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Abstract: Depth estimation for light field images is essential for applications such as light field
image compression, reconstructing perspective views and 3D reconstruction. Previous depth map
estimation approaches do not capture sharp transitions around object boundaries due to occlusions,
making many of the current approaches unreliable at depth discontinuities. This is especially the
case for light field images because the pixels do not exhibit photo-consistency in the presence of
occlusions. In this paper, we propose an algorithm to estimate the depth map for light field images
using depth from defocus. Our approach uses a small patch size of pixels in each focal stack image
for comparing defocus cues, allowing the algorithm to generate sharper depth boundaries. Then, in
contrast to existing approaches that use defocus cues for depth estimation, we use frequency domain
analysis image similarity checking to generate the depth map. Processing in the frequency domain
reduces the individual pixel errors that occur while directly comparing RGB images, making the
algorithm more resilient to noise. The algorithm has been evaluated on both a synthetic image dataset
and real-world images in the JPEG dataset. Experimental results demonstrate that our proposed
algorithm outperforms state-of-the-art depth estimation techniques for light field images, particularly
in case of noisy images.

Keywords: depth map; focus map; light field; focal stack

1. Introduction

Depth estimation for planar images is essential for applications such as changing
depth of focus, simulating and subsurface scattering and shadow mapping. Depth estima-
tion is also crucial in computer vision applications such as robot vision, self-driving cars,
surveillance and human–computer interactions. Depth estimation algorithms also play an
important role in semantic segmentation algorithms [1,2]. To estimate depth maps, a wide
range of stereo matching techniques have been proposed and implemented, and Scharstein
and Szeliski present an in-depth analysis of these techniques [3]. In recent years, the in-
troduction of light field images has made it possible to generate images at different focal
lengths, extended depth of field and estimate the scene depth from a single image capture.
Depth maps from light field images are essential for light field image compression tech-
niques, reconstructing views from a sparse set of perspective views, increasing the number
of perspective views and 3D reconstruction.

Compared to the techniques using a single image or stereo image pair for depth
estimation, light field images enable researchers to explore techniques such as depth from
correspondence and defocus from a single image. This is due to light field images capturing
not only the pixel intensity but also the direction of the incident light with a single capture;
however, the challenges in depth map estimation from planar images still apply, and are
compounded by the challenges of estimating depth from light field images, including the
presence of occlusion, textureless regions and overexposed regions in images.

Existing light field depth estimation techniques include stereo-based matching, using
epipolar images, depth from defocus and more recent techniques that use neural networks.
Stereo matching for depth estimation suffers from ambiguity due to partial occlusions [4].
Since the stereo pair are images, the information lost by the occlusions cannot be recovered
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but can only be approximated using a smoothness term to fill the gaps. In contrast, epipolar
images are formed by stacking together the sub-aperture images in both the horizontal
and vertical direction as shown in Figure 1b and Figure 1c, respectively. A slice through
this 4D block reveals the depth of the pixels, as the slope of the line reflects the depth
information as shown by the red, green and blue parallelograms in Figure 1. The pixels
in the central view that do not move with changing sub-aperture views have a zero slope
and are seen as a straight line as shown by the blue parallelograms in Figure 1b. The pixels
that are closer to the camera incline to the right as shown by the green parallelograms
in Figure 1c, and the pixels that are further away from the camera incline to the left as
shown by the red parallelograms in Figure 1. However, basic line fitting techniques to
estimate depth would not give robust results and the reconstructions are generally noisy [5].
Schechner and Kiryati [6] have extensively studied depth from defocus and correspondence
techniques and have compared the advantages and disadvantages of both cues. Finally,
Convolutional Neural Networks (CNN) are a known approach in imaging applications
such as object recognition, human–computer interaction, image segmentation and stereo
depth estimation [7]. However, the lack of training data in existing light field images
datasets makes it hard to train and test the network for light field images [8].

(a) (b) (c)
Figure 1. (a) The sub-aperture image view; (b) the EPI for the vertical line represented in (a); (c) the
EPI for the horizontal line represented in (a).

In this paper, we exploit the characteristic of light field images having multiple focal
planes that are captured in a single image to generate the disparity or depth map. Our
algorithm is designed to use the concept of depth from defocus by a one-to-one comparison
between the focal stack image and the central all-in-focus image. We show that our
approach is noise resilient in depth estimation, and out-performs the current state-of-the-
art benchmark algorithms in the presence of noise. The proposed algorithm is compared
to four benchmark techniques from Strecke et al. [9], Wang et al. [10], Zhang et al. [11]
and Shin et al. [12] for synthetic images with and without noise. All the four techniques
discuss their algorithms’ noise resilience in their work. Strecke et al. [9] suggest mixing the
focal stack cost volume with a stereo correspondence cost volume to increase resilience
against noise. Wang et al. [10] validate the robustness of their system on noisy image,
and report the F-measure values of each algorithm. Zhang et al. [11] suggest reducing
the number of bins for depth estimation in the presence of noise, but do not compare their
algorithm’s noise performance result to other algorithms. The multi-stream CNN proposed
in Shin et al. [12] uses 2 × 2 kernel that reduces the effect of noise.

2. Our Contribution

The main contributions of our work are:

1. To reduce the dependence of depth accuracy on RGB values of individual pixels
compared in the image patches, we propose a method that uses frequency domain
analysis to estimate the depth map for light field images.
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2. The key contribution of our approach is noise resilience in depth estimation. Our
analysis confirms the hypothesis that comparing focal stack image patches in the
frequency domain improves depth map accuracy, especially in the presence of noise.
We shown that our algorithm out-performs the current state-of-the-art benchmark
algorithms in the presence of noise.

3. Background

Conventional photography is only able to capture limited information from the light
passing through the camera lens. In general, cameras record the sum of the intensities
of light rays striking each point in the image and not the total amount of incident light
traveling along different rays that contribute to the image [13]. In contrast, light field
imaging technology captures rich visual information by representing the distribution of
light in free space [14], which means that a light field image captures the pixel intensity and
the direction of the incident light. The additional dimensions of data captured enables the
generation of images at different focal lengths and extended depth of field using ray-tracing
techniques. This allows for image manipulation in a more flexible way [15]. Capturing a
light field can be a challenging task as a light field image captures the pixel intensity and
the direction of the incident light. The two techniques that can be used to capture a light
field image are: first, using an array of video cameras as described in [16]; then second,
using a plenoptic camera as shown in Figure 2. Once the light field image is captured,
raytracing can be applied to filter out the light rays that do not contribute to a particular
depth. Rearranging the rays then estimates where the light rays would terminate if the
camera was focused on the desired depth [17].

Figure 2. Diagrammatic representation of a lenslet-based plenoptic camera to capture light field
images [17].

The model that describes the distribution of light is known as a plenoptic function.
The plenoptic function describes light as a function of position, angle of incidence, wave-
length and time [14]. As shown in Figure 3, the most common way to represent the 4D
plenoptic function is to parameterize the light rays as an intersection of the light ray on
two planes placed at arbitrary positions [14]. The plenoptic function can thus be defined
as L (u, v, s, t); where (u, v) and (s, t) denote the position of intersection of the light ray on
the two planes, respectively. The function L(u, v, s, t) is a two-plane model of light field in
which the st plane can be considered as a set of cameras that have the focal plane on the uv
plane [14].



5 of 28

Figure 3. Schematic representation of t he plenoptic function [18].

Finally, a light field image can be visualized by representing the image as an Epipolar
Plane Image (EPI). The EPI can be obtained by fixing one coordinate in both spatial and
angular domains, while plotting pixel intensities as the other coordinates of the spatial and
angular domain are varied [11], as shown in Figure 4c.

(a) (b)

(c)
Figure 4. The three representations of the two-plane light field. (a) The sub-aperture images or the
pinhole view. (b) The sub-view for the light field. (c) Epipolar-plane image, which is obtained by
fixing both spatial a nd angular co-ordinates [18].

4. Related Work

Current key approaches to light field depth estimation techniques include stereo
based matching, using epipolar images, depth from defocus and, more recently, the use of
Convolutional Neural Networks (CNNs).

4.1. Depth Estimation Using Stereo Matching

Many of the proposed stereo matching algorithms are based on graph cuts and energy
minimization techniques by using different constraints. Kolmogorov and Zabih [19] and
Woodford et al. [20] combine visibility and smoothness terms for effective optimization
Bleyer et al. [21] , on the other hand, consider the pixel appearance, global MDL constraint,
smoothing, soft segmentation, surface curvature and occlusion. However, the stereo
correspondence methods suffer from ambiguities while dealing with noisy and aliased
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regions, and the narrow baseline for real camera LF images makes it difficult for these
algorithms to solve the occlusion problem [11].

4.2. Depth Estimation Using Epipolar Plane Images

Depth estimation using Epipolar Plane Images (EPI) is another popular approach. Each
slice through the 4D light field representation can be used to analyze the line structure to es-
timate the depth of the pixel under inspection as shown in Figures 1a,b. Johannsen et al. [22]
propose a method that learns the structural information from the central view, and compare
them to the 2D 5 × 5 epipolar image patch to estimate the depth map. Wanner and
Goldluecke [23] address the problem of reflective surfaces in the image that cause irreg-
ularities in the epipolar plane. They propose the use of higher order structure tensors to
overcome this problem. Criminisi et al. [24] use the epipolar images to build and minimize
the matching cost for each pixel that accounts for the pixel intensity value, gradient pixel
value and spatial consistency. Criminisi et al. [24] use canny edge operator, while Wanner
and Goldluecke [25] use structure tensor to obtain local disparity estimates by computing
the weighted mean of each side of the line in the EPIs and then finding the distance between
the two means [11]; however, occlusions and noise could cause the pixels on both sides
of the lines to be different. Zhang et al. [11] propose a spinning parallelogram operator
that tries to estimate the local direction of a line at a specific point in an EPI, and to avoid
problem of the inconsistency of pixel distribution on either sides of the line, they consider
each side separately. This assumption makes their depth estimation algorithm more robust
to occlusions and noise, then Criminisi et al. [24] and Wanner and Goldluecke [25]’s algo-
rithm. We compare our results with Zhang et al. [11] for noisy images and their EPI-based
technique generates outliers that severely effects the accuracy of their depth maps.

4.3. Depth Estimation Using Defocus

Depth estimation from defocus has been studied extensively e.g., Schechner and
Kiryati [6], who compare the advantages and disadvantages of using defocus or corre-
spondence cues. Research on depth from defocus also extends beyond using LF images,
estimating the depth map using a single image [26,27]. Nayar and Nakagawa [28] in their
work demonstrate that the defocused imaging system plays the role of a low-pass filter
to estimate depth using the measure of focus between image points. Strecke et al. [9]
create four separate stacks using only the views right of, left of, above and below the
reference view. The assumption is that the baseline is small enough so that if occlusion
is present it occurs only in one direction of view point shift. Tao et al. [29] proposed to
combine the defocus and correspondence cues using a MRF as the global optimization
process. Building on the concept of combining defocus and correspondence cues for depth
estimation [29], Wang et al. [10] take into account occlusion to estimate a more accurate
depth map. To account for occlusion, an angular patch is generated for the reference pixel
to then check for the photo-consistency of that patch. However, similar to other proposed
techniques, the algorithm does not perform well in regions of low texture [10].

4.4. Depth Estimation Using Convolutional Neural Networks

Convolutional Neural Networks (CNN) have been used extensively in image pro-
cessing applications such as object recognition, human–computer interaction, image seg-
mentation and stereo depth estimation [7]. Over the past few years, research has been
conducted to use CNN for depth estimation in light field images [7,8,30]. The main concern
in using CNN for light field images is that the existing light field datasets are insufficient
in size to train the network, and datasets do not have accurate ground truth depth in-
cluded [30]. To address this problem, Heber and Pock [30] generated a synthetic light
field dataset using the raytracing software POV-Ray, Feng et al. [7] use the Lytro camera
to capture the light field images and then use a 3dMD scanner [31] to capture the ground
truth, Shin et al. [12] on the other hand augment the data through scaling, center view
change, rotation, transpose and color that are suitable for light field images. In their ap-
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proach, Heber and Pock [30] extract the information from the vertical and horizontal EPIs
to input into the CNN. The resultant depth map is optimized by solving a convex energy
minimization problem. Unlike Heber and Pock [30] that use only one directional EPI,
Shin et al. [12] construct a multi-stream networks for four viewpoints, horizontal, vertical,
left and right diagonal directions. They show that their multi-stream network reduces the
reconstruction error over single-stream network by 10%. They claim that the use 2 × 2
kernel in the algorithm reduces the effect of noise. In this paper, we compare our results
with their multi-stream network on both synthetic images with and without noise, and even
though their algorithm out-performs our algorithm for noiseless images, our algorithm
out-performs their results for all images with added noise.

5. Methodology

The methodology presented in this paper exploits the characteristic of light field
images in having multiple focal planes that are captured in a single image. The flow
of the algorithm is represented in Figure 5. As shown in Figure 5, the methodology
can be divided into four main sections: initial depth estimation, focal stack generation,
patch generation and comparison and depth refinement. Unlike the depth from defocus
algorithms described in the literature review, our approach uses frequency patch analysis,
which makes the algorithm more resilient to noise.

Figure 5. Flow of the proposed algorithm.

5.1. Initial Depth Estimation

The initial depth estimation algorithm only determines the maximum and minimum
depth values, rather than the intermediate depth values. The depth or slope difference
between two consecutive focal stack images for the initial depth estimation algorithm is
taken to be 0.2; experimental evaluation proved that this value sufficiently covers the depth
range to permit accurate estimation of periphery depth values. This initial depth estimation
stage improves the depth estimation in two ways: firstly, it reduces the computational time
as only the relevant focal stack images are generated; secondly, reduces the number of
redundant images to then also reduce the possibility of misdetections.

5.2. Focal Stack Generation and Image Pre-Processing

A single LF image can be used to generate an all-in-focus image and also to generate
the same scene at different focal lengths and narrow depth of field. The sub-aperture
images can be obtained by holding ( u,v) fixed and considering all (s,t) [17]. The central
sub-aperture image is the all-in-focus image. Figure 6 shows the conceptual model of a light
field image when refocusing at a virtual plane (s′,t′). Thus, to refocus the image to a different
focal plane (s′,t′), the shifted versions of the sub-aperture images are summed together.
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Figure 6. Conceptual model for refocusing LF image at a different depth [17]. The (u,v) and (s,t) plane
are surfaces of the camera, respectively, and (s′,t′) is the refocus plane.

Following the same concept, the focal stack is generated using the shift-sum filter,
which is a depth-selective filter that functions like a planar focus. The filter works by
shifting (u,v) slices of the LF image to a common depth and then adding the slices together
to obtain the 2D image. The value of the slope controls the amount of shift that corresponds
to the image being focused on a different focal plane. The difference in slope values between
two consecutive images in the focal stack for our work is 0.01, which implies that to obtain
an accurately refocused image at that small depth difference the sub-aperture images have
to be shifted at multiples of 0.01 pixels. To shift the sub-aperture images with subpixel
accuracy we use a frequency domain approach. In this approach, the relationship between
the image shift in the spatial and frequency domains is shown in Equation (1), where
s 0 and t0 is the slope value and u, v is the sub-aperture location. The amount by which the
sup-aperture image has to be shifted to refocus at a particular depth is the product of s0, u
and t0, v.

f (s + s0, t + t0) = F(u, v)e−j2π(
us0+vt0

N ) (1)

The refocused images can then be generated by either averaging the shifted sub-
aperture pixels or by using the median value of the pixels. Figure 7 shows a comparison of
the blur around the depth discontinuities when focusing on the background for both the
summing techniques. It is clear from the magnified parts shown in Figure 7a–c that the
amount of defocus blur around the depth discontinuities using the averaged pixel value is
very large compared to the amount of defocus blur using the median value.

(a) (b)

(c)
Figure 7. (a) Central sub-aperture image of a LF image, (b) focal stack image refocused on the
background using median pixel values and (c) focal stack image refocused on the background using
averaged pixel values and magnified region at depth discontinuity for each image.
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The technique used in this paper estimates the depth map by matching image patches
from the focal stack to the central sub-aperture image, thus it must be ensured that all the
edges and textured regions in the image are well defined in both the central all-in-focus
image as well as the focal stack images to minimize the number of misdetections. This
problem is addressed by adding the gradient of the image to itself. The main advantage of
adding the gradient relies on the fact that in a refocused focal stack images, the textured
regions in the image that are in focus maximally contribute to the gradient image, while
the out-of-focus objects will contribute the least. This pre-processing step ensures that the
object boundaries and textured regions are exaggerated in the focal stack images drastically
reducing the number of misdetected patches, in turn reducing the dependence on the
post-processing steps. As the purpose of the gradient addition step is only to enhance the
textured regions and boundaries on the focal stack images that are in-focus, unless the
shadows cause the region to become textureless in the image, our algorithm is not affected
by this step. The comparison between the accuracy of the estimated depth map with and
without the gradient addition is shown in Figure 8 and it can be seen in Figure 8c,f that the
part of the image with shadows are also estimated accurately.

(a) (b) (c)

(d) (e) (f)
Figure 8. (a) Central sub-aperture image of a LF image, (b) unrefined depth map calculated without
gradient addition, (c) unrefined depth map calculated with gradient addition, (d) ground-truth depth
map, (e) refined depth map calculated without gradient addition and (f) refined depth map calculated
with gradient addition. The Badpix metric for without and with gradient addition is 9.11% and
96.23%, respectively.

5.3. Patch Generation and Comparison

The focal stack images that are acquired in the previous stage are divided into smaller
image patches and then those individual patches are compared with the corresponding
block in the all-in-focus image. Since the accuracy of the approach is dependent on the
similarity check of the individual image patches, it is crucial that a block of appropriate
shape and size is selected. Initial tests for patch selection were performed with a square
patch of size 10 × 10 pixels. This was the preliminary test that was performed to validate the
approach. The test was then repeated with patches of different sizes. The results showed
that smaller window sizes covered the image regions and boundaries more accurately.
As the window size decreases, the processing time increases as the number of patches
that are being compared increase; however, the nature of square-shaped patches over or
under-compensated object boundaries that were slanted or curved in the image.

In testing cross shape patches, the area that is uncovered in the gaps between four
consecutive cross is less than that of the primary cross window size. This meant that to
cover the entire image without any gaps, cross patches of two different sizes were used.
The shape and size of the primary cross governs the shape and size of the secondary cross as
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shown in Figure 9. To address misdetections due to small window size using cross patches,
an overlapping window is used. For the proposed algorithm, we use the two cross patches
of size 4 × 4 pixels as shown in Figure 9. In Figure 9 the red and green squares are the pixels
that are considered for matching with the all-in-focus image patch, but only the pixels
highlighted in red in the red square and the pixels highlighted in green in the green square
are used to generate the depth map. The patch size can be reduced lower than 4 × 4 pixels,
although experimental tests revealed that using a patch of size smaller than 4 × 4 pixels
does not improve the depth map accuracy and increases the computational time.

Figure 9. The red and green squares are the two overlapping 4 × 4 pixel patches used to cover the
entire image. As the patches overlap, only the highlighted red and the green pixels from the red and
green squares are used to estimate the depth.

By comparing the FFT of the image patches, we are no longer looking at individual
pixel values when comparing the image patches, but a frequency domain representation of
those patches, which makes the comparison more robust to noise. To illustrate the proposed
approach Figure 10 shows the central sub-aperture image of the LF image, a 4 × 4 pixel
patch taken from the image and the FFT of the patch generated. The focal length for
synthetic images lies between a slope of −1 to +4 and for a Lytro camera, the image lies
between slopes of −1 to +2. We therefore correspondingly generated the focal stack from a
slope of −1 to +4 for synthetic LF images, and from the slope of −1 to +2 for real LF images.
The slope interval between two consecutive focal stack images defines the number of depth
levels in the depth map. We found through experimentation that for the purposes of our
work, the slope can be varied at an interval of 0.01, as using an interval below 0.01 does
not show any significant change in the focus for consecutive focal stack images for both
the synthetic and real LF images. Thus, for a synthetic LF image the depth map can have
up to 801 depth levels as the focal stack is generated from a slope of −1 to +4 at a slope
interval of 0.01, while for a real LF image the depth map can have up to 401 depth levels as
the focal stack is generated from a slope of −1 to +2 at a slope interval of 0.01. The depth
levels for the depth map can be increased by reducing the slope interval between the focal
stack images, although as the depth levels increase the computation time also increases.
For visual brevity in Figure 11, only 8 refocused images are considered from −1 to +4 slope
at an interval of 1. It is clearly seen that the fifth patch in Figure 11 is the most similar to the
reference patch.
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(a) (b) (c)
Figure 10. (a) Central sub-aperture image of a LF image, (b) a magnified 6 × 6 RGB image patch
and (c) FFT of the image patch.

(a)

(b)

(c)
Figure 11. (a) The RGB image patch and (b) the FFT patch at different focal lengths. The patch with
the red boundary is the closest match to the reference patch in Figure 10. (c) The graph shows the
MSE values for the central image in Figure 10, with the corresponding focal stack image patch.

5.4. Depth Map Refinement

The depth map evaluated up to this stage has a few patches that are not detected
correctly, and since the patches are shaped as a cross, it creates a depth map with jagged
edges, thus the object boundaries need to be refined in order to restore the shape of the
object. Figures 12 and 13 show the comparison between the ground truth and the estimated
depth map before and after this refinement step for the synthetic and real images. The dis-
parity map is refined in two steps using an iterative approach. Firstly, the histogram of
the disparity map is checked for the number of pixels that are present at each depth. If the
number of pixels at a particular depth falls below the threshold value, those pixels are
filled with the maximum likelihood value of the pixels in the depth map at that position
using the pixel value that occurs the most times in the neighboring pixels. The second
step is similar to the first step, but instead of looking at individual pixels, the cross patches
are considered. This step checks for any isolated patches in the image that have different
surrounding depth patches. Once these patches are isolated, the patch is filled with the
value of pixels with maximum likelihood in the depth map at that patch position using the
pixel value that occurs the most times in the neighboring pixels.
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Central view Ground truth Unrefined Final
depth map

Figure 12. Comparison between the ground truth and the estimated depth map before and after the
refinement step for synthetic images.

Central view Unrefined Final
depth map

Figure 13. Comparison between the estimated depth map before and after the refinement step for
real images.

6. Misdetection Analysis

The depth estimation in the proposed algorithm compares the FFT of the all-in-focus
patch and the patches at different focal positions in the focal stack to check for the least
error to then accordingly estimate the depth. The quantitative results for ’dot’ image
presented in Table 1 confirm that both techniques give comparable results. The advantage
to using the FFT domain over the spatial RGB patch is that the number of misdetections is
drastically reduced with the FFT, which reduces the algorithm dependence on the depth
map refinement stage. A closer visual comparison in Figure 14 also shows that the depth
boundaries are sharper and the depths are more accurately represented for the results using
FFT. The ‘dot’ image is one of the more challenging images from the dataset due to the
added Gaussian noise to approximate thermal and shot noise [32], and the shape and size
of the objects in the image. In further evaluation, image-level comparisons for the proposed
algorithm are shown in Figure 14. It can be seen that the noise in the image considerably
reduces the depth map accuracy when using RGB patches, where parts of objects in the
image are completely misdetected; whereas, for the depth map generated by using the
proposed FFT comparison, the results are more noise-resilient. The proposed algorithm
also outperforms the state-of-the-art for the ’dot’ image, as can been seen in Figure 15.
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Table 1. Comparison of the estimated depth map when using the FFT Patch and RGB Patch algo-
rithms.

Dots Dots

FFT Patch Depth Map RGB Patch Depth Map

Badpix 0.07 0.9705 0.7760
Badpix 0.03 0.8853 0.5967
Badpix 0.01 0.3880 0.2391

Central view Ground truth FFT depth map RGB depth map
Figure 14. Visual comparison between ground truth depth map, the result using FFT to estimate
depth map (proposed algorithm) and depth map estimated using RGB patches.

Central view Ground truth Proposed results

Strecke et al. [9] Wang et al. [10] Zhang et al. [11] Shin et al. [12]
Figure 15. Visual comparison for the dot image with the ground truth, proposed and state-of-the-
art algorithms.

Figure 16 shows central view, ground-truth depth map and the estimated depth
map for the Rosemary image in the synthetic image dataset. Our algorithm produces an
inaccurate depth map for the Rosemary image with a Badpix 0.07 value of 0.34. The error is
caused because the wall in the background and the vase in the foreground have a smooth
and textureless surface, which make the two indistinguishable by our algorithm. It is
important to note that the misdetection is not caused by the shadows in the image as the
carpet at the bottom of the image is not misdetected even though shadows falls on the
carpet as well, and the cotton image in Figure 8 also show that shadows do not effect the
depth map accuracy for our algorithm.

Central view Ground truth Proposed results
Figure 16. Misdetection of textureless regions in Rosemary image.
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Figure 17 shows the mean squared error (MSE) for the patch that is estimated to the
correct depth at different focal lengths with the patch of the all-in-focus image. This trend
in the graph indicates that the image patch is depicting the correct depth: in the example
shown in Figure 17, the plot takes a significant dip as it reaches the least MSE, which is the
true depth for that particular patch. As the patch goes further away from the correct depth
value, the graph makes a similar curve on both the sides of the focal stack. Even though in
our work we are only using the patches with the least MSE to estimate the depth map, it
is an important observation to see that the graph almost traces a bell curve. This shows
that the MSE value is similar when defocusing toward or away from the patch in focus.
In contrast, Figure 18 shows an example of a patch being misdetected in the ’cotton’ image.
Although the graph follows a similar trend to Figure 17, the graph has two considerable
dips, one at the correct depth of slope 1.2, and the other at the incorrect depth of slope −1.6.
It is also important to note that the number of misdetections are less even though the depth
map has not been refined at this stage.

Figure 17. MSE for the central image patch and the patch at different focal lengths when the depth is
estimated correctly.

(a) (b)

(c)
Figure 18. (a) The depth map of cotton image with the red square showing the cross error patch.
(b) The central image with the red box showing the error patch. (c) The MSE of the central image
patch with the patch at different focal length.
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7. Experimental Results

The results of the proposed algorithm were evaluated on both real and synthetic light
field image datasets. For the synthetic data, the 4D light field dataset [32] was used. The
dataset is widely used for validations of depth estimation algorithms for light field images
as it contains ground-truth disparity and depth maps. The dataset contains 28 image with a
9 × 9 sub-aperture images with a resolution of 512 × 512. For evaluation of our algorithms
with the benchmark algorithms we have selected 10 images as each image contains different
materials, lighting conditions and complex structures. Figures 19 a–c and 20d have finer
detail and complex occlusions. Figure 19c,d have transparent and reflective surfaces.
Figures 19d and 20a,e have shadows. Figures 19b and 20b,c are abstract scenes with complex
textures. For the real data the EPFL light field dataset [33] was used. The real image dataset
contains 138 LF images in LFR (light field raw) file format captured by a Lytro Illum
camera with a 15 × 15 sub-aperture images with a resolution of 434 × 625. The Lytro Illum
camera used for LF image acquisition have different calibration data and the LFR files were
processed by their corresponding calibration data. Figures 21a,c and 22a–c contain finer
objects and complex surfaces such as perforated metal and fences. Figures 21b and 22c,d
contain textureless or overexposed regions such as the sky. Figures 21a,b and 22d,e show a
gradual change in depth and Figure 21e contains complex structures such as the branches
and trees.

The depth maps generated by our proposed approach initially calculates the depth
range, and the depth levels vary according to the maximum and minimum depth values
present in each LF image. The slope for real data is within the range of +2 to −1, whereas
for the synthetic data lies within the range of −1 to +4 and the slope interval used for both
type of images is 0.01, as explained in Sections 5.2 and 5.3. The number of depth levels
can be increased or decreased by reducing or increasing the slope interval between focal
stack images. The proposed algorithm is compared to four benchmark techniques from
Strecke et al. [9], Wang et al. [10], Zhang et al. [11] and Shin et al. [12] using the BadPix
metric that specifies the percentage of pixels where disparity deviates by less than 0.07,
0.03 and 0.01 pixels from the ground truth. We have chosen these four techniques are they
are the state-of-the-art for the different depth estimation techniques. Strecke et al. [9] and
Wang et al. [10] use depth from defocus, Zhang et al. [11] use EPIs, whereas Shin et al. [12]
use CNN for depth estimation. In order to compare the depth maps using different
algorithms to the ground truth, all output disparity maps are normalized to the ground truth
depth map range. For Strecke et al. [9] and Shin et al. [12], normalized results are directly
compared to the ground-truth disparity map. For Wang et al. [10] and Zhang et al. [11] the
disparity map is normalized before comparing it to the ground truth.

7.1. Synthetic LF Images

The LF images in the 4D Light Field Dataset [32] comprise 9 × 9 sub-aperture images.
For the synthetic images, the images in Figures 19, 20, 24 and 25 show the error pixels in
red where depth deviates by more than 0.07 from the ground truth and the pixels in green
where depth deviates by less than 0.07. Tables 2 and 3 compares the ground truth images
to the disparity maps generated by the algorithms that are being tested using the Badpix
metric. The LF images generated synthetically have little to no noise compared to the
real LF images, and thus the estimated depth maps have less misdetections and the depth
boundaries are well defined on the synthetic data compared to the real data. Tables 2 and 3,
which are a comparison of the depth maps with the ground-truth depth map, show that
the proposed algorithm out-performs the state-of-the-art algorithms in the two criteria of
Badpix 0.07 and 0.03 for the ’dots’ images from the synthetic images in the dataset. On visual
inspection of Figures 19 and 20, it shows that even though the noise level is increased in
the bottom part of the image, the background is region is still detected accurately. For
’medieval 2’ image, the region in the image near the window on the top left and near the
door on the bottom right has a dark shadow, which is the common area misdetected for
all algorithms. Shin et al. [12]’s produce the least errors around object boundary for the
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synthetic light field images. The ’kitchen’ and ’museum’ image in Figure 19c,e shows how
the error pixels are in the same regions for all the estimated depth maps. The reason for
the similarity is those regions in the image are either transparent or reflective surfaces.
Shin et al. [12] show fewer errors around these regions as they explicitly use a mask for
these type of surfaces while training their network. The depth map for our algorithm,
Shin et al. [12] and Strecke et al. [9] give similar results for the background and foreground
region in the ’kitchen’ and ’museum’ image, whereas the depth maps from Wang et al. [10]
and Zhang et al. [11] produce errors in the background and foreground regions. For
the ’museum’ image in Figure 19e, and the ’pillow’, ’platonic’ images in Figure 20a,b,
our proposed algorithm out-performs the non-CNN based algorithms at Badpix 0.03,
with comparable results for the other two criteria. Out of the three images mentioned
above, for the ’museum’ image the main reason for the errors is the reflective display case
and the bright display case lighting. For the ’platonic’, ’pyramids’ and ’tomb’ images in
Figure 20, our depth map generates error only at depth boundaries and all other regions are
estimated accurately and is comparable to Shin et al. [12]’s CNN approach. Shin et al. [12]
produce high accuracy depth maps and are also able to distinguish accurate depths for
occlusions and smaller objects in the image, but the accuracy reduces for transparent or
reflective surfaces and for noisy images.

(a) Backgammon

(b) Dots

(c) Kitchen

Figure 19. Cont.
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(d) Medieval 2

(e) Museum

Central
view

Proposed
result

Strecke
et al. [9]

Wang
et al. [10]

Zhang
et al. [11]

Shin
et al. [12]

Figure 19. Visual comparison of the proposed algorithm with Strecke et al. [9], Wang et al. [10],
Zhang et al. [11] and Shin et al. [12] for synthetic LF images.

(a) Pillows

(b) Platonic

(c) Pyramids

Figure 20. Cont.
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(d) Stripes

(e) Tomb

Central
view

Proposed
result

Strecke
et al.[9]

Wang
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Zhang
et al. [11]

Shin
et al. [12]

Figure 20. Visual comparison of the proposed algorithm with Strecke et al. [9], Wang et al. [10],
Zhang et al. [11] and Shin et al. [12] for synthetic LF images.

Table 2. Quantitative depth map comparison for synthetic data to ground truth for different algo-
rithms.

Back-Gammon Dots Kitchen Medi-eval2 Museum

Proposed Results

Badpix7 0.8230 0.9605 0.7010 0.9362 0.8440
Badpix3 0.7324 0.8853 0.5941 0.8528 0.7772
Badpix1 0.4910 0.3880 0.3749 0.5514 0.5305

Strecke et al. [9]

Badpix7 0.9580 0.6273 0.7224 0.9608 0.8578
Badpix3 0.9283 0.4514 0.6282 0.8895 0.7615
Badpix1 0.6606 0.1777 0.4644 0.6469 0.5256

Wang et al. [10]

Badpix7 0.8753 0.8801 0.6300 0.5136 0.8522
Badpix3 0.4525 0.2485 0.3991 0.1119 0.6902
Badpix1 0.0544 0.0456 0.1772 0.0370 0.2741

Zhang et al. [11]

Badpix7 0.7889 0.7358 0.6379 0.9580 0.8940
Badpix3 0.3762 0.4810 0.3165 0.7513 0.5413
Badpix1 0.1057 0.4810 0.0997 0.2658 0.1899

Shin et al. [12]

Badpix7 0.9777 0.9473 0.7931 0.9847 0.9598
Badpix3 0.9594 0.7957 0.7209 0.9584 0.9053
Badpix1 0.8265 0.5122 0.4809 0.7263 0.6478
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Table 3. Quantitative depth map comparison for synthetic data to ground truth for different algo-
rithms.

Pillows Platonic Pyramids Stripes Tomb

Proposed Results

Badpix7 0.9212 0.9747 0.9920 0.8853 0.9696
Badpix3 0.8769 0.9447 0.9582 0.8275 0.9100
Badpix1 0.6096 0.7600 0.7485 0.6732 0.6423

Strecke et al. [9]

Badpix7 0.9710 0.9645 0.9969 0.8741 0.9813
Badpix3 0.8687 0.9230 0.9927 0.8556 0.9252
Badpix1 0.4914 0.7792 0.9417 0.4925 0.6875

Wang et al. [10]

Badpix7 0.9387 0.6583 0.9843 0.8231 0.7953
Badpix3 0.5611 0.4620 0.7520 0.0048 0.4134
Badpix1 0.1492 0.1889 0.0737 0.0004 0.1359

Zhang et al. [11]

Badpix7 0.9398 0.9906 0.8958 0.8373 0.9622
Badpix3 0.5066 0.7454 0.1885 0.5243 0.7500
Badpix1 0.1869 0.2946 0.0634 0.5243 0.2871

Shin et al. [12]

Badpix7 0.9939 0.9981 0.9972 0.9894 0.9963
Badpix3 0.9772 0.9941 0.9917 0.9865 0.9826
Badpix1 0.7727 0.7273 0.8673 0.8869 0.6453

7.2. Real LF Images

The proposed algorithm is not able to distinguish objects in the image that are less
than 4 × 4 pixels in width due to the patch size used, but using patches of size less
than 4 × 4 pixels drastically increases the number of misdetected depth patches and also
increases the computational time. The image result displayed in Figures 21 and 22 on
visual inspection shows similar outcomes as for the synthetic images. The central view for
four images in the Figures 21a,b and 22d,e show a gradual change in depth and the depth
maps correspondingly show the gradient change. For the proposed algorithm, the images
in Figures 21a,c and 22c with the chain fences, the regions where the chain has a shadow
cast over it is misdetected. The chain fences in all three images for all the algorithms have
been under or over-compensated. The lorikeet image in Figure 22e is a complex image
with the leaves and branches, but the proposed algorithm performs comparatively with
Strecke et al. [9] and Zhang et al. [11]; on the other hand, with Wang et al. [10] major parts of
the image are misdetected. For the ’perforated metal 1’ image Figure 22a, parts of the image
in the far background and foreground are represented with less error as compared to all the
other depth maps, whereas in the ’perforated metal 3’ image Figure 22b, Wang et al. [10]
better estimates the depth around the holes in the metal frame. In Figures 21 and 22,
misdetections can been seen for textureless regions for the ’backlight 1’ image Figure 21b,
the ’perforated metal’ image Figure 22a, and the ’university’ image Figure 22d, i.e., the
regions of the image with the sky.

(a) Danger de mort

Figure 21. Cont.
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(b) Backlight 1

(c) Chain link fence 2

(d) Fountain 2

(e) Lorikeet

Central view Proposed
result

Strecke
et al. [9]

Wang
et al. [10]

Zhang
et al. [11]

Shin
et al. [12]

Figure 21. Visual comparison of the proposed algorithm with Strecke et al. [9], Wang et al. [10],
Zhang et al. [11] and Shin et al. [12] for real LF images.

(a) Perforated metal 1

(b) Perforated metal 3

(c) Spear fence 1

Figure 22. Cont.
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(d) University

(e) Zwahlen and Mayr

Central view Proposed
result

Strecke
et al. [9]

Wang
et al. [10]

Zhang
et al. [11]

Shin
et al. [12]

Figure 22. Visual comparison of the proposed algorithm with Strecke et al. [9], Wang et al. [10],
Zhang et al. [11] and Shin et al. [12] for real LF images.

7.3. Noisy Image Analysis

The results in Figures 15 and 23 and Table 4 demonstrate that the proposed algorithm
is more noise-resilient than existing approaches. To further explore our algorithm’s noise
resilience, Gaussian noise approximates thermal and shot noise in images, and Gaussian
noise with zero mean and variance of 0.01 was added to the 4D Light Field Dataset [32].
Gaussian noise was chosen as it approximates thermal and shot noise in images, as at
large light levels, the Poisson distribution that describes shot noise approaches a normal
distribution and can be approximated using Gaussian noise.

Table 4. Comparison for the ’dot’ image with ground truth for proposed and state-of-the-art algo-
rithms.

Dots

Proposed Result Strecke et al. [9] Wang et al. [10] Zhang et al. [11] Shin et al. [12]

Badpix7 0.9605 0.6273 0.8800 0.7357 0.9473
Badpix3 0.8853 0.4514 0.2485 0.4810 0.7957
Badpix1 0.3880 0.1777 0.0456 0.4810 0.5122

(a) Dots Badpix 0.03

Figure 23. Cont.
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(b) Dots Badpix 0.01

Central view Proposed
result

Strecke
et al.[9]

Wang
et al. [10]

Zhang
et al. [11]

Shin
et al. [12]

Figure 23. Visual comparison of the ground truth with the proposed algorithm, Strecke et al. [9],
Wang et al. [10], Zhang et al. [11] and Shin et al. [12] for dots image for Badpix 0.03 and 0.01.

The proposed algorithm out-performs the benchmark algorithms for all images in
all three criteria as shown in Tables 5 and 6, Figures 24 and 25. The algorithm from
Zhang et al. [11] and Wang et al. [10] generates a disparity map that uses the maximum
and minimum depth values from the ground-truth depth map to scale the disparity map
accordingly. The problem with noisy images is that misdetections and outliers make the
re-scaling unreliable and nontrivial. It is clear from the results shown in Tables 5 and 6 that
the accuracy of the proposed algorithm is also significantly affected for most of the images,
but the algorithm is still able to estimate a depth map with comparatively high accuracy
compared to the state-of-the-art algorithms. The average accuracy for our algorithm for
Badpix 0.07 across the ten images used for testing shown in Figures 24 and 25 is 0.75,
whereas for Shin et al. [12], Strecke et al. [9], Wang et al. [10] and Zhang et al. [11] it is
0.6, 0.3, 0.26 and 0.11, respectively. For the ’dots’, and ’pyramids’ images the accuracy is
over 95% out-performing the state-of-the-art algorithms. The images with finer details
such as the ’backgammon’ image in Figure 24a has a considerable amount of misdetections,
but algorithm is still able to obtain a Badpix 0.07 value of 0.74. The ’kitchen’ and ’museum’
image in Figure 24c,e shows errors for transparent or reflective surfaces, but the depth map
for our algorithm estimates the background and foreground region in the image accurately
with Badpix 0.07 value of 0.63 and 0.69, whereas the depth map from Wang et al. [10] and
Zhang et al. [11] produces errors in the background and foreground regions and Badpix
0.07 value below 0.25. Shin et al. [12], on the other hand, shows an Badpix 0.07 value 0.5
and 0.52, but large parts of the background and foreground region are misdetected. An
important observation that can be drawn from Tables 2, 3, 5 and 6 is that without the added
noise the average accuracy for the proposed algorithm, Shin et al. [12], Strecke et al. [9],
Wang et al. [10] and Zhang et al. [11] is 0.96, 0.9, 0.89, 0.79 and 0.86, respectively. After the
noise is added to the images, our accuracy reduces to 0.75, whereas for Shin et al. [12] it
reduces to 0.6, Strecke et al. [9] it reduces to 0.3, Wang et al. [10] it reduces to 0.26 and
Zhang et al. [11] it reduces to 0.11.

(a) Backgammon

Figure 24. Cont.
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(b) Dots

(c) Kitchen

(d) Medieval 2

(e) Museum
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view
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Zhang
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Shin
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Figure 24. Visual comparison of the proposed algorithm with Strecke et al. [9], Wang et al. [10],
Zhang et al. [11] and Shin et al. [12] for synthetic LF images with added noise.

(a) Pillows

Figure 25. Cont.
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(b) Platonic

(c) Pyramids
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(e) Tomb
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Figure 25. Visual comparison of the proposed algorithm with Strecke et al. [9], Wang et al. [10],
Zhang et al. [11] and Shin et al. [12] for synthetic LF images with added noise.

Table 5. Quantitative depth map comparison for synthetic data to ground truth for different algo-
rithms for noisy images.

Back-Gammon Dots Kitchen Medi-eval2 Museum

Proposed Results

Badpix7 0.7408 0.9620 0.6341 0.8171 0.6921
Badpix3 0.5126 0.8561 0.4323 0.5584 0.4889
Badpix1 0.2101 0.2808 0.1733 0.2290 0.2023
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Table 5. Cont.

Back-
Gammon

Dots Kitchen Medi-
eval2

Museum

Strecke et al. [9]

Badpix7 0.2781 0.3975 0.2309 0.3024 0.1938
Badpix3 0.1312 0.1895 0.1140 0.1419 0.0919
Badpix1 0.0450 0.0634 0.0402 0.0487 0.0318

Wang et al. [10]

Badpix7 0.0022 0.8619 0.1229 0.0892 0.1868
Badpix3 0.0008 0.7684 0.0570 0.0340 0.0790
Badpix1 0.0003 0.1351 0.0197 0.0083 0.0260

Zhang et al. [11]

Badpix7 0.0144 0.0002 0.1587 0.2456 0.1054
Badpix3 0.0057 0.0001 0.0666 0.1022 0.0517
Badpix1 0.0019 0.0000 0.0217 0.0322 0.0174

Shin et al. [12]

Badpix7 0.5778 0.8990 0.5035 0.6512 0.5237
Badpix3 0.3265 0.6624 0.3090 0.3898 0.3112
Badpix1 0.1162 0.3034 0.1247 0.1451 0.1181

Table 6. Quantitative depth map comparison for synthetic data to ground truth for different algo-
rithms for noisy images.

Pillows Platonic Pyramids Stripes Tomb

Proposed Results

Badpix7 0.6823 0.8457 0.9891 0.3582 0.8008
Badpix3 0.5099 0.6272 0.9108 0.1982 0.5089
Badpix1 0.2417 0.2600 0.4835 0.0930 0.1877

Strecke et al. [9]

Badpix7 0.3212 0.3093 0.6557 0.1388 0.1404
Badpix3 0.1698 0.1476 0.3456 0.0641 0.0615
Badpix1 0.0613 0.0511 0.1136 0.0212 0.0206

Wang et al. [10]

Badpix7 0.1472 0.2515 0.6136 0.2488 0.0561
Badpix3 0.0700 0.1126 0.0870 0.1106 0.0209
Badpix1 0.0257 0.0366 0.0141 0.0014 0.0069

Zhang et al. [11]

Badpix7 0.1794 0.0394 0.2569 0.0419 0.0530
Badpix3 0.0814 0.0148 0.0917 0.0219 0.0214
Badpix1 0.0273 0.0045 0.0115 0.0078 0.0075

Shin et al. [12]

Badpix7 0.6000 0.6621 0.9729 0.2084 0.3957
Badpix3 0.4383 0.3836 0.8325 0.1051 0.1904
Badpix1 0.2193 0.1461 0.4132 0.0372 0.0664

7.4. Runtime Complexity Analysis

The code for the proposed algorithm was implemented in MATLABTM on an Intel i7
machine at 1.9GHz and 16 GB of RAM. The results for Strecke et al. [9], Wang et al. [10]
and Zhang et al. [11] were generated using the same machine. Tables 7 and 8 show the
average runtime for synthetic images and real images, respectively, over all the images in
the dataset for a single run for the proposed algorithm compared to the state-of-the-art
algorithms. The runtime for Strecke et al. [9] for real images is lesser than for synthetic
images, as running their complete code requires the parameter files that are not available
for the real images used. As Shin et al. [12] propose a CNN approach, their network has to
be trained and their network takes 5 days to train.
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Table 7. Average runtime for synthetic data.

Synthetic Light Field Dataset

Proposed Strecke et al. [9] Wang et al. [10] Zhang et al. [11] Shin et al. [12]

1418 s 462 s 243 s 537 s 7 s

Table 8. Average runtime for real data.

Real Light Field Dataset

Proposed Strecke et al. [9] Wang et al. [10] Zhang et al. [11] Shin et al. [12]

2559 s 187 s 658 s 1413 s 8.43 s

The runtime for the proposed algorithm varies for each of the images as the algorithm
first calculates the maximum and minimum depths for the image and then generates the
focal stack. The runtime for the algorithm can be divided into four stages: the first stage
calculates the initial depth, which takes an average of 52.18 s; all of the pre-processing steps
in the second stage for the images takes an average of 0.21 s per image; the third stage
generates the focal stack where majority of the processing time is spent, an average duration
of 2.17 s per image; and the last stage is where the depth map is estimated and refined,
which on average is 0.8 s per image. For real images the initial depth estimation stage takes
an average of 150 s; all the pre-processing steps for the images takes an average of 0.21 s
per image; the third stage generates the focal stack where majority of the processing time
is spent, an average duration of 9.68 s image, and the last stage estimating and refining
the depth map on average takes 1.02 s per image. The run time can be approximated by
adding the per image times for each stage and multiplying it by the number of focal stack
images. The runtime for the real images is more than the synthetic images as the number of
sub-aperture images is more in the case of real images.

8. Conclusions

Depth maps from light field images are essential for light field image compression
techniques, reconstructing views from a sparse set of perspective views, increasing the
number of perspective views and 3D reconstruction. In this paper, we proposed a depth
estimation algorithm that works on the concept of depth from defocus. Our experimental
evaluation shows that the proposed algorithm outperforms state-of-the-art algorithms for
both synthetic and the real light field image datasets. We also show that comparing the FFT
of the images patches instead of the RGB patch directly increases our algorithm’s resilience
to noise.

One key advantage of our algorithm is that it can be used to estimate the depth
map using focal stack images captured by a 2D camera. The limitation of the proposed
methodology is that the size of the patches makes it difficult to distinguish objects smaller
than 4 × 4 pixels. To address this limitation we are currently investigating how the
algorithm would perform if we would increase the resolution of the LF image or the focal
stack images.
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