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Abstract—This paper studies the spectrum allocation prob-
lem between spectrum service providers (SSPs) and termi-
nals equipped with orthogonal frequency division multiplexing
(OFDM) integrated radar and communication (IRC) systems. In
particular, IRC-equipped terminals such as autonomous vehicles
need to buy spectrum for their radar functions, e.g., sensing
and detecting distant vehicles, and communication functions,
e.g., transmitting sensing data to road-side units. The terminals
determine their spectrum demands from the SSPs subject to their
IRC performance requirements, while the SSPs compete with
each other on the service prices to attract terminals. Taking into
account the complicated interactions, a hierarchical Stackelberg
game is proposed to reconcile the spectrum demand and service
price, where the SSPs are the leaders and the terminals are
the followers. Due to the spectrum constraints of the SSPs,
we model the lower-layer subgame among the terminals as a
generalized Nash equilibrium problem. An iterative searching
algorithm is then developed that guarantees the convergence to
the Stackelberg equilibrium. Numerical results demonstrate the
effectiveness of our proposed scheme in terms of social welfare
compared to baseline schemes.

Index Terms—Integrated radar and communication, spectrum
allocation, Stackelberg game, incentive mechanism, pricing.

I. INTRODUCTION

Automation in the logistic by using autonomous terminals,
e.g., autonomous vehicles or robotic cars, has gained the
global market over the last decade. The market is expected to
reach a staggering $81 and $290 billion in 2030 and 2040,
respectively [1]. One major advantage of the autonomous
vehicles is able to navigate and move efficiently and safely
in diverse and complex environments with little or without
human intervention. For this, the autonomous terminals need
to be equipped with integrated radar and communication (IRC)
systems. The radar function is to sense and detect surrounding
circumstances, e.g., distant vehicles, and the communication
function is to transmit sensing data to aggregation units, e.g.,
road-side units, for further processing.

The radar function is typically based on wideband spectrum
techniques, and the sensing data transmitted by the communi-
cation function has a large size. Therefore, the IRC-equipped
terminals require a huge amount of spectrum from spectrum
service providers (SSPs) to simultaneously perform the radar
function and the communication function. To motivate the
SSPs and the IRC-equipped terminals to participate in the
spectrum market, incentive mechanisms need to be designed
for the spectrum trading to improve the utility of both the
SSPs and the terminals. Although there are several incentive
mechanisms proposed for the spectrum trading, they are not
designed for the spectrum market with IRC-equipped terminals

to guarantee the performance of both radar and communication
functions. For example, an incentive mechanism based on
the Stackelberg game was proposed in [2], but it is for the
spectrum trading between the SSPs and mobile users in 5G
networks. Other examples are the use of the non-cooperative
game for the spectrum trading between the SSPs and regular
vehicles, i.e., vehicles are equipped with communication func-
tion [3] or for an opportunistic spectrum access among regular
vehicles [4]. Recently, a pricing-based incentive mechanism
has been proposed in [5] for a joint radar and communication
system, but it mainly focuses on addressing the interference
issues for joint radar and data communications.

In this paper, we study the spectrum trading problem
between the SSPs and IRC-equipped terminals such as au-
tonomous vehicles. In the problem, the SSPs compete with
each other by optimizing their service prices to maximize
their own utility and attract more terminals. Given the prices
offered by the SSPs, the terminals determine their optimal
spectrum demands that maximize the terminals’ utility while
guaranteeing their IRC service requirements, i.e., radar and
communication performance. The interactions between SSPs
and terminals are modeled by using the Stackelberg game
to find the optimal set of prices/spectrum demands, i.e.,
equilibrium among entities. Stackelberg game has been widely
applied to address many issues in wireless networks such as
interference control and resource management [6], [7]. To
maximize the utility of both the SSPs and the terminals,
we propose a hierarchical Stackelberg game to model the
interactions among the SSPs and terminals. The SSPs offer
the spectrum resources and set the resource prices first, and
then the terminals determine their spectrum demands. Thus,
in the game, the SSPs are the leaders, and the terminals are
the followers. In particular, the SSPs compete with each other
in the upper-layer subgame by determining their optimal spec-
trum prices, and the terminals compete with each other in the
lower-layer subgame by determining their optimal spectrum
demands. Given the spectrum constraint of each SSP, it may
be difficult to find the Nash equilibrium (NE) of the lower-
layer subgame among the terminals. For this, we reformulate
the lower-layer subgame as a generalized Nash equilibrium
(GNE) problem. Due to the unobtainable closed-form solution
in the lower-layer subgame and the linearity in the upper-layer
subgame, we develop an iterative SE searching algorithm that
efficiently determines the optimal solution, i.e., the Stackelberg
equilibrium (SE), of the game. Numerical results demonstrate
the effectiveness of our proposed scheme in terms of social
welfare compared to baseline schemes.
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Fig. 1. An example of hierarchical Stackelberg game in the presence of
multiple SSPs and multiple AVs.

II. SYSTEM MODEL AND GAME FORMULATION
A. System Model

We consider a spectrum market that consists of
set of M IRC-equipped terminals, denoted by M
{1,...,m,..., M}, and a set of N SSPs, denoted by N =
{1,...,n,...,N}. Each SSP n has L,, orthogonal subcarriers
for trading to the terminals. The orthogonal subcarriers can
be used by the terminals to modulate orthogonal frequency-
division multiplexing (OFDM) symbols. The subcarrier spac-
ing Af between two consecutive subcarriers is equal in all
SSPs’ spectrum, where Af = 1/T with T being the duration
of OFDM symbol. The entire bandwidth of SSP n is thus equal
to B, = AfL,. Denote b, ,, as a set of subcarriers that SSP n
allocates to IRC-equipped terminal m for activating both radar
and communication functions. Thus, |b,, ., | is then equal to
the proportion of 0 < |by, ,,|/Ly, < 1 the entire bandwidth of
SSP n. Denote o, ,,, as the amount of bandwidth allocated to
terminal m by SSP n. Thus, we have ay, m = (|bn,m|/Ln)Bn,
where |.| is the cardinality operator.

In the IRC, the transmit signal of S' consecutive integrated
OFDM symbols of terminal m is given as [8]

a
A

S—1|bn,ml|-1
) e . ih
J}m(t) — e]?ﬂ'fmt § § afncfﬁheg%rkAf(t hTs)
h=0 k=0

xrect[(t — hT)/Ts),

where fS, is the center frequency allocated to the terminal
m, a¥, is the amplitude of subcarrier k in terminal m, ck"
is the phase code of subcarrier k¥ and OFDM symbol & of
terminal m. Ty is the duration of each completed OFDM
symbol, which satisfies Ty, = T + T, with the cycle prefix
duration T,. rect[t/T] is rectangle function, which is equal to
one for 0 < ¢t < 7Ty, otherwise, it is zero.

Let g,,(t) denote the impulse response of an extended target
at terminal m. The received signal of terminal m can be
expressed as

+oo
Ym(t) = / Im (T) T (t — T)dT + 1 (2),

— 00

where n,,(t) is complex additive white Gaussian noise
(AWGN) with zero mean and power spectral density Ny, (f).

For radar object detection and identification, the condi-
tional mutual information (MI) between the received signal
and the target impulse response is an important metric. The
estimation accuracy of the target impulse response increases
as the conditional MI increases because it can improve the
radar detection [9]. Let a = [a,..., a7 denote the
spectrum demand vector, where o, = [@1m, ..., QANm] IS
the spectrum demand profile that terminal m requests to N
SSPs. The conditional MI of terminal m is given by [9] !

N |bn,m|

In(om) =E ;AfSTszl kzl log(1+ pf,v8) ¢,
1 - ko k
= §STS nz::lan,m E {log(l —I—pmvm)} , (D
where pk = |aF |? is the transmit power of subcarrier k,

T, = ST is the total transmit duration of OFDM signal.
of, = ST G (fE)?/(Nm(fE)T,) is the target-to-noise
ratio (TNR) in subcarrier k, where G,,(f%) is the Fourier
transform of g, (t), f% = fS + kAf is the frequency of
subcarrier k. We assume that the covariance of the target
impulse response vector can be obtained at each terminal.

For communication, an important performance metric is the
data information rate (DIR). We assume that the communica-
tion channel is slowly time-variant and frequency selective.
The average DIR of terminal m is given by [12]

N |bn,ml
Rpn(oum) =EQAF> > log(l +phwh,) ¢,
n=1 k=1
N
=Y onm E{log(1+phwk)}, )
n=1
where wk = |g¥|?/0? is the signal-to-noise (SNR) in

subcarrier k with g¥ being the channel gain of subcarrier k,
and o2 is the noise power of the communication receiver. We
assume that the transmitter channel-state-information (CSI)
can be obtained at the terminals.

B. Game Formulation

Observing from (1) and (2), each terminal desires to be
allocated more subcarriers to improve the performance of
radar and communication services. Therefore, the achievable
revenue of terminal m over SSP n can be regarded as its own
satisfaction utility. The satisfaction utility of terminal m when
associated with SSP n is formulated by

~log(1+ Oman,m)
U] = S 0q (T4 0B

where 6, is the slope of the curve that varies over terminals.
This satisfaction utility of the terminal is a strictly concave

3)

IThe MI metric has been widely considered in the literature as an important
radar performance criterion [8]-[10]. Especially, the application of MI in
vehicular networks has been investigated in [11].
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and increasing function [13]. From (3), we can observe that
the satisfaction utility satisfies lim Uy, (ctpn,m) = 0 and
—0

An,m

limB Uy, m(0n,m) = 1. The utility function of terminals
Ot m—Bn

implies that their satisfaction will be increased if they are
allocated more spectrum resource from the SSPs.

In practice, the SSPs can offer different subscription levels
to terminals. To attract more IRC-equipped terminals, the
SSPs can reduce their offer prices. In addition, depending
on the offered prices and service quality of the SSPs, the
terminals can choose their appropriate subscription levels.
Let denote A = [Aq,...,An]|T as the price vector, where
An = [An1s- -+, An ] is the price per MHz bandwidth unit
that SSP n offers to M terminals. The subscription probability
between SSP n and terminal m can be determined by [14]

wn,m = %a (4)
Zn—1 Tn,m
where the subscrlptlon Parameter of SSP n to terminal m is
given by vpm = AnT “Anm with pn being the attraction
level of SSP n. The attractlon level of an SSP is given based
on its service quality. We observe that if the service price is
relatively small or the attraction level of SSP n is small, then
the parameter -, ,, is large. Thus, terminal m is more likely
to subscribe to SSP n. In contrast, the subscription probability
of terminal m on SSP n will be low if the service price offered
by SSP n is high. Therefore, in order to attract more terminals
to buy the spectrum resource, the SSPs can reduce their prices
to increase the subscription probability. It is natural that the
terminals tend to buy the service from the SSPs who have
lower prices or higher quality. However, the SSP cannot set a
very low price that results in a low revenue. As a result, the
incentive design guarantees the fairness among SSPs, where
the SSPs should set their prices in the feasible region and
obtain revenues corresponding to their resource trading.
From the SSP’s perspective, each SSP wants to maximize its
own revenue by selling spectrum to all terminals. The utility of
SSP n is defined as the revenue received from all the terminals,
which is given by

M
A
L:n()\n‘¢va7>\fn): E wn,m)\n,man,mv (5
m=1

where A_,, is the pricing strategies observed by other SSPs.
Denote ¢ = [tq,...,% ] as the subscription probability
vector of all the SSPs, where 1, = [, 1,...,%,, )] is the
subscription probability vector of SSP n to M terminals. Since
the SSPs offer their service prices, the subscription probability
1) and the terminal demand o are also altered.

From the terminals’ side, they want to purchase the spec-
trum resources to guarantee the IRC service requirements
while maximizing their utilities with the lowest costs. The
utility of terminal m is defined as the total profit minus the
costs paid to all SSPs, which is given by

\"l

m (am |>\ a—m)

>

N
anme n,m anm anm n,m&n m, (6)
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where a_,, is the resource demands observed from the other
terminals, and 7, is the positive revenue coefficient that
captures the intrinsic value of terminal m’s model.

Even though the SSPs want to maximize their revenues by
selling as much spectrum resources to the terminals with high
service prices, they have to compete with each other in the
market to attract more customers. Given the prices offered by
the SSPs, the terminals select their resource demands from
all the SSPs to maximize their utilities while guaranteeing the
IRC service requirements. The optimal strategies of SSPs and
terminals can be determined as the solution of a hierarchical
Stackelberg game, where the SSPs act as the leaders and the
IRC-equipped terminals are the followers. In particular, the
SSPs will first determine the pricing strategies, and then the
terminals decide their spectrum demands.

The upper-layer optimization problem is formulated as

Ay, a, X)),V €N, (72)
s.t 0 < Ay, Vm € M. (7b)

max L (
An

The lower-layer optimization problem is formulated as

Igax]-"m(am\)\, a_p,),Vm e M, (8a)
" s.t 0 < apm,Vn e N, (8b)
0 < In(ay,) — I, (8c)
O S Rm,(am) - Rzzn7 (Sd)
M
0<By— Y tnm,¥neN, (8¢)
m=1

where constraints in (8c) and (8d) are the IRC service thresh-
olds for radar I7""™ and communication R7"", respectively.
The constraints in (8e) ensure that the spectrum sold to the
terminals from each SSP cannot exceed its available spectrum.

III. GAME ANALYSIS

The solution of the above hierarchical game can be obtained
by determining the SE of the game. In this game, each SSP
first offers the price per bandwidth unit to all terminals. Based
on the prices set by all SSPs, each terminal determines the
spectrum demands o,,Vm € M and the corresponding
SSPs based on the subscription probability ). Thus, we adopt
the backward induction method to analyze the interactions
between the SSPs and the terminals. In particular, the lower-
layer subgame is first analyzed to find the NE among the
terminals given the service prices. Then, the solution of the
game is determined based on the observation of the followers’
responses and the leaders’ strategies.

In the multi-leader multi-follower scenario, each SSP can
associate with multiple terminals to maximize its revenue,
while each terminal can subscribe to multiple SSPs from
various offered prices in the market. In the following, we
provide the definitions of the NE of the lower-layer subgame
and the SE of the hierarchical game.

Definition 1. Given the SSPs’ strategies, the solution of the
lower-layer subgame is an NE if the following condition holds

Fmlah X o) > Fo(am| X ar,,),Ym e M. (9)
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Definition 2. The solution (X*, a*) is an SE if the following
condition is satisfied

LoA|p, ", A2) > LAy, A% ),Yn e N, (10)

A. Lower-layer Subgame

In general, finding the NE at the lower-layer subgame is
challenging due to the presence of the shared constraints
among terminals, i.e., the constraint in (8e). Thus, the optimal
spectrum demands o), depend on the joint adversary’s strate-
gies of the other terminals o ,,. Therefore, the traditional
approach based on the derivative method is not suitable to find
the best response from the followers [6]. Thus, in this paper,
we propose to use the GNE method [15] which can achieve
a joint optimal solution for the followers by solving the GNE
problem. The key idea of this method is to reformulate the
original problem into an equivalent better known problem, and
then analyzing the existence and uniqueness of the NE.

Theorem 1. Given the objective in (8a) and constraints in
(8b)-(8e) in the lower-layer optimization problem, the follow-
ing properties hold
o PI. The followers’ spectrum demands set ©,, = {a, :
W > 0, L) > I, Ry(tm) > RJV™, B, >
Y e Qnm, ¥ € N} is convex and compact for any
non-empty set &_,,¥m € M.
o P2. The objective function F,(am|\, a_y,) is a twice
continuous differentiable (C?) concave function w.r.t.
a,,,VYm e M.

Proof. 1t is straightforward to prove P1 by observing the
formulation problem in (8). Also, it is easy to prove P2 by
showing that the Hessian matrix V2, Fp,(om|X, a_yy,) is
negative semidefinite. Due to the space limitation, the detail
proof is omitted. O

From Theorem 1, the local optimization problem (8) is a
concave programming problem, which can be resorted to the
mathematical tool of Quasi-Variational Inequalities (QVI) [15]
to clarify the existence of the GNE in the lower-layer subgame.

Definition 3. It is true that © € R™ is the closed convex set,
A y

O= Ty Om and f(e) = (~Va, Fun(@m| A am))hiy

is the gradient based mapping. The variational inequality (VI)

problem, i.e., VI(O, f(a)), is finding a vector a* € © such

that [16]:

E-a)Tfla*)>0, VEcO. (1)
Lemma 1. A joint solution for followers o is a GNE in the

lower-layer subgame if and only if a* is a solution of the QVI
problem VI(O, f(a)).

Proof. Given P1 and P2 in Theorem 1, Lemma lis achieved
following from [15, Th. 3.3]. O]

To verify the existence of the NE in the lower-layer sub-
game, it is necessary to show that the solution set of QVI
problem VI(0, f(c)) is non-empty.

Theorem 2. Given the feasible SSPs’ strategies A\, the lower-
layer subgame admits at least one GNE.

Proof. By using P2 in Theorem 1, Fp,(0un|A a_p)

is a (C?) concave function wrt . Thus,
we can construct the Jacobian of f(«), e,
M
Vaofla) = [V%@m,a, JFm(om| A, o) . We
m m’mlzl

can verify that V4 f(a) is positive semidefinite which
guarantees a nonempty, closed, and convex set of GNE in the
lower-layer subgame [15]. O

Since the optimization problem in (8) is a concave program-
ming problem, the GNE of the lower-layer subgame can be
obtained using Karush-Kuhn-Tucker (KKT) conditions. The
KKT conditions of follower m are given as follows

4
Ve Frm(@mA e m) + > pih, (Va, Fio(am)) = 0, (122)
i=1
0 < py, LF, (@) > 0,(12b)

where p!, and Fi . (i = {1,2,3,4}) are the KKT multi-
pliers and right-hand side expressions corresponding to the
constraints in (8b)-(8e), respectively. Expressions in (12b) are
the complementary conditions, and the operator L represents
component-wise orthogonality.

Since the optimization problem in (8) can be solved by
KKT conditions, a® is a GNE of the lower-layer sub-
game, which thus provides the unique NE in the form of
(a*, pb*, p?* 3", ut*). To determine the GNE of the
lower-layer subgame in a distributed manner, the synchronous
GNE searching algorithm can be developed based on the
Gauss-Seidel-type method. The main idea of this algorithm is
to iteratively solve each follower’s problem based on the syn-
chronous responses from other followers, that finally reaches
the GNE of the lower-layer subgame [15, Alg. 5.2].

B. Upper-layer Subgame

Due to the unobtainable closed-form solution in the lower-
layer subgame and the linearity of the utility function in the
upper-layer subgame, it is impossible to apply the conventional
approach using the gradient-based optimization method to find
the solution of Stackelberg game. In this paper, we develop
an iterative SE searching algorithm based on sub-gradient
approach, which can guarantee the convergence of the optimal
solution, i.e., SE. The SE searching approach has been widely
applied in Stackelberg game for game formulation in which
the closed-form solution in the lower-layer is impossible to
be obtained, e.g., [7]. The key idea of the iterative approach
is that each SSP’s strategy will be affected by the reactions
of the other SSPs as well as the responses of the terminals.
In the upper-layer subgame, the SSP can increase its service
price to maximize its own revenue. However, the terminals will
change their behaviors, which are unlikely to associate with
the SSP if other SSPs have lower service prices. Observing
from (4), there is a tradeoff between the service price and the
subscription probability. Therefore, the SSPs cannot increase
their prices selfishly in order to attract more terminals. As
a result, the strategies of the SSPs will be regulated to the
optimal solution.

At the initialization of the algorithm, each SSP assumes
that there is no competition in the market and sets its service
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1

2 price to the maximum value. Then, the SSP explores that
3 decreasing its service price can receive greater revenue, and
4 there exist competitors in the market. In particular, if the
5 SSP decreases its price, while other SSPs’ strategies keep
6 unchanged, the terminals are likely to subscribe to the SSP
7 and the SSP’s revenue can be increased. In contrast, if the SSP
8 increases its service price, the terminals will subscribe to other
9 SSPs that have higher subscription probabilities, and the SSP’s
10 revenue decreases. Therefore, the SSP needs to determine its
1 own strategy to attract more terminals while observing the
12 strategies of other SSPs. Basically, the SSP will increase or
13 decrease the current price with a small step § and calculate the
14 achievable utility with the prediction of followers’ demand at
15 each iteration. In this way, the SSPs can make the adjustment
16 on their service prices in the next iteration to increase their
17 utilities. Otherwise, the service prices will be kept unchanged.
18 After the finite number of iterations, the strategies of the SSPs
19 will converge to the equilibrium without any further change.

20

21 IV. NUMERICAL RESULTS

;g In this section, we provide numerical results to evaluate
24 the performance of our proposed scheme. Each SSP has 128
25 subcarriers for trading to all terminals. The power is equally
26 allocated to each subcarrier. The additive white Gaussian noise
57 (AWGN) follows a zero-mean normal distribution, and the
28 target frequency response and the frequency response of the
29 communication channels follow an exponential distribution
30 with unit mean. The slope of the curve in the IRC-equipped
31 terminals is randomly selected in the range of (0,1]. The
32 maximum service price and revenue coefficient are set as
33 Amar — 10~ Vn € N, and 7, = 7 = 1,¥m € M. Other
34 IRC parameters are set as follows: S = 10, Ty = 5 X 106
35 s, T =10"%s,6 = 1073, and ¢ = 10~* [8]. The radar and
36 communication thresholds are set as 100 bit and 1 Mbit/s,
37 respectively. To evaluate the proposed scheme, we introduce
38 the Greedy scheme and Random scheme as baseline schemes.
39 In the Greedy scheme, the SSPs set service prices to the
40 maximum values, then the terminals determine their spectrum
41 demands given the prices set by the SSPs. In the Random
42 scheme, the SSPs randomly select the service prices.

43 The proposed scheme aims to maximize the utility of both
44 the SSPs and the terminals. Thus, we first compare the social
45 welfare, i.e., the total utility of the SSPs and the terminals
46 with the fixed N = 4 and p, = 0.5,Vn € N. As shown
47 in Fig. 2, the social welfare obtained by the proposed scheme
48 is much higher than those obtained by the baseline schemes
49 regardless the number of terminals in the market. The reason
50 is explained as follows. With the proposed scheme, the SSPs
51 set the service prices accounting for the reactions, i.e., the
52 resource demands, of the terminals to maximize their utility.
53 With the Greedy scheme, the SSPs always set high prices, and
54 the terminals may be not willing to buy the spectrum resource.
55 This results in decreasing the utility of the SSPs, the utility of
56 the terminals, and the social welfare.

57 Next, it is worth discussing the impact of the market scal-
58 ability on the utility of each SSP. Without loss of generality,
59 we discuss how the utility of SSP 1 changes as the number of
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Fig. 2. Social welfare versus the number of terminals.

SSPs and terminals in the market varies. As shown in Fig. 3,
given the number of terminals and the attraction level of SSP
1, i.e., p1, the utility of SSP 1 decreases as the number of
SSPs increases. The reason is that more SSPs joining in the
market increase the competition among them. To attract the
terminals, SSP 1 needs to reduce its service price that results
in decreasing its utility. As seen, given the number of SSPs in
the market, the utility of SSP 1 increases with the increase of
terminals. The reason is that as the number of terminals in the
market increases, there may be more terminals that are willing
to buy the spectrum from SSP 1. This results in improving the
utility of SSP 1. Note that the utility of SSP 1 decreases as
its attraction level, i.e., p1, increases. The reason is that as p;
increases, the service price offered by SSP 1 increases and the
terminals are not likely to purchase the spectrum from SSP 1.
This also verifies the theoretical analysis as in (4).

Number of SSPs
IS

Number of terminals

L L L L L 5
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Utility of SSP 1

Fig. 3. The impacts of the number of SSPs on SSP 1’s utility, i.e., the solid
lines, and of the number of terminals on SSP 1’s utility, i.e., the dash lines.

It is important to show the NE of the subgame among the
SSPs. For the presentation purpose, we consider a market
including two SSPs, i.e., SSP 1 and SSP 2, and three ter-
minals. The attraction levels of the SSPs are the same, i.e.,
p1 = p2 = 0.5. Fig. 4 shows the NE of the subgame among
the SSPs for terminal 1 with different revenue coefficients. As
seen, given the revenue coefficient, e.g., 7 = 1, the pricing
strategies of the two SSPs offering to terminal 1 intersect at a
point, which is called a NE of the subgame. At this point, each
SSP’s pricing strategy is optimal given the pricing strategies of
other SSPs. In other words, no SSP has an incentive to change
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Fig. 5. Convergence of the iterative SE searching algorithm.

its price given the prices offered by other SSPs. This result
also shows the fairness among SSPs, where each SSP must set
an appropriate price to obtain the revenue corresponding to its
capacity. As the revenue coefficient 7 increases, the terminals
are more willing to buy the spectrum resources and the SSPs
can increase the service prices to improve their utility.

Finally, we show the convergence of the proposed scheme.
Given the step size, our proposed algorithm is able to converge
within the finite iterations [17]. However, the convergence
speed depends on the step size. As shown in Fig. 4, with
a larger step size, the convergence speed of the algorithm is
faster, but the performance, i.e., the utility of the SSP, obtained
by the algorithm is lower. In each iteration, given the resource
prices offered from N SSPs, the proposed algorithm solves the
lower-layer problem in (8) of M terminals that has the com-
putational complexity of O(n2-*(n2 + n.)), which involves
n, = MN decision variables and n, = MN + 2M + N
constraints [18, p.4]. Given the spectrum demands of M
terminals, the algorithm solves the upper-layer problem in
(7) of the SSPs by updating M N prices for N SSPs that
has the computational complexity of O(NM?). As such,
the computational complexity of the proposed algorithm is
O(n2>(n? + n.) + NM?).

V. CONCLUSIONS

In this paper, we have investigated the spectrum allocation
among multiple SSPs and multiple IRC-equipped terminals.
The trading problem has been modeled as the hierarchical
Stackelberg game in which the SSPs and the terminals are

the leaders and the followers, respectively. The lower-layer
subgame has been modeled as the GNE problem under the
shared constraints among followers. The iterative SE searching
algorithm has been developed to efficiently obtain the solution
of the game based on the reactions of the followers and the
strategies of the leaders, where the optimal solution leads
to improving the utility of both the SSPs and terminals.
The numerical results have demonstrated that our proposed
scheme outperforms the baseline schemes in terms of social
welfare. In the future work, other metrics to evaluate the radar
performance can be further explored such as range resolution
and velocity resolution.
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