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A B S T R A C T   

Disaster risk management, and post-disaster recovery (PDR) in particular, become increasingly important to 
assure resilient development. Yet, PDR is the most poorly understood phase of the disaster management cycle 
and can take years or even decades. The physical aspects of the recovery are relatively easy to monitor and 
evaluate using, e.g. geospatial remote sensing data compared to functional assessments that include social and 
economic processes. Therefore, there is a need to explore the impacts of different dimensions of the recovery, 
including individual behaviour and their interactions with socio-economic institutions. In this study, we develop 
an agent-based model to simulate and explore the PDR process in urban areas of Tacloban, the Philippines 
devastated by Typhoon Haiyan in 2013. Formal and informal (slum) sector households are differentiated in the 
model to explore their resilience and different recovery patterns. Machine learning-derived land use maps are 
extracted from remote sensing images for pre- and post-disaster and are used to provide information on physical 
recovery. We use the empirical model to evaluate two realistic policy scenarios: the construction of relocation 
sites after a disaster and the investments in improving employment options. We find that the speed of the re
covery of the slum dwellers is higher than formal sector households due to the quick reconstruction of slums and 
the availability of low-income jobs in the first months after the disaster. Finally, the results reveal that the 
households’ commuting distance to their workplaces is one of the critical factors in households’ decision to 
relocate after a disaster.   

1. Introduction 

Annually natural disasters take a high toll in terms of assets and 
people globally. Between 1998 and 2017 the number of affected people 
increased from 4 to more than 5.7 billion people [1,2], imposing US$ 
520 billion of damages in real annual global economic costs [2,3]. This 
escalation is due to the accelerated urbanization and the increase in the 
number and severity of natural disasters that accelerate with climate 
change. However, these losses are not equally distributed across coun
tries. Low-income countries incurred substantially higher Gross Do
mestic Product (GDP) losses over the past 20 years due to natural 
disasters when compared to high-income countries [2]. The rapid in
crease in disaster severity and frequency and associated damage calls for 
effective disaster risk reduction and management strategies at different 
scales, including individual actions. 

One of the main phases of the disaster risk management cycle is the 

recovery phase, which usually starts after the operations for the response 
phase have concluded, and whose effectiveness has a significant effect 
on the final disaster cost. Post-disaster recovery (PDR) is known as a 
process to rebuild the community to normal conditions/functioning 
level, i.e. the same as before the disaster. However, it is essential to use 
the recovery process as an opportunity to rebuild the affected area better 
as per the Sendai Framework [4]. This framework was adopted at the 
third United Nations world conference on disaster risk reduction in 
Sendai, Japan, on March 2015, and outlines seven goals and four action 
priorities to prevent and reduce disaster risks. One of the priorities is to 
improve disaster preparedness through the building back better concept 
in the recovery phase, resulting in more resilient and sustainable com
munities [4,5]. This becomes vital where the vicious cycle of disasters 
weakens affected areas, setting them up for rapid follow-on disasters [6, 
7]. Nevertheless, recovery is a dynamic process that varies in duration 
and quality [8]. Furthermore, a holistic recovery process goes beyond a 
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physical recovery of infrastructure and includes a re-establishment of 
social, economic, and natural environmental processes [9]. Hence, it 
involves multiple sectors, governmental departments, policymakers, 
and households working together. This makes recovery a complex pro
cess. Therefore, there is a need for monitoring and providing tools for 
decision-makers to collect information about the ongoing PDR process 
and understand the effect of different scenarios in dynamics. Evaluating 
the PDR can give valuable information to the decision-makers regarding 
the current stage of the process, useful for monitoring and comparison 
with the envisioned recovery plans [10–13]. 

Increasingly, there is a need to understand and explore the impacts of 
different dimensions of recovery, including the behaviour of individual 
actors and their interactions with socio-economic institutions. 
Computer-based simulations such as agent-based models (ABMs) permit 
to explore the dynamics of the recovery process from the bottom up. 
ABMs are computational models of societies where different actors – 
households, firms, farmers, governments – act, learn, interact, and co- 
evolve with their environment [14]. In an ABM, agents (decision-mak
ing entities) interact with each other and their environments to decide 
and act based on defined rules for their behaviour in a specific situation 
such as a PDR [15,16]. ABMs, which simulate paths between equilibria 
and emergence of new post-disaster states, generate a wider range of 
nonlinear behaviour than conventional models that focus on the re
covery as the ‘return to normality’. Therefore, it constitutes an oppor
tunity for policy-makers to test different policy scenarios in an artificial 
simulation environment and explore their consequences [17]. Accord
ingly, policy and decision-makers can take advantage of the simulation 
outcomes to steer the recovery process. 

Remote sensing (RS) is the science of obtaining information about 
objects and features on earth surface through analyzing the data ac
quired by sensors without being in contact with them. RS as a rapid and 
effective tool to collect geospatial data have been used for different 
purposes in the DRM domain [11–13,18,19]. Brown et al. [8] used 
indicator-based methods to monitor and evaluate the post-disaster re
covery based on high-resolution remote sensing imagery, in addition to 
field surveys and internet-based statistic data sets. They extracted 
physical information form RS data such as land cover changes, and 
building-based reconstruction. Burton et al. [20] used repeat photog
raphy to evaluate post-Katrina recovery in Mississippi. They took pho
tographs every six months over a three-year period. Then, by assigning 
scores to each scene in terms of change and recovery, they generated a 
map for recovery assessment for the entire region. Wagner et al. [21] 
used medium resolution images to capture the rate of recovery for 
post-tornado sites in Oklahoma in 1990. They used remote sensing im
ages to support government and decision-makers by monitoring recon
struction processes. They showed the importance and efficacy of using 
RS data for recovery assessment. Also, recent advances in machine 
learning/computer vision methods and computer hardware have 
increased the accuracy and speed of the semi/automatic approaches in 
the extraction of information from RS data [10,22–25]. For instance, 
Sheykhmousa, et al. [13] used support vector machines classifier to 
produce land cover and land use maps from very high resolution satellite 
images, and evaluate the recovery by extracting the changes in the maps. 
Ghaffarian et al. [25] developed an approach to monitor the recovery 
processes in large scale using random forest classifier within a cloud 
computing platform, i.e., Google Earth Engine. Deep learning techniques 
as advanced machine learning methods were also used to extract dam
ages to buildings and infrastructures [22,26,27], and update the build
ing maps [24]. They demonstrated the efficiency of using machine 
learning methods in extracting information from RS data in an auto
matic manner to support post-disaster recovery management. The 
integration of RS with machine learning can provide a powerful tool to 
monitor physical recovery; however, it is also essential for an effective 
recovery management to understand and extract the socio-economic 
reasons behind the processes. ABMs are used frequently in the disaster 
management domain [28–33] such as flood management [34,35], 

disaster evacuation modelling [36,37], coastal adaptation [38], disaster 
impact assessment [31,39,40], recovery modelling [41–43] and resil
ience assessment [42,44,45]. The response phase management and 
evacuation after a disaster have been extensively addressed in the 
literature [33,36,37,40]. However, PDR management as a long-term 
process has not yet been sufficiently studied to extract the influential 
factors and their impacts on this process. As one of the initial ABM-based 
studies in post-disaster recovery, Nejat and Damnjanovic [46] devel
oped a spatial-temporal ABM based on the dynamic homeowners’ in
teractions with their neighbours in a post-disaster recovery situation. 
They showed that the discount factor (i.e., the weight of homeowners’ 
utility from reconstruction) and the accuracy of the signals (i.e. the 
owners’ future reconstruction property value) have impacts on the 
reconstruction of the houses. However, their model only focuses on 
housing recovery/reconstruction without including the individual per
sonal factors/attributes. Afterwards, researchers tried to add individual 
personal behaviours to ABM for different purposes and applications for 
the recovery process. Kanno et al. [47] developed an ABM framework 
for the simulation of the post-disaster recovery in urban systems, with a 
final goal of disaster resilience assessment. In their ABM, they defined 
agents representing the behaviour of the civil life, production industry, 
and infrastructures to understand their impact on the recovery and 
resilience. Their results showed that each of the subsystems has an 
impact on the resilience (i.e., the action or act of rebounding or 
springing back) of the urban systems with different coefficients/weights. 
In another study, tourist recovery strategies were studied using ABM 
after an earthquake in Jiuzhai Valley, China (in August 2017) [48]. 
Their model provides a tool for managers to have an overall estimation 
of future tourist decline, as well as economic losses during the 
post-earthquake recovery period. Coates et al. [49] developed an ABM 
to assess the flood recovery and preparedness adaptation measures for 
small and medium-sized enterprises. They mainly studied physical and 
social adaptation factors and showed their combined significance effects 
in the adaptation of a key industrial area of the UK for a severe flooding 
scenario. In a different study, an ABM was developed to support sus
tainable disaster recovery by adding the environmental vulnerability to 
the model, and thus the decision-making process. The model was used to 
improve the community’s welfare by reducing the vulnerability of the 
area to disasters and increasing the residents’ needs/objective function 
(e.g. income and monthly distributed tax amount) [50]. In addition, 
Moradi and Nejat [51] developed an ABM to identify pre-disaster miti
gation needs through predicting the possible outcomes of different plans 
in recovery phase. They showed that adding spatial information to ABM 
for recovery decision making is crucial still post-disaster recovery ABM 
commonly simulate entire communities, ignoring decision traits that 
may vary among low and high-income households. Furthermore, while 
geo-referenced data is frequently used in ABMs [52,53], the ABMs 
focused on PDR underutilize the power of RS data. Rarely such ABMs 
would use a time series of RS images to inform or validate the model, 
especially for the Global South DRM research. Yet, RS promises a great 
support in complementing other socio-economic data sources especially 
in such data-poor regions by revealing the areas impacted by a disaster, 
their physical recovery patterns and indirectly even data on 
socio-economic inequality like differences in formal and informal 
settlements. 

This article presents an ABM to explore the post-disaster recovery 
process (the PDR ABM) in the presence of various policy scenarios. We 
apply the model to Tacloban, the Philippines, which was hit by super 
Typhoon Haiyan in 2013. The innovative contribution of this article is 
four-fold. Firstly, RS data are employed as the main data source to 
initialize and validate the PDR ABM and the reconstruction of the built- 
up area in the recovery process directly by extracting physical aspects of 
the process [13,24] or indirectly using proxies to conduct functional 
recovery assessments [11,13]. In our study, RS data are used to extract 
multi-temporal land use maps, including slum and formal building in
formation, using advanced machine learning methods. Secondly, we 
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differentiate between the behaviour of formal and informal (slum) 
sector households, which follow different decision-making strategies in 
the recovery process. The outputs of the model and the multi-temporal 
utility satisfaction can serve to evaluate the disaster resilience of these 
target groups. This also allows us to go beyond the physical aspects and 
explore the socio-economic factors of the PDR dynamics. Thirdly, the 
spatial distribution of the households utility satisfaction is visualized 
and overlaid with the high-resolution satellite images that add the 
capability of exploring the spatial recovery patterns. Hence, the article 
also has a purpose of illustrating the utility of combining multi-temporal 
RS data and ABM. Fourthly, we use the developed model to run two 
realistic policy scenarios: the construction of relocation sites after a 
disaster and the investments in improving employment options. In what 
follows we describe the methodology and the case-study, present the 
simulation results and discuss them in the context of disaster risk and 
resilience management. 

2. Methods 

2.1. Case-study and data 

Tacloban city, located in the Eastern Visayas, is the biggest city and 
the economic centre of the Leyte region in the Philippines (Fig. 1). The 
city has a population of approximately 250.000, with an economy 
largely focused on commerce, agriculture, fishing, industry (mostly 
palm oil factories), tourism, and trade. There are formal and informal 
(slums, mostly stretched along the coast) neighbourhoods in the city, 
showing the socio-economic diversity of the population. On the 
November 8, 2013, Tacloban was hit by Typhoon Haiyan (locally known 
as Typhoon Yolanda), which was one of the strongest typhoons ever to 
make a landfall worldwide [54]. The occurrence of a storm surge of up to 
5 m led to an official fatality number of 6201 for the city, mostly killing 
people who lived in the coastal neighbourhoods [55]. 

Using the RS data (i.e. high-resolution satellite images) we can 
extract the built-up areas, including slum and formal buildings, of the 
city before the disaster and trace the recovery process in the first years 
following Haiyan. To explore the social processes driving this recovery, 
we developed the PDR ABM, parameterized with the maps extracted 
from the RS data. Advanced machine learning methods [12,13] were 
employed to extract the land use maps from high-resolution satellite 
images through performing image classification (for the pre-disaster 
situation, as well as three days, three months, and eight months after 
Haiyan) (Table 1). We followed a standard framework to classify the 
images and produce land use maps from satellite images using a machine 
learning method, same as implemented in Ref. [12]. The procedure 
starts with preparing the satellite images through implementing pre
processes such as geo-rectification, image mosaicking and extracting the 
region of interest. Then it continues with training area selection for the 
selected land use classes (e.g., formal and informal settlements) from the 
images, and extraction of important image features such as texture using 
image processing methods (i.e., local binary patterns). Final step is the 
execution of the machine learning method (i.e., Extreme Gradient 
Boosting algorithm [56]) to produce the land use maps for each time 
step. The land use raster maps of the region were converted to points 
with corresponding attributes as a Geographical Information System 
(GIS)1 map of the urbanized region to be used in the model. Accordingly, 
informal and formal built-up areas were identified [12,13]. Also, the 
buildings damaged by Haiyan and the reconstruction levels of the area 
during the recovery process for each month were extracted from the land 
use maps. According to the results reported by Sheykhmousa et al. [13] 
on the reconstruction of the Tacloban area for four years after Haiyan 
and the best of our knowledge, we assumed that the modelled area had 

been fully reconstructed after five years. 
Moreover, in 2015 we conducted extensive fieldwork in the area to 

understand how households made decisions and what impacted them. 
Specifically, we carried out interviews with key stakeholders, analyzed 
survey data (collected for the study [12]), and the demographic data 
collected from the Philippines Statistics Authority (e.g., employment 
rate, type of the economic activities before and after the disaster). The 
key persons, including authorities of the Tacloban city and a group of 
farmers and fishermen, were interviewed to understand the character
istics of the community, and how the disaster impacted them. Among 
others, the fieldwork revealed that immediately after Haiyan there was a 
relocation site developed in the northern part of Tacloban, aimed at 
becoming a safe area to move people out of danger zones, mostly slum 
dwellers. However, the relocation site was far from the city centre and 
the coast where most of the employment opportunities are located. We 
use the presence of the relocation site as well as the creation of addi
tional employment opportunities as scenarios in the PDR ABM. 

2.2. Agent-based modelling of post-disaster recovery 

We developed a spatial ABM to simulate the decision-making process 
of individuals in a post-disaster recovery process in a city. The PDR 
model provides a tool to understand how households (living in informal 
or formal settlements) change jobs and locations to live after a disaster, 
driven by primary factors that influence their decisions during the 
reconstruction process. Appendix A provides a detailed description of 
the model according to the ODD + D protocol [57]. Here we briefly 
outline the main agents, the rules guiding their choices and the overall 
flow of the model. 

The main agents in the PDR ABM are households and buildings in an 
urban environment. There are two types of households: those residing in 
formal (FH) or informal (IH) urban areas that have different behaviours 
mostly due to their economic and education level. Hence, IH/FH label 
different socio-economic groups which are characterized by different 
attributes, including the location within formal (for FH households) or 
informal (for IH households) urban areas. Further, households can be 
heterogeneous within each group, differentiated by income, education 
and workplace. Buildings in the modelled city can be for residential 
(formal or informal) and industrial use. Industrial buildings, important 
as they represent the location of mid- and high-income jobs, usually 
accessible only for FH with a higher level of education compared to IH. 
IH, which reside in slums, often have jobs in an informal sector, such as 
in fishing or as a seasonal labourer in the agricultural sector. Accord
ingly, households agents aim to satisfy their utility in the model by 
choosing where to live and what job to take (Fig. 2). 

Currently, the PDR ABM is applied to several neighbourhoods in 
Tacloban and heavily relies on empirical data as explained in 2.1 and 
Appendix A. Households’ utility is shaped by agents’ social and eco
nomic needs (i.e. job, education, income, accessibility to the workplace). 
These factors help to assess how satisfied an agent is with living in a 
particular location, and having/lacking a job, the match between its 
income and education level, and the commute to its workplace. The 
utility U(Ai) of an agent (Ai) can be computed based on its current living 
and working state using the following equation: 

U(Ai)= I*J*
(

Y
E

)

*(1 − D) (1)  

where I represents the impact of the disaster, J shows the job status, Y 
and E are the income and education levels, respectively, and D is the 
normalized distance to the workplace for each agent (more details 
regarding the variables of the utility are provided in Appendix). 

Taking an action changes individual agent utility. The utility of an 
agent depends on its socio-economic and personal expectations defined 
by the agent’s social level (i.e. education level). This utility expresses 
how satisfied an agent is with living in a particular location, and having/ 

1 Geographical Information System (GIS) is a tool to map, analyse, and 
visualize remote sensing and spatial data. 
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not having a job, the balance between its income and education level, 
and which workplace it has to commute to each day for work. Though 
agents try bounded rationality: while they prefer an action that im
proves their utility, they are not searching for a global maximum. Such 
actions include: relocating their place of residence, changing a job, or 
both combined. 

The agent can change its job or location consulting its social network 
or by searching among available options individually. To define the 
social network and agent interactions in the PDR model we employ the 
theory of homophily [58,59], in which the social network is based on the 
degree of similarity (homophily) between two agents (more details in 
Appendix A.iv). To do so, we first determine the contact network and 
collect the information (using Eq. A.2), then the agent selects through 
the available opportunities provided by the networks. In the PDR model, 
the degree of homophily is computed based on the similarity of the three 
agent attributes: job category/workplace, education, and income level 
(Eq. A.3). As a proxy for the accessibility analysis in the PDR model, we 
employed the distance to the workplace, which was computed from the 
RS data (please refer to Appendix A for details). Based on our interviews, 

we assume that IHs prefer to live near their workplaces, having therefore 
a short daily commute. 

The PDR model is initialized using the point-based land use data (FH, 
IH, and location of the industrial workplaces). Since the aim of this study 
is to investigate the utility of combining RS data and ABM to show the 
process of recovery while testing real scenarios, and due to the avail
ability of the multi-temporal RS data and census data, we developed the 
model for the business district of Tacloban city, where typhoon Haiyan 
caused massive damages (Fig. 1). In total, the agents are randomly 
assigned to 2131 informal residential and 1703 formal housing areas at 
initialization. The agents’ state variables for individual IH and FH 
households are derived from the land use map of the Tacloban urban 
area, key interviews, census data, and survey data as described in Ap
pendix (Table A. 1). The PDR model started from one month before 
Haiyan and evolved with a time step equal to one month. Hence, the 
PDR model started in September 2013 with a total of 11,502 agents. 

During each step of the recovery phase in the PDR ABM, a damaged 
building may be reconstructed or a new one added to the residential 
building stock for agents to live in. The monthly increase of the recon
structed buildings was extracted separately for formal buildings and 
slums using the machine learning-derive land use maps from the satellite 
images (see 2.1). 

3. Results and discussion 

Our PDR ABM simulates the post-disaster recovery to explore the 
recovery patterns of formal sector households and slum dwellers. Their 
differences affect decision making during the recovery process. We focus 
specifically on the effects of relocation site existence after a disaster and 
the dynamics of the employment rate in the model. In some post-disaster 
cases, such as in Tacloban, based on the hazard exposure and vulnera
bility measurements, governments decide to relocate people from high 

Fig. 1. The overview of Tacloban, the Philippines, and the satellite image for the modelled urban area acquired before Haiyan.  

Table 1 
Satellite images used in this study.  

ID Timeline Acquired 
date 

Satellite 
platform 

Description 

T0 Before 
Haiyan 

2013-03- 
17 

WorldView-2 Pansharpened images with 
0.5 m spatial resolution 

T1 Event time 2013-11- 
11 

WorldView-2 

T2 Post- 
Haiyan 1 

2014-01- 
25 

Pleiades 

T3 Post- 
Haiyan 2 

2014-06- 
16 

Pleiades  
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natural hazard risk to safer zones; however, this policy is not always 
successful. To model this policy scenario, we added a new residential 
area – built in the Tacloban case – as formal houses to the model that 
becomes accessible after the disaster, which is far from central urban 
areas. As a second policy scenario, we consider a boost in the job re
covery commonly supported by NGOs in disaster-impacted areas. Hav
ing a job is key for individual welfare and socio-economic resilience in 
every society. Hence, we assess the impacts of changing employment 
rates on the recovery process and the resilience for both IH and FH by 
changing the employment rate while the other parameters are fixed. 
Furthermore, we calculate the recovery rate by dividing the utility 
satisfaction level at any stage of the recovery by its corresponding pre- 
disaster one. 

The model was executed 30 times for each of the experiments under 
the same parameter combinations. We present the mean and standard 
deviation values of households’ utility satisfaction across the 30 model 
runs. Since this metric is computed based on the socio-economic status 
of the households (e.g., income and education level) as well as the 

physical recovery rate (i.e., reconstruction of the buildings), it provides 
a holistic overview of the recovery status of the households (please refer 
to Appendix A. for more details). Socio-economic factors deriving the 
micro-level households’ choices are based on the insights from our 2015 
field work and open-ended interviews with Tacloban citizens from 
various occupations. In addition to this qualitative micro-validation at 
the agent level, we perform the macro validation of the simulated spatial 
patterns of recovery against the actual recovery patterns from the time 
series of RS data. These macro-level patterns have underlying social 
dynamics which we reconstruct in our PDR ABM. Validation in this case 
refers to the ability of model heuristics to generate patterns observed in 
the data [53,60]. However, since RS data capture only the physical as
pects of the recovery – damage and reconstruction of buildings – and not 
the utility satisfaction of individual households, a macro validation of 
this socio-economic dimension was not feasible given the available data. 

Fig. 2. Conceptual flow framework of the PDR ABM.  
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3.1. Post-disaster recovery patterns 

We implement the PDR model based on the available data and the 
information collected using both machine learning-derived information 
from RS images and census data. The PDR model results are employed to 
show and discuss the recovery patterns of the IH and FH in the urban 
area of Tacloban after Haiyan for the first 18 months after the disaster. 
Fig. 3 shows the mean satisfaction of the IH and FH starting from before 
the disaster (step = 0), and immediately after the disaster (step = 2), and 
then during the post-disaster recovery process. Indeed, this figure il
lustrates the post-disaster recovery curve of the area in terms of the 
utility satisfaction of the households. The increasing speed of the IH 
satisfaction in the early recovery phase (in the first four months) is 
higher than the one with FH, indicating that the IH is more resilient than 
the FH in terms of coming back to the same utility satisfaction levels. 
Yet, it does not necessarily demonstrate that IH is indeed more resilient 
since the original state was not, to begin with. In addition, the recovery 
rates of the IH and FH are 97% and 103%, where above 100% shows the 
better mean utility satisfaction than pre-disaster situation, and thus, 
reaching the build-back-better goal. The speedy recovery of slum 
dwellers occurs due to two main reasons: (1) slums were reconstructed 
much faster than the formal buildings since it is easier to build a slum 
dwelling compared to a formal structure, this is also observed by 
analyzing the satellite images; (2) availability of low-income jobs is 
higher than high-income jobs in the early recovery phase, and the IH are 
more easily satisfied even with lower-income occupations due to their 
generally low education level. At the same time FHs prefer to have high- 
income jobs, given their education level. Yet, the large industries and 
factories – which most of the FHs prefer as a workplace offering higher- 
incomes – take more time to reconstruct after a disaster. 

Fig. 4 illustrates the spatial distribution of the mean utility satisfac
tion of the households for pre-disaster (step = 0), just after the event 
(step = 2), 3 (step = 5), 8 (step = 10), and 17 (step = 19) months after 
the disaster. The areas denoted with a circle are informal settlements/ 
slums, which recovered faster than the area denoted with a rectangle, 
which is formal settlements. 

Fig. 5 illustrates the dynamics in the percent of HHs working in high 
income and low-income jobs during the recovery. The results show an 
increase in HHs working in low-income jobs after the disaster (step = 1 is 
the disaster moment) due to destruction of the high-income job places 

(e.g. factories) and FH (highly educated households) work in low- 
income jobs. However, by progressing with the reconstruction of the 
industrial buildings those FH have come back to high-income jobs to 
increase their utility satisfaction. 

3.2. Planned relocation and individual choices in the post-disaster 
recovery process 

One of the policies that have already been implemented in Tacloban 
is to move people away from the coastal strip, which is highly exposed to 
Typhoon-related hazards such as high winds and storm surges, to a 
relocation site in the designated safe zone North of Tacloban. Planned 
relocation is a top-down policy to intentionally move urban de
velopments out of the hazard zones, for example by using public funds to 
rebuild housing in safe areas or by offering financial incentives for 
people to relocate from hazard hot spots. However, this can be affected 
by individual choices which are the bottom-up actions of the households 
such as choice of a location to live (e.g., returning back to the same 
house or moving to another place). Hence, we tested the scenario of 
having such a relocation site in the PDR model and to assess the effect of 
commuting distance in the post-disaster recovery process. We did this by 
adding new and available residential areas after the disaster only for 
slum households, the same as the actual policy in Tacloban. However, 
the distance to work (i.e. IH workplaces e.g. fishing) for IH who reside in 
this relocation site increases (i.e. 0.9 as the normalized distance to the 
workplace in the city), and has a significant impact on households’ 
utility. Fig. 6 shows the recovery curve (based on mean utility) of the FH 
and IH after the disaster. Accordingly, the results show that IHs recover 
faster in the early recovery phase by having an option of accommodation 
after the disaster; however, after two to three months the presence of 
relocation site has a low impact on the speed or quality of the recovery, 
but rather producing almost the same change in utility of the IH. In 
addition, the recovery rates of the IH and FH are 102% and 109%, where 
above 100% shows the better mean utility satisfaction than pre-disaster 
situation, and thus, reaching the build-back-better goal. 

The spatial distribution of the mean utility for IH and FH with 
relocation site availability after the disaster is generated and overlaid on 
the original image of the area for the pre-disaster and post-disaster pe
riods (Fig. 7). Moreover, the number of relocation site dwellers was 
computed for each of the selected steps and is illustrated for each step 

Fig. 3. Mean and standard deviation utility satisfaction of the households residing in formal (FH) and informal (IH) urban areas for different time steps in the model, 
in which each step is equal to a month and the time step = 1 is the Haiyan disaster moment. 
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(Fig. 7i). The results demonstrate the pattern of IH movement into and 
out of the relocation site in the post-disaster recovery period. Accord
ingly, IHs moved to the relocation site in the early recovery phase, where 
they do have at least houses to live in, and consequently, this increases 
their satisfaction. However, by progressing with the reconstruction 
process in the central part of the Tacloban, the occupation ratio of the 
relocation site is decreased (Fig. 7). This shows that IHs prefer to move 
back to the same locations as the pre-disaster situation, which are closer 
to their workplaces, and this is an important factor in increasing their 
satisfaction. Accordingly, policy and decision-makers should consider 
the commute distance to workplaces as one of the influential factors in 
planning the recovery, in particular new settlement constructions, while 
trying to increase the resilience of the households by decreasing the 
hazard exposure and vulnerability. 

3.3. The effect of the employment rate on the post-disaster recovery 
process 

In the PDR model, the employment rate determines the probability of 
an agent having a job, which also has an impact on the calculation of 
agents’ utility satisfaction (Appendix A. Eq.1). The utility satisfaction of 
an agent without a job will be zero, and it will look for new job op
portunities or a new location and a job. This also becomes important in a 
post-disaster situation, in which there are job dynamics, and an agent 
may use its social contact network or individual processing to find a job 
based on its characteristics. According to the official statistics data 
(explained in section 2.1) for Tacloban, the employment rate in 2012 
(pre-disaster) was 0.92. However, the employment in the post-disaster 
situation is contingent on the financial aid received from national gov
ernments and international NGOs, expanding the range of feasible re
covery pathways. Hence, we ran a sensitivity analysis changing the 

Fig. 4. (a) Pre-Haiyan high-resolution satellite image of central Tacloban, (b–f) spatial distribution of the mean utility satisfaction for households living in informal 
(denoted by a circle) and formal (denoted by rectangle) settlements for steps 0, 2, 5, 10, and 19, respectively. Each time step is equal to a month; the typhoon Haiyan 
hits the area on step = 1 of the simulation. 

Fig. 5. Percent of Household agents employed at high income (blue) versus low-income (orange) jobs in the post-disaster recovery process. Each time step is equal to 
a month; the typhoon Haiyan hits the area on step = 1 of the simulation. 
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employment rate [0.5; 0.7; 0.8] in addition to the actual rate (i.e. 0.92) 
to explore its effect on the post-disaster recovery process. As before, we 
report the dynamics of utility satisfaction unfolding during the recovery 
for IHs and FHs separately (Fig. 8). The results demonstrate that the FH 
and IH recover (i.e. return to almost normal utility satisfaction) after the 
disaster at almost the same speed. Moreover, the IH recovery rates with 
the employment rates of 0.5, 0.7, 0.8, and 0.92 are respectively 99%, 

98%, 104%, and 97%, and the FH recovery rates with the employment 
rates of 0.5, 0.7, 0.8, and 0.92 are respectively 104%, 103%, 104%, and 
103%. The above 100% recovery rates show the better mean utility 
satisfaction than pre-disaster one, and thus, reaching the build-back- 
better goal. 

Fig. 6. Mean and standard deviation utility satisfaction of the households residing in formal (FH) and informal (IH) urban areas for different time steps with the 
presence of relocation site. Each time step is equal to a month; the typhoon Haiyan hits the area on step = 1 of the simulation. 

Fig. 7. (a) Pre-Haiyan high-resolution sat
ellite image of Tacloban urban area, (b–h) 
spatial distribution of the mean utility 
satisfaction of households residing in formal 
(FH) and informal (IH) settlements for steps 
0, 2, 3, 4, 5, 10 and 19, respectively; the pie- 
chart here denotes the occupation ratio of 
the relocation site at steps 0, 2, 3, 4, 5, 10 
and 19, respectively, and (i) is the relocation 
site occupied and unoccupied ratio for pre- 
and post-disaster situations. Each time step 
is equal to a month; the typhoon Haiyan hits 
the area on step 1 of the simulation.   
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4. Conclusions 

In this paper, we develop a spatial ABM of post-disaster recovery to 
explore the behaviour of two distinct groups living in a city, i.e. families 
residing in the formal and informal urban areas. The urban area of the 
Tacloban city, the Philippines, which hit by Typhoon Haiyan on 8th 
November in 2013, is used as a case study to define the characteristics of 
the agents and create the environment. The objective of the study is to go 
beyond the physical assessment of the recovery process and investigate 
how different areas of the impacted city recover and how this recovery 
process unfolds for various socio-economic groups. To address this 
challenge, we investigate the recovery patterns of formal and informal 
settlements separately, and explore the dynamics of households’ utility 
comprised of satisfaction by their location and job. The latter is an 
emergent property of the model, driven by incremental decisions of 
individual heterogeneous households whose bounded-rational choices 
depend on own socio-economic factors and peer influence via social 
network. We have integrated multi-temporal RS data and advanced 
machine learning methods to provide input to the ABM. To do so, we 
model the behaviour of heterogeneous households who aim to satisfy 
their utility shaped by the individual socio-economical characteristics. 
We present the simulation results for two groups: slum dwellers (IH) and 
households residing in formal housing (FH). 

The main findings of this paper are the following: (i) it adds new 
understanding of the PDR patterns of the formal and informal house
holds by modelling their behaviour as heterogeneous individuals inter
acting in the spatial landscape; (ii) the developed new visualization 
technique based on integration of the PDR ABM outputs with high res
olution satellite images (i.e., overlaying the model outputs on RS im
ages) provides insights into understanding the spatial patterns of the 
recovery; (iii) this study explores emergence of recovery patterns 
resulting from the decision-making process of formal and informal 
households in the presence of hazard-free relocation sites after a disaster 
and a change in employment options. 

Based on the insights gained from the PDR model we identify that IH 
recovers faster than FH and therefore, may appear more resilient. 
However, we question whether returning to the same state – which was 
already undesirable to begin with for IH – is ethically-acceptable in the 
presence of such inequalities, and runs counter to Sendai principles. 
Slum-dwellers suffer the most extensive damage during the disaster and 
develop no capacity to recover to a better state, even in the presence of 
new housing in a safe zone if it robs them of employment opportunities. 
It is also shown that this type of visualization provides insights into the 
neighbourhood level assessments, which can also be employed for other 
applications. To gain more insights and detailed information regarding 
the behaviour of the IH and FH groups, we define and test two policy 
scenarios: the construction of the relocation site and impact of the 

employment rate change on the recovery process and resilience of the 
households. We show that while the existence of a relocation site 
increased the IH recovery speed and thus their resilience, the employ
ment rate has a small effect on the speed of the recovery for both IH and 
FH in terms of utility satisfaction measure. Furthermore, we demon
strate the importance of the commute distance to the workplace for IH. 

The results show that the basic aim of developed PDR model has been 
reached since it provides insight into different recovery patterns of the 
slum and formal sector households. Therefore, policymakers and gov
ernments can use the insights derived from the model to understand 
recovery rates at the neighbourhood level. However, detailed data (e.g., 
micro-level survey data) are needed to replace the randomness/sto
chasticity in the model and understand the behaviour of various in
dividuals and their dynamics during the recovery. 

One of the limitations of this study is neglecting the effect of the 
natural hazard risk and risk perception of the individuals after such a 
major disaster. Hence, by adding the natural hazard risk components (e. 
g. exposure to hazard, vulnerability and prior disaster experience) to the 
PDR model, more accurate empirical implementation of the model can 
be obtained. Some of the information related to these components can 
also be extracted from RS data, but it would primarily rely on house
holds’ surveys. Furthermore, the PDR ABM is used to test the effect of 
employment rate assuming that it is constant during the simulation. 
However, this rate is dynamic and it might change even more after a 
disaster. Hence, further work is required to explore the effect of such 
dynamic ratio on the recovery process, calling for further empirical data 
collection on the socio-economic side. Moreover, adding more vari
ables/components to utility measure of the PDR model, such as social 
and economic characteristics of households (e.g., age and gender), can 
provide more insights into the socio-demographic inequalities in the 
recovery process. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The satellite images were provided by the European Space Agency, 
and Digital Globe Foundation, which was granted for a project at ITC 
entitled “Post-disaster recovery assessment using remote sensing data 
and spatial economic modelling”. The Survey data were provided by the 
German Institute for Development Evaluation (DEval), Competence 
Centre for Evaluation Methodologies, Bonn, Germany. This work was 
partially supported by the European Research Council (ERC) under the 

Fig. 8. The temporal evolution of the mean and the standard deviation of utility satisfaction of households residing in formal (a) and informal (b) settlements under 
the assumption of different employment ratios (0.5, 0.7, 0.8, 0.92). Each time step is equal to a month; the typhoon Haiyan hits the area on step = 1 of the 
simulation. . 

S. Ghaffarian et al.                                                                                                                                                                                                                             



International Journal of Disaster Risk Reduction 60 (2021) 102285

10

European Union’s Horizon 2020 Research and Innovation Program (grant agreement number: 758014).  

Appendix A. The ODD þ D description of the PDR agent-based model 

In this section, we describe the developed post-disaster recovery (PDR) model based on the ODD + D protocol [57]. The ODD + D provides a 
standard description and documentation protocol for agent-based models, which guides researchers to sufficiently substantiate their model.  

a. Overview  
i. Purpose 

The developed post-disaster recovery (PDR) model simulates the decision-making process of individuals with respect to spatial mobility and job 
dynamic/selection based on the satisfying individual utility according to socio-economic parameters for the households in urban areas of Tacloban, 
the Philippines. The PDR model provides a tool to understand how households (living in informal or formal settlements) select/change jobs and 
locations after a disaster during the reconstruction processes, based on the primary factors that influence their decisions after the disaster. In addition, 
the variable recovery across different neighbourhoods/sections of an affected urban area can be revealed by processing RS data; however, there is a 
need for effective tools to explain those observations and identify suitable means to influence the recovery process (find bottlenecks, etc.). The PDR 
model allows studying the different recovery rates of urban areas. Accordingly, policymakers and governments can use the insights derived from the 
model to understand why some regions may thrive and others languish (formal and informal settlements) and make effective decisions during the post- 
disaster recovery process.  

ii. Entities, state variables, and scales 

The main agents in the PDR model are households and buildings in an urban environment. Households could be of two types: families residing in 
formal (FH) or informal (IH) urban areas that have different behaviours, mostly due to their economic and education level. Further, households can be 
heterogeneous within each group, differentiated by income, education, workplace. Urban buildings could be of residential formal or informal and 
industrial buildings. The PDR model distinguishes between two types of residential areas – formal and informal (slums) as well as industrial buildings. 
The latter is important as they represent the location of mid- and high-income jobs, usually accessible only for FH with a higher level of education 
compared to IH. IH often have jobs in an informal sector, such as fishing or seasonal agricultural sector labour. The time interval of the model after the 
disaster is defined as a month.  

iii. Process overview and scheduling 

The overall process of the model is based on satisfying individual utility by choosing an action that gives them higher utility (Fig. 2). This is derived 
from the agent’s social and economic needs, which also defines the behaviour of the agent in the model. Let (U(Ai))(i = 1, 2, 3, …, N) represent the 
utility level of the agent, where N is the number of agents, and (Ai) is based on its current state in the model, then it will look for possible actions 
(options) (ai) to change its state and increase the current utility level. The possible actions for the agent (Ai) are to move to a new location or changing 
its job, or both move to a new location and change its job. The agent can change its job or location using its social network or by looking for a list of 
available options individually. The lower utility level of an agent derived from its current state when compared to the others increases the chance of 
taking one of the possible actions in the model and changing its state. Accordingly, the information/state of the agent (ai) will be updated to its 
selected action from the previous step. Then, the utility (U (ai)) is calculated using the updated state of the agent based on the selected new action. The 
higher calculated utility from its current one will lead to taking action and change in the information of the agent for the next step.  

b. Design concepts  
i. Theoretical and empirical background  

• Theoretical background: The agent behaviour in the PDR model is firmly embedded in the choice theory [61], urban economics [62], and 
sustainable livelihoods approach [63]. Lancaster [64] defined the utility function Uin = U(xin), where xin is the vector of the attributes for 
alternatives (such as workplace accessibility in a particular location [62]) i by every agent n. Recent studies [59,65] have confirmed that 
workplace accessibility is an influential factor in households’ location choices. After a disaster, the importance of workplace accessibility was 
highlighted in field interviews [12], as some buildings and infrastructure may be destroyed, forcing households to relocate or change jobs. 
Ben-Akiva and Bierlaire [66] expanded the utility function to incorporate variability in population: Uin = U(xin,sn), where sn is a vector of 
different agent characteristics, for example, income, education, and employment. We employed the workplace distance as a proxy for the 
accessibility and income, education, and employment (characteristics of the agent) in the PDR model. We used it to compute the utility 
satisfaction (U (Ai)) (see Eq. (1)). Further, we validated the choice of attributes through field interviews in the disaster region. 

The concept of social capital explains/defines the benefits of the contact networks between households and different social groups based on their 
social ties that can provide information regarding the opportunities in the communities [63]. This means that households can have an impact on each 
other’s decisions. In addition, social networks are one of the influential factors of individual activities in the community after a disaster and in the 
recovery phase by sharing the information in their social networks [67]. The similarity (homophily) and interactions between individuals are one of 
the important factors in making the connections and creating social contact networks [58,59]. Hence, we employed the theory of homophily in the 
PDR model to define agent interactions. To do so, we first determined the contact network and then selected the information with the agent to select 
through the available opportunities provided by the networks.  

• Empirical background: We used two information/data sources in the PDR model (explained in section 2.1): 1- Fieldwork data: key interviews, 
survey data (collected for the study [12]) and the demographic data collected from the Philippine Statistics Authority (e.g., unemployment rate, 
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type of the economic activities before and after the disaster), 2- RS data, in particular, high-resolution satellite images acquired during pre- and 
post-disaster times. We extracted information from the machine learning-derived land cover, and land use maps using multi-temporal satellite 
images (the pre- and three days after disaster land use maps produced by Ref. [13]) to be used in the PDR model.  

ii. Individual decision making 

The decision making of an agent (Ai) relies on satisfying own utility U(Ai) based on its current state with respect to living and working envi
ronment. Taking an action (ai) changes individual agent utility. The utility of an agent (Ai) depends on its socio-economic and personal expectations 
defined by the agent’s social level (i.e. education level). This utility expresses how satisfied an agent is with living in a particular location, and having/ 
not having a job, the balance between its income and education level, and which workplace it has to commute to each day for work. Accordingly, the 
utility for each agent can be computed using the following equation (A1): 

U(Ai)= I*J*
(

Y
E

)

*(1 − D) (A1)  

where I represents the impact of the disaster, J shows the job status, Y and E are the income and education levels, respectively, and D is the normalized 
distance to the workplace for each agent (Ai). Each variable of the utility can be determined as follow:

Fig. A1. The probability distribution of the job sectors for IH (a) and FH (b) over time. Each time step is equal to a month, and step = 1 is the disaster moment.  

Fig. A2. The probability distribution of the distance to the workplace (i.e. service job type) for FHs.    

• I: shows if the agent has been impacted by the disaster and its house has been damaged or even destroyed. Thus, if the agent has a house damaged/ 
destroyed I = 0, and if not I = 1. The damaged and intact buildings were extracted using RS-derived land use maps (explained in section 2.1).  

• J: if the agent has a job j = 1, and if not j = 0. The job options for the highly educated households/agents (FH) are services (which are considered 
high-income jobs), farm, fishing, construction (which are in the group of low-income jobs). However, IH agents can only work in low-income jobs. 
The selection of the unemployed agents is made based on the probability distribution, which is extracted from the data. Accordingly, the prob
ability of having a job for each agent is 0.92 (i.e., employment rate extracted from census data), while the probability of not having a job is 0.08.  

• Y: there are two income levels in the model: low and high. For an agent with high-income Y = 1, and with low-income Y = 0.5. Service sector 
employment falls in the high-income job group, while farm, fishing, and construction are in the low-income job category. Hence, FH agents prefer 
to work in high-income jobs, given that they are highly/better-educated agents, and IH can only work in low-income jobs. Assigning a workgroup 
to an agent is also based on the distributions extracted from data (Fig. A1).  

• E: there are two education levels in the model. For an agent with high education level E = 1, and with low education level E = 0.5. 
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• D: is the distance to workplaces for the agents. The distance for FHs is based on the distribution that has been computed from the RS data (Fig. A2). 
This distance was initially computed in a point-to-point manner using the pre-Haiyan land use map (using FH and industrial buildings locations/ 
coordinates). Also, IHs work in low income jobs (e.g., farming, fishing) and according to our observations and the data collected during the 
fieldwork they mostly reside close to their workplaces (e.g., farmland) in Tacloban. Thus, for IHs, the distance to workplaces can be either 0.05 or 
0.1 based on equal distribution. 

Based on the above-explained variables and their possible values, the utility of the agent will be [0,1]. For example, an agent without a house to live 
(when its house was destroyed by the disaster and has not yet been reconstructed in the recovery phase) or a job to have income, or has a workplace in 
the farthest place its U(Ai) will be equal to zero. 

Each step of the model is considered as one month, and during the recovery phase, the buildings might be reconstructed and can be added to the 
model, i.e. can be used for agents to live in. The monthly increase of the reconstructed buildings was extracted separately for formal buildings and 
slums using the machine learning-derive land use maps from satellite images (explained in Section 2 - Methods).  

iii. Individual sensing 

The social contact network of each agent can be formed based on their social interactions in the social spaces like community centres and 
workplaces [65,68–71]. Accordingly, we used the workplace of agents as a space to make the contact network in the model. First, we used the 
following equation (A2) to find the degree of the potential of being a contact network: 

C
(
Ai, Aj

)
= Sector

(
Ai, Aj

)
+ γ (A2)  

where Sector(Ai, Aj) is equal to one if the agents work in the same business sector, and if not it equals to zero. And, γ is a random number between zero 
and one and adds stochasticity in the model which is also observed in real world networks. 

Past studies have shown that the random chance to form an edge in most social networks varies from 0.1 to 0.3 [72]. In this study, we have assumed 
a mean value of 0.2. Then finally, the agents Ai and Aj may become a contact network and may have an impact on each other’s decisions if C(Ai, Aj) has 
a greater number than 0.8.  

iv. Interactions 

This section describes how the agents in their contact network (which are extracted using the previous section) make social networks and share 
information and opportunities in the model. To do so, we used the theory of homophily, in which the social network is based on the degree of similarity 
(homophily) between two agents. Accordingly, the agents with similar attributes have a higher degree of homophily and have more social impact on 
each other. This theory has been validated in several studies that use different attributes (e.g., age, education language) of the individuals in the social 
network [58,73,74]. In addition, it has also been used for defining the social network for slum dwellers [59]. 

In the PDR model, the degree of homophily is computed based on the similarity of the three agent attributes: job category/workplace, education, 
and income level. And it can be formulated as follows (A3): 

Hom
(
Ai,Aj

)
=

⃒
⃒AtAi ∩ AtAj

⃒/⃒
|AtAi |

(A3)  

where Hom(Ai,Aj) ∈ [0, 1] is the degree of homophily with values closer to 1 indicating the higher degree of homophily, AtAi and AtAj are the set of 
attributes of the Ai and Aj, respectively. Hence, the weight of an edge between the agents Ai and Aj can be calculated using the equation below (A4): 

ωe
(
Ai,Aj

)
=Hom

(
Ai,Aj

)
*

dAj∑
ndAn

(A4)  

where dAj is the degree of agent Aj (i.e., the number of links that the agent already possesses). Hence, based on the weight of edges for each agent, the 
household agents tend to copy attributes (i.e., job) of those agents with whom have a high homophily degree. 

After computing the homophily degree for agent Ai and ranking them, the first five agents are selected as the most influential ones. Then, their edge 
weights are used in further steps to be copied/mimicked by agent Ai. However, due to the monthly change in the status of available jobs on a market 
during the recovery processes, the half weight of the influential agents is included in the model to account for the effect of the reconstruction process 
and job dynamics after the disaster.  

v. Individual prediction 

Each time step an individual/agent could change either his location or workplace or both. The change occurs only in the case of finding a new 
opportunity that increases his utility satisfaction. A decision to look for new opportunities is based on the individual threshold value drawn from the 
probability density function, which is based on the distribution of utility levels of all agents in the city achieved in the previous modelling step. This 
means that agents with utility lower than utility of the majority in the previous time step will have higher probability to seek new opportunities. We 
denote this threshold as Tchange ranging from 0 to 1 for an agent Ai and draw it individually for each agent every time step to update the individual urge 
to look for new opportunities for changing agents’ current states. 

Then, if the utility value of the agent Ai is below the Tchange, the agent will decide to gather information and look for updating/changing its current 
state and increase its utility satisfaction. There are three options to change for each agent (only change job, only change location, change both job and 
location), of which the agent randomly selects one based on the equal probability for each. After selection of each of which, the agent starts gathering 
information for undertaking a new action using one of the following ways: 
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• Individual processing: randomly evaluating N number of workplaces or locations or both from available options.  
• Social networking: evaluating available options only for the workplace offered by its top N number of social contact networks. 

Since the process of building reconstruction (including slums, formal and industrial buildings) changes the options available for the agents 
(workplace, household location) at each step, the reconstruction rate and job dynamics are the key components of the model (Fig. A3). Thus, indi
vidual processing is based on the updated information on the recovery. However, the social networking process for evaluating options uses infor
mation from the previous step. Hence, the PDR model only uses the half weight of the output of the social network added to the half weight of the 
updates that come from the reconstruction processes. Eventually, after evaluating all the options, the agent decides to undertake an activity only if this 
will increase its current utility level.

Fig. A3. Temporal evolution of the reconstruction percentage of the formal buildings (orange line) and informal settlements (blue line). Each time step is equal to a 
month; the typhoon Haiyan hits the area on step = 1 of the simulation.   

vi. Collectives 

Each agent (either FH or IH) collects and stores information about his social contact network.  

vii. Stochasticity 

The process of selection of the social contact network is stochastic due to including the randomly selected number for parameter γ. In addition, the 
decision making of the agents/individuals has a randomness selection procedure first to choose whether to change workplace or location or both 
together and then a random selection from the probability distribution of the available options. This procedure adds stochasticity to the decision- 
making process of the agents in the PDR model.  

c. Details 

The initialization of the model and the employed input data are described in this section. The PDR model was developed and executed in Python 
using the MESA framework, and the residential choice model developed by Ref. [59] was used as the base model. The source code is available on an 
open-access library for ABM, which can be downloaded using the following link: (https://github.com/Saman-Gh933/Agent-based-modeling-of-post- 
disaster-recovery-with-remote-sensing-data).  

i. Initialization 

The PDR model initialized using the point-based land use data (FH, IH and location of the industrial workplaces). In total, the agents randomly 
assigned to 2131 IH points and 1703 FH points are initialized in the model. The agents’ state variables are individual IH and FH households derived 
from the land use map of the Tacloban urban area, key interviews, census data, and survey data (from Ref. [12]). The basic income and education 
levels of the agents for the pre-disaster time were extracted from RS-derived land use information. That means from the land-use map we extracted 
whether area is under formal or informal development, which we correspondingly link to residents with high and low-levels of income and education. 
If a household lives in an informal settlement, it has been categorized as having low income and low education levels; while, if a household lives in a 
formal settlement, then it presumably has a high income and education levels (Table A1). However, there are sub-groups for low-level income jobs, i.e. 
construction, fishing and farm (Fig. A1and Table A1, which are determined based on authors’ knowledge gained from 2015 fieldwork. In addition, 
there is only one type of jobs for high-level income agents, i.e., services/high income industry. Notably, agents with high education level can also work 
in low-level income jobs, especially after the disaster. Yet, low-educated individuals cannot have high-income jobs (Fig. A1). Furthermore, the ca
pacities for the houses and jobs were computed based on the population and employment rate for the barangays using census data and remote 
sensing-derived land use map. We find per barangay population in census data, and extract the number of grid cells for residential buildings from 
RS-derived land use maps for the corresponding barangay. Then, we extract the capacity of the residential building grid cell by dividing the population 
to the number of the residential building grid cells, the outcome value is three. Accordingly, each house in the formal and informal residential areas 
has the limit of three households. No limit was defined for low-income jobs in the informal sector according to census data and availability of many 
low-income jobs like fishing and farm. In contrast, the high-income job capacity is computed based on the population and employment rate. First, we 
extracted the number of households for the corresponding barangay, then multiply it with the employment rate, and finally divided the outcome by 
the number of the workplaces/buildings (as grid cell/pixel), and the final value is 3. Thus, the limit for the high-income job capacities is three. The PDR 
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model started from one month before Haiyan to evolve. Hence, the PDR model started in September 2013 with a total number of 11,502 agents.  

ii. Input data 

There are two sources of the input data used in the model that change the conditions (available jobs, job types, and their probability distribution 
and open locations/houses) in each step. The damaged buildings and reconstruction levels of the built-up areas (slums and formal buildings) were 
extracted from the land use maps for three days after the disaster (for damage mapping and extracting the damaged houses), as well as three and eight 
months after the disaster. In addition, based on the best of our knowledge, we also assumed that the area had been fully reconstructed after five years. 
Subsequently, the extracted damage and reconstruction levels were transformed/translated to steps, given that each step of the model is one month.  

Table A1 
The key variables, their values and data sources used for the base PDR scenario.  

Variable Description Initialization Data used to extract 

Household ID Unique ID to identify a household Randomly initialized in the model – 
Land use To identify settlement type (i.e. 

formal or informal settlement) 
Initialized using pre-disaster land use map Remote sensing data 

Impact of the 
disaster 

Shows if the agent has been 
impacted by the disaster 

Extracted using machine learning-derived post-disaster land use maps. Remote sensing data 

Job Shows if the agent has a job Randomly initialized using the unemployment rate. Census data 
Income Income level of the agent Y = 1 for high-level income, and Y = 0.5 for low-level income Remote sensing data 
Education Education level of the agent E = 1 for high level education, and E = 0.5 for low level education Remote sensing data 
Workplace Workplace with the following 

possible choices: 
• Service/high-income industry 
• Farm 
• Fishing 
• Construction 

Different business sectors were extracted using the survey data, and key interviews. And 
the location of the high-income job workplaces (i.e. service) was initialized using pre- 
disaster machine learning-derived land use map. 

Survey data, Key interviews 
and remote sensing data 

Distance to 
workplace 

Commute distance to the 
workplace 

For slum dwellers it is equal to 0.05 or 0.1, which is randomly initialized with equal 
probability distribution. For formal households it is computed from pre-disaster land use 
map which is ranging between [0.001, 0.408] 

Remote sensing data  
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