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Abstract 

Per- and polyfluoroalkyl substances (PFASs) are hazardous chemicals that have been widely 

used in different industries and released into the environment through polluted effluents. 

Nanofiltration (NF) membrane is regarded as a promising process for removing PFAS from the 

effluents. This study aimed to model and analyze the performance of the NF membrane process 

in perfluorooctanesulfonic acid (PFOS) removal from polluted effluents using machine learning 

(ML) algorithms. The modelling output of seven ML algorithms was evaluated using statistical 

indexes of determination coefficient (R2) and mean squared error (MSE) for robustness. The 

results demonstrated that random forest (RF), gradient boosting machine (GBM), and AdaBoost 

models were the most robust ones for the NF process. Accordingly, the optimization of these 

procedures was accomplished using a grid search. The optimized models were deeply analyzed 

using permutation variable importance (PVI) to quantify the relative importance of variables. 

The three ML procedures (RF, GBM, AdaBoost) presented high prediction strength for PFOS 

removal from polluted effluents with low MSE values (4.726, 2.45, 2.879) and high R2 values 

(0.93, 0.975 and 0.968) respectively. In addition, PVI-RF showed decreasing importance of 

pressure, PFOS initial concentrations, membrane type, trivalent cations, pH, divalent cations 

and monovalent cations consecutively. 

 

Keywords: Machine learning; Nanofiltration membrane; PFOS; Process modelling  
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1. Introduction 

Per- and polyfluoroalkyl substances (PFASs) are extensively used chemicals in a wide range of 

industries, e.g. food packaging, paints, fire retardants, lubricant production, surfactants, metal 

coating and production of waterproof substances owing to particular characteristics, e.g. low 

friction coefficients, thermal chemical stability and low carbon-fluorine bond polarizabilities 

[1]. However, PFASs are biologically toxic and environmentally persistent, posing a major 

health risk to the public and wildlife. In 2009, perfluorooctane sulfonate (PFOS) was included 

in the persistent organic pollutants (POPs) list under Stockholm Convention as the first 

representative of PFASs. Sun et al. reported that approximately 45250 tons of PFOS have been 

indirectly and directly released into the environment since 1970 [2]. Too many detrimental 

effects of PFOSs on human health, e.g., endocrine distribution, hepatotoxicity, immunotoxicity, 

developmental toxicity and epigenetic changes, have been recognized [2]. Trudel et al. reported 

that the intake of PFOS and perfluorooctanoic acid (PFOA) received by European and North 

American people is 1-130 and 3-220 ng per kg body weight per day, respectively. In addition, 

polluted water and food are the most important sources of these pollutants threatening human 

health [3]. Furthermore, water scarcity is another important global challenge [4-6]. Therefore, 

the purification of the contaminated water with PFAS is urgently needed to protect public 

health.  

Conventional water treatments processes such as sedimentation, coagulation and chlorination 

are not significantly efficient in the PFASs removal from water [7, 8]. Even though other 

processes like UV-mediated photodegradation [9, 10] or sonochemical decomposition [11] 

showed better performance for the removal of the PFASs from water, these processes are still 

under investigation and require certain conditions, long operational period and high energy 

consumption [12], and sometimes with limited efficiency [3]. More importantly, it is impossible 

to completely degrade these pollutants due to different hazardous by-products generation [13]. 

At the same time, membrane filtration processes have been widely used for drinking water and 
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wastewater treatment by promising efficiency in a wide spectrum of pollutants rejection. 

Generally, nanofiltration (NF) membrane possesses higher rejection capability than the 

ultrafiltration and microfiltration membranes and higher water flux than reverse osmosis. 

Therefore, the performance of NF membranes as a successful process in the removal of a wide 

range of contaminants, especially PFOS, has been investigated [14-16]. The effectiveness of 

NF membrane in the PFOS removal from aqueous solutions is affected by several parameters 

such as solution pH, the type of membrane, the applied pressure, the initial PFOS concentration 

and the availability of various cations in the feed water. The solution pH can impact the charge 

of the solute coupled with the membrane surface charge which leads to differences in the total 

repulsive forces between the solute and the membrane surface. Stelinle-Darling and Reinhard 

[17] demonstrated that as the pH value increased from 2.8 to 6, the molecular weight cut-off 

that produced 90% rejection of the perfluorochemical compounds decreased from  550 g/mol 

to 300 g/mol. Moreover, the transmission rate of PFOS in the NF270 membrane was 2.5% when 

the pH was between 5 and 6, while it was jumped to 30% when the pH value was reduced to 

2.8. As a result, the rejection rate of PFOS was reduced with the reduction in solution pH (from 

6 to 2.8). The results could be due to the neutral membrane surface at pH 2.8, which causes a 

reduction in the impact of the repulsive forces at the membrane surface, which, in turn, allows 

the high transmission of PFOS through the membrane. Typically, the negatively charged NF 

membrane because less negative with decreasing the solution pH. As a results, the NF rejection 

rate to the negatively charged PFOS decreases.  

The rejection rate is also affected by the phenomena of concentration polarization. As the 

concentration polarization increase due to the accumulation of pollutants in the fouling layer 

on the membrane surface, the rejection rate is reduced. Additionally, membrane type will affect 

the rejection rate of perfluorochemicals by NF. For instance, it has been noticed that 15 

perfluorochemicals, including PFOS, were below the detection limit in the permeate stream 

when the NF200 membrane was used. In contrast, the average transmission rate for these 
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compounds was higher when more loose NF membranes (NF270 and DK) were used [17]. 

Therefore, the type of membrane is another key factor in this process. Furthermore, Tang et al. 

[18] observed that there is a direct relationship between the applied pressure and the rejection 

rate of PFOS. Moreover, the PFOS initial concentration increased its rejection rate by NF 

membrane [19]. Increasing the PFOS rejection rate with the feed concentration increase could 

be related to blocking the membrane pores [20], which reduces the water flux. 

Regarding the applied pressure effects on NF membrane efficiency, as the differences between 

the surface and sweeping forces can be changed under various pressure affecting membrane 

performance in PFOS rejection rate, the applied pressure is another effective factor in this 

process [21]. Moreover, the temperature is also a major factor in the NF process. The higher 

the feed temperature, the larger the membrane pore size, affecting the rejection rate of the 

pollutant [22]. The other pivotal factor affecting this process is the presence of different ions, 

i.e. mono, di and trivalent ions, in the contaminated waters with PFOS, affecting the membrane 

filtration efficiency. For instance, divalent calcium ions can be found in various water sources 

at concentrations up to 0.007 M [23], which can impact the rejection rate of the PFOS, as 

observed by Zhao et al. [19]. The authors found that the feed water with 100 ppb of PFOS had 

a rejection rate increased from 94% to 99.3% due to the increase in Ca2+ ion concentration from 

0 to 0.002 M. That would be attributed to the electrostatic interaction between PFOS and 

calcium ions forming large molecules that were highly rejected by the membrane. 

Consequently, the availability of Ca2+ with PFOS in the wastewater stream will reduce the 

permeation rate through the membrane and the PFOS rejection. Additionally, Wang et. al [24] 

noticed similar behaviour as they proposed that the higher the concentration of Ca2+  in the feed 

water at 25 ˚C (from 0.0001M to 0.002 M), the higher the rejection rate of the PFOS from the 

water (from 97.1% to 99.4%). Generally, divalent cations as Ca2+ and Mg2+ are responsible for 

forming cation bridges with the negatively charged PFASs, enhancing their rejection rate on 

the membrane surface [25]. Differently, the presence of monovalent cations as Na+ has a reverse 
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impact on the adsorption of PFASs [26]. However, Zhao et al. [3] found that the presence of 

monovalent ions and divalent and trivalent cations in feed water increased the PFOS rejection 

rate by the NF membrane. However, the increase in the rejection rate was higher when divalent 

and trivalent cations (Ca2+ and Fe3+) were used compared to monovalent cations (Na+). The 

authors revealed that one sodium cation could be linked to one molecule of PFOS, while the 

divalent and trivalent cations preferred to link with two molecules of PFOS. The highest 

rejection rate of 97.94% was reached in the presence of Fe3+ cations. 

Therefore, optimising the operation condition is crucial in successfully applying the NF 

process. There are two general procedures, i.e. experimental and numerical, for optimising such 

processes. Experimental procedures are essential to generate fundamental data for key 

parameters, but they are often limited by human resources, equipment and time [27]. One-

factorial design experimental procedures have been extensively applied to optimise the NF 

process [28]. However, this optimization procedure cannot consider all individual and 

interactive effects of the independent factors on the process performance. It will be too time-

consuming and costly to simultaneously consider all the parameters above [29, 30]. Compared 

to the experimental procedures, the numerical modelling procedures are faster, more cost-

effective and highly complementary to experimental methods [27]. To the best of our 

knowledge, there is a lack of study to apply numerical procedures for assessing the performance 

of the NF process in PFOS removal. Furthermore, to our knowledge, no study has been reported 

on the NF membrane performance in PFOS removal by considering all of the effective 

parameters which are highly valuable for predesigning the process, either before or during 

experimental investigations. In addition, determining the relative importance of the parameters 

affecting this process can help to improve experimental design and optimize the process with 

fewer experiments. 

Machine learning (ML) procedures are the most powerful tools to model complex processes 

and are more capable of learning the relationship between inputs and output in complex 
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processes with a high quantity of effective factors. To establish the relationship between the 

inputs and outputs, there is no necessity for ML approaches to comprehend the complex 

mechanisms of the phenomenon/process to model. Different algorithms have been developed 

to model processes; nonetheless, different algorithms demonstrate different performances in 

different applications [27, 29, 31-33]. To date, ML methods have not been used for modelling 

the NF membrane performance in PFOS removal from contaminated waters. Additionally, no 

study has systematically considered different ML procedures in NF membrane applications for 

PFOS removal to choose the most appropriate models for deep analysis and modelling 

intentions.  

Therefore, the present work aims to use various ML approaches, including ridge regression 

(RR), linear regression (LR), multilayer perceptron (MLP), AdaBoost, random forest (RF), 

support vector regression (SVR) and gradient boosting machine (GBM) in PFOS removal from 

contaminated waters using NF membranes. The study investigated the impact of environmental 

and technical factors on removing PFOS by the NF. The independent variables, including the 

type of the NF membrane, operating temperature, PFOS initial concentration, pressure, pH, 

concentrations of monovalent, divalent and trivalent cations, were studied to choose the most 

appropriate approaches for this application were subsequently applied for deeply modelling and 

analysing process performance. Ultimately, the performances of the selected models are 

compared by the results, and the permutation variable importance (PVI) is used to determine 

the relative importance of the independent variables. 

 

2. Materials and Methods 

2.1. Data collection and processing 

In the present work to develop appropriate models for NF process performance in PFOS 

rejection, the experimental results in the published literature were extracted after a detailed 

review [3, 14, 19, 20, 24, 34-36]. After careful selection, 290 data points were extracted using 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/perceptron
https://www.sciencedirect.com/topics/engineering/adaboost
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/support-vector-machine
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Plot Digitizer. The considered inputs were membrane type, operating temperature, PFOS initial 

concentration, pH, pressure, divalent cations, monovalent cations and trivalent cations. 

Moreover, to simplify the complexity of the computation and avoid overfitting, the extracted 

experimental data were randomized in a range from 0 to 1 using Eq. (1) [37]: 

Normalized value (𝑋𝑋) =  xi−minimum value of data
maximum value of data −minimum value of data

× (1 − 0) + 0.1    (Eq. 1) 

where 𝑥𝑥𝑖𝑖 is any data. 

 

2.2. Selection of ML procedures and modelling generality 

Different ML approaches demonstrate various performances in applications; hence, choosing 

the soundest approach to model different processes will be critical. Using the default 

hyperparameters, several ML approaches, i.e. MLP, RR, LR, AdaBoost, RF, SVM and GBM 

from Scikit-learn library, were prescreened to select the best ones for deep modelling. After 

that, the most suitable ML approaches were selected based on the obtained values of R2 (Eq. 2) 

and mean squared error (MSE) (Eq. 3) for the models. To develop prescreening and deep 

models for the performance of the NF process in PFOS rejection, the dataset was randomly 

divided into 20% and 80% as train and test datasets, respectively. Moreover, cross-validation 

with 5-folds was applied to validate the models developed to prevent overfitting and wasting 

the data. Furthermore, the generalization strength of the models was assessed using the test 

dataset. A grid search approach was considered to tune the hyperparameters of the selected ML 

approaches. Eventually, the hyperparameters tuned were taken into account in modelling and 

testing the models. The evaluation of the model strengths was conducted based on the values 

of R2 and MSE: 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖)𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑦𝑦𝑚𝑚)𝑁𝑁
𝑖𝑖=1

    (Eq. 2) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ �𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1    (Eq. 3) 
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where 𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖 and yprd,i are the actual and forecasted proportions of PFOS rejection, respectively; 

N and ym are the total numbers of data points and the mean of actual PFOS rejection. It should 

be stressed that the validation of the models developed was accomplished based on the mean 

of the R2 and MSE during the modelling.  

 

2.3. Gradient boosting machine  

GBM is a classification and regression ML method that uses decision trees to generate a 

prediction model. The final prediction can be reached after combining the weak learners of the 

decision trees iteratively, generating a single strong learner. The GBM aims to find a function 

to predict the output value for a set of inputs where it minimizes the loss function. This can 

occur by adding new weak learners trained to reduce the loss function where the previous weak 

learners will not be changed [38, 39].  

 

2.5. Random forests  

RF is one of the known ML prediction/classification methods and is considered an extremely 

powerful algorithm that relies on bagging. RF is a combination of N number of varied trees 

predictions where each one represents the random vector of an independent sample. All the 

forest’s trees have the same distribution, and the intensity of each tree in one forest of trees 

classifiers how they correlate to each other impact the generalization error of that forest. The 

RF determines the deviation of an individual response parameter by continuous and binary 

division of the data to gradually make it more homogenous, relating to single or more 

explanatory parameters. The data division is finished for the parameter that minimizes the 

errors. Each tree results in a predicted parameter (yn) based on the same input parameters (xnew). 

The final prediction parameter (ynew) is the average of all individual predictions from all trees, 

as shown in Eq. 4 [40-42]. 

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) = 1
𝑁𝑁
∑ 𝑦𝑦𝑛𝑛(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)𝑁𝑁
𝑛𝑛=1                             (Eq. 4) 



10 
 

 

2.6. AdaBoost  

AdaBoost is another ML statistical algorithm, which can collaborate with various algorithms 

or weak learners. In Ada Boost, the new weak learners will be adjusted to enhance the 

misclassified cases classified by the previous weak learners where the error of the predicted 

model is updated post to each stage. The weak learners are improved through the process and 

become more favourable than random guessing. Consequently, the model will reach the stage 

of a stronger learner. As the AdaBoost is utilized with weak learners (decision trees/classifiers), 

the collected information regards the hardness of the individual training samples will be 

introduced to the updated algorithm. Accordingly, the next weak learners will focus on the cases 

that are harder to categorize. The basic learners with small classification errors will have large 

weights, while those with a large classification rate will have small weights. The final predictive 

model resulting from AdaBoost is given by equation (5) [43, 44]: 

𝑓𝑓(𝑥𝑥) = ∑ 𝛼𝛼𝑛𝑛𝐺𝐺𝑛𝑛(𝑥𝑥)𝑁𝑁
𝑛𝑛=1                           (Eq. 5) 

where N is the number of the weak learners, αn is the parameter of the nth weak learner, and 

Gn(x) is the nth weak learner. 

 

2.8. Relative importance of variables 

PVI is an approach by which inspection of any model fitted in the tabular data is applicable 

[27]. This approach randomly permutates the independent variables (inputs) in the prepared 

model and takes into account the errors in the output prediction; thus, the higher the error, the 

higher the importance of the variables. To compute the importance of the variables, the MSE 

was considered. Some of the advantages of this approach is counting both interactive and single 

effects of the inputs, a general approach and being quick and simple to apply. Therefore, this 

approach was applied for all three models used in the present study to indicate the relative 
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importance of variables affection PFOS rejection by NF membrane from polluted aqueous 

solution.  

 

2.9. Comparison of model performance 

Mean absolute error (MAE) (Eq. 6), MSE and R2 as statistical indexes were applied to compare 

the good fitness of the constructed models, i.e. AdaBoost, RF and GBM in forecasting the PFOS 

rejection by NF process. It is worth mentioning that the mentioned statistical indexes were 

calculated using a test dataset. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1 − ∑ |𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
   (Eq. 6) 

where n, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖  are the total number of data points, experimental and predicted proportions 

of the output consecutively. 

 

3. Results and discussion 

3.1. Selection of ML procedures 

Different ML approaches performances in modelling PFOS rejection from contaminated waters 

by NF membrane were evaluated, with the outcomes listed in Table 1. According to the values 

of R2 and MSE (Table 1) displaying the robustness of the models, RF, GBM and AdaBoost was 

chosen as the most appropriate ones. Moreover, different studies have recognized the great 

robustness of RF, GBM and AdaBoost in various modelling processes [45-47]. Thus, these 

three approaches were selected for deep modelling NF filtration in the present study.  

 

Table 1. Various ML approaches performances in modelling PFOS removal from contaminated 

waters by NF membranes 

 GBM RF AdaBoost SVR MLP LR RR 

Total-Train R2 0.98 0.98 0.95 0.23 0.30 0.51 0.50 
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Total-Test R2 0.94 0.94 0.92 0.10 0.23 0.46 0.46 

Train MSE 1.59 1.98 5.59 96.16 88.79 62.73 63.48 

Test MSE 8.9 9.03 11.13 133.94 112.88 77.78 77.25 

 

3.2. Random Forests 

The hyperparameters were manipulated in a grid search to design the RF model. The best 

conditions of the number of the boosted trees, the best split features numbers, the least samples 

number in a leaf, and the least samples number in a split were considered and equal to 200, 7, 

1 and 3, respectively. The R2 values (0.977 and 0.936) and MSE values (2.852 and 8.299) were 

determined for training and cross-validation. Through the test phases, the R2 value for the total 

train (train and cross-validation) was 0.984 and 0.930 for the test, while the corresponding MSE 

value was 2.305 for the total training and 4.726 for the test. As shown in Fig. 1, the PFOS 

rejection rates predicted by the RF model were close to their actual values, which suggests that 

the model can reliably predict the rejection rate of PFOS during the NF process. 
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Fig. 1. RF model presentation as (a) scatter plots of the prepared model in the testing stage, (b) 

learning curve for the model prepared, and (c) the model accuracy in the testing stage. 

 

Furthermore, potential overfitting, underfitting, and goodness of fitting are among the most key 

factors in modelling procedures that the learning curve can monitor. As observed in Fig. 1, the 

MSE trends in training and cross-validation phases experience stable conditions with a low 

difference from epoch ≥50. Therefore, the prepared model is not suffering from overfitting and 

underfitting issues. 

 

3.2. Gradient boosting machine  

The hyperparameters manipulated in a grid search to optimize the GBM model were a minimum 

number of samples per split, a minimum number of samples per leaf, several features for the 

best split, and a maximum depth of GBM and the number of gradients boosted trees. The best 

values of these parameters are 4, 4, 6, 5 and 800, respectively. Within these best parameters 

values, both training and cross-validation were taking place and the values of the R2 (0.99 and 

0.91) and the MSE (0.74 and 9.72) were specified. Moreover, the values of the R2 under the test 

phases for the total train and test were 0.992 and 0.975, while the MSEs at these conditions 

were 0.992 and 2.45, respectively. Fig. 2 represents the GBM prediction performance in the test 

phase and clarifies the considerable prediction ability of the GBM model for the PFOS rejection 

rate from aqueous solutions by NF membranes. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/correlation-coefficient
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Fig. 2. GBM model presentation as (a) scatter plots of the prepared model in the testing stage, 

(b) learning curve for the model prepared, and (c) the model accuracy in the testing stage. 

 

Furthermore, Fig. 2(b) shows the changing patterns of the MSE over different epochs of the 

prepared model during both training and cross-validation phases identifying that the prepared 

model deserves no overfitting and underfitting. The results indicate that at an epoch higher than 

75, the MSE value is approximately 25 for both datasets with a smaller difference, emphasising 

the goodness of the model fitting. 

 

3.3. AdaBoost 

Various loss functions were tested with different hyperparameters values manipulated by a grid 

search to choose the best loos function. Table 3 shows different hyperparameters values, R2 and 

MSE values at various phases; the square function was the best loss function with an n-estimator 

of 20 and a learning rate of 0.1. The R2 was 0.945 for the training phase and 0.927 for the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/correlation-coefficient
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validation phase. The MSE values were 7.955 and 8.194 for the training and validation phases. 

Additionally, the MSE values (7.241 and 2.879) and R2 values (0.948 and 0.968) for the total 

training and testing phases demonstrated a prediction strength of 96.8% for this model. 

Moreover, the learning curve (Fig. 3(b)) verifies no overfitting and underfitting in this prepared 

mode. 

 

Fig. 3. AdaBoost model presentation as (a) scatter plots of the prepared model in the testing 

stage, (b) learning curve for the model prepared, and (c) the model accuracy in the testing stage.

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/correlation-coefficient
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Table 3. The manipulated condition and the results of the AdaBoost model under different loss functions. 

  Grid search R2 

Train 

R2 

validation 

R2 

Total-

Train 

R2 

Test 

MSE 

Train 

MSE 

validation 

MSE 

Total-

Train 

MSE 

Test n-estimator learning 

rate 

Linear 120 1 0.945 0.885 0.889 0.888 8.005 12.956 0.945 0.942 

Square 20 0.1 0.945 0.927 0.948 0.968 7.955 8.194 7.241 2.879 

Exponential 80 0.1 0.951 0.913 0.953 0.967 7.187 9.845 6.574 2.981 

https://www.sciencedirect.com/topics/engineering/adaboost
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3.4. Permutation variable importance 

The relative importance of the inputs provided by the RF-PVI, GBM-PVI and AdaBoost-PVI 

are depicted in Fig. 4. The relative importance attained for the inputs differs from the different 

nature of the algorithms applied for modelling the process. Accordingly, the most important 

factors in RF-PVI are pressure, initial concentration of PFOS, membrane type, trivalent cations 

concentrations, pH, divalent cation concentrations, monovalent cation concentrations and 

temperature in decreasing order. GBM-PVI  model has the following important factors order; 

temperature, membrane type, pH, monovalent cations concentrations, divalent cations 

concentrations, pressure, PFOS initial concentration, trivalent cations concentrations. In 

contrast, the order of the most important ones for the AdaBoost-PVI is divalent cations 

concentrations, membrane type, pressure, pH and PFOS initial concentration in decreasing 

order. The cations with one valence like Na+, can react with only one PFOS molecule. The 

cations with higher valences can react with more PFOS molecules, resulting in larger 

compounds production and higher rejection efficiency. Besides, the more effects of Fe3+ as a 

trivalent cation than Ca2+ as a divalent cation can be attributed to the higher charge density and 

size of Fe3+ with 0.66 Å−1
 than Ca2+ with 0.48 Å−1 [3, 34]. Yu et al. (2016) demonstrated that 

PFOS rejection is decreased approximately 15% with increasing 0.8 MPa pressure by HYDRA-

CORE membrane [14]. Whilst, another study by Zhao et al. (2018) showed that the effect of 

the Fe3+ on the PFOS rejection was less than 2% with increasing 20 folds Fe3+ concentration 

from 0.1 mM to 2 mM [3]. Besides, the efficiency of the HYDRA-CORE membrane in PFOS 

rejection was increased approximately seven times more than NF270 one under the same 

condition [14]. In addition, in another experimental study, it has been reported that pH increase 

from almost 3 to 10 has led to roughly 5% more rejection [24]. Therefore, the PVI-RF has 

demonstrated more logical results than the others in this regard and is selected as the most 

proper procedure to indicate the relative importance of the inputs in this process. 
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Fig. 4. The relative importance of the features by (a) GBM, (b) RF, and (c) AdaBoost models. 

 

3.5. Model performance comparison 

The models' performances in the PFOS rejection by NF membrane were evaluated by MAE, 

MSE and squared-R indexes presented in Table 3. As observed in R2, the results attained were 

very close together; however, the one for GBM was slightly better than the others, followed by 

AdaBoost and RF in decreasing order. In addition, both error indexes showed the same 

condition for these models. In a way that the lowest proportions of MAE and MSE belonged 

to the GBM; nonetheless, MEA for the RF model was rarely less than the AdaBoost one. In 

addition, the residual errors of these three models in the test phase are depicted in Fig. 5. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/support-vector-machine
https://www.sciencedirect.com/topics/engineering/adaboost
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Ultimately, the GBM indicated better performance than AdaBoost and RF concerning all the 

mentioned indexes. 

 

Table 3. Comparison of AdaBoost, RF and GBM models for modelling PFOS rejection from 

polluted aqueous solutions by NF membranes 

Model Statistical indices 

MAE MSE R2 

RF 0.948 4.726 0.930 

GBM 0.861 2.45 0.975 

AdaBoost 1.165 2.879 0.968 

 

 

 

Fig. 5. The residual errors of the prepared AdaBooost, RF and GBM models for PFOS 

rejection by NF membrane from aqueous solutions. 
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4. Conclusions 

NF membrane is a promising process applied for PFOS removal from contaminated water 

sources. This study has modelled and analyzed the NF membrane process performance in 

PFOS removal from polluted water using ML methods. Of various prescreened ML algorithms, 

RF, GBM and AdaBoost demonstrated the best potential for modelling and analyzing the 

performance of the NF process in PFOS removal with prediction strengths of 93%, 97.5% and 

96.8%, respectively. In addition, the results of RF-PVI showed the increasing relative 

importance of the monovalent cations, divalent cations, pH, trivalent cations, membrane type, 

PFOS initial concentrations and pressure, as operating parameters in the NF process. 
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