm can emphasize decreasing the errors for the
minority class. Class weight uses the formulae presented in Equation (1). For our data, 259
is the number of samples (nsample) and there are two classes (nclasses), and np.bincount(y)
counts the number of occurrences of element y. Model selection is the next step after
extracting the training and testing data.

For this study, the bagging classifier was found to be the best performing model for
this data. Bagging [55] is a “bootstrap” [56] ensemble method that generates individuals
for its ensemble by training each classifier on a random redistribution of the training set.
It fits every base classifier on random subsets of the original dataset and then aggregates
their individual predictions (either by voting or by averaging) to form a final prediction. In
this study, we used a decision tree as our base estimator. Each classifier’s training set is
generated by randomly drawing, with replacement, N examples, where N is the size of the
original training set. Each classifier in the ensemble is generated with a different random
sampling of the training set. Bagging classifier can reduce overfitting. It is deployed to
decrease the variance of a base estimator (e.g., a decision tree) by introducing randomization
into its construction procedure and then making an ensemble out of it. Details of the basic
setup of the bagging classifier are presented in Table A3.

Table A3. Basic setup parameters of the bagging classifier method.

Parameters Assignment

Base Estimator Decision Tree Classifier

n_estimators (the number of base estimators in th ensemble) 20

random_state 0

max_samples, max_features, bootstrap, bootstrap_features,
oob_score, warm_start, n_jobs, verbose Default values as in [42]

Accuracy might not be the best representation of the performance model in biased
class data due to user preference bias towards the minority class examples [57]. Balanced ac-
curacy is a metric that one can use when evaluating the classifier’s performance, especially
when the classes are imbalanced. Sensitivity, which is the true positive rate (also known as
recall), and specificity, which is the true negative rate (also known as false positive rate),
are used to define balanced accuracy. Balanced accuracy is simply the arithmetic mean of
the two as presented in Equation (A1).

Balanced accuracy =
Sensitivity + Specificity

2
(A1)
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Along with balanced accuracy, a modified F1 score is also used to evaluate the model’s
performance. FN indicates that there was no injury recorded, but the model predicted an
injury, and FP means there was an injury, but the model reported no injury. Higher values
in FP can be dangerous and hence deploy more importance to the precision instead of
recall. Consequently, a modified F1 score, presented in Equation (2), is used to assess the
model performance.

Appendix A.4. Precision–Recall Curve

Figure A1 presents the precision–recall curve for the bagging classifier.
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