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Abstract

Salp swarm algorithm (SSA) based on the swarming behaviour of salps found in ocean, is a very

competitive algorithm and has proved its worth as an excellent problem optimizer. Though SSA

is a very challenging algorithm but it suffers from the problem of poor exploitation, local optima

stagnation and unbalanced exploration and exploitation operations. Thus in order to mitigate

these problems and improve the working properties, seven new versions of SSA are proposed in

present work. All the new versions employ new set of mutation properties along with some common

properties. The common properties of all the algorithms include division of generations, adaptive

switching and adaptive population strategy. Overall, the proposed algorithms are self-adaptive

in nature along with some added mutation properties. For performance evaluation, the proposed

algorithms are subjected to variable initial population and dimension sizes. The best among the

proposed is then tested on CEC 2005, CEC 2015 benchmark problems and real world problems from

CEC 2011 benchmarks. Experimental and statistical results show that the proposed mutation clock

SSA (MSSA) is best among all the algorithms under comparison.

Keywords: Salp swarm algorithm, mutation operators, adaptive properties, benchmark problems,

nature inspired algorithms.

1. Introduction

Nature has always served as motivation for problem solving and has been continuously doing

so since ages. In present age, various natural phenomena known as algorithms have been inte-

grated to design nature based algorithms to solve various real world optimization problems at hand

(Gandomi et al., 2013). These algorithms have been divided into two types namely evolutionary

algorithms and swarm intelligent algorithms. Evolutionary algorithms were first formulated in the

early 1970’s and genetic algorithm (GA) was the first algorithm under this category (Goldberg &

Holland, 1988). Other algorithms under this category include biogeography based algorithm (BBO)

(Simon, 2008), differential evolution (DE) (Storn & Price, 1997), ant lion algorithm (ALO) (Mir-

jalili, 2015), dragonfly algorithm (DA) (Mirjalili, 2016a) and others. Swarm intelligent algorithms

on the other hand are based on the swarming behavior of different species (Yang et al., 2013) and

major algorithms under this category include bat algorithm (BA) (Yang, 2010), flower pollination

algorithm (FPA) (Yang, 2012), particle swarm optimization (PSO) (Kennedy, 2010), ant colony
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optimization (ACO) (Dorigo & Birattari, 2010), artificial bee colony (ABC) (Karaboga & Basturk,

2007), firefly algorithm (FA) (Yang, 2009), grey wolf optimization (GWO) (Mirjalili et al., 2014),

krill-herd algorithm (KHA) (Gandomi & Alavi, 2012), sine-cosine crow search algorithm (SCCSA)

(Khalilpourazari & Pasandideh, 2019), hybrid particle swarm optimization and gravitational search

algorithm (PSOGSA) (Mirjalili & Hashim, 2010), naked mole-rat algorithm (NMRA) (Salgotra &

Singh, Salgotra & Singh) and others.

Salp swarm algorithm (SSA) (Mirjalili et al., 2017) is one among the recently introduced swarm

intelligent algorithm. The algorithm is highly competitive and is based on the swarming behavior

of salp species found in oceans. It consists of several stochastic operators which make it feasible to

use for various optimization domains. Salps have the same structure as those of jelly fishes for food

foraging, in moving from one position to another and also to pump water through their body. In

SSA, the salps form salp chains which has a leader and is followed by the follower salps. As far as the

parameters are concerned, the algorithm consists of only one controlling parameter which helps in

maintaining a balance between the exploration and exploitation. Due to the limited use of training

parameters, the SSA is found to be highly effective and has been applied to a large number of real

world engineering design problems.

As far as, the recent literature is concerned, SSA has been applied to various different opti-

mization problems. These include image segmentation of different models of fishes (Ibrahim et al.,

2018), feature selection problem (Ibrahim et al., 2017), optimization of tariff plans in electrical power

systems (Khalid et al., 2018), training of feed forward neural networks (Abusnaina et al., 2018), op-

timization of cost values in thermal, wind and hydro power plants (Das et al., 2018), parametric

optimization of fuel cells (El-Fergany, 2018) and others. Apart from the application portion, var-

ious modified versions have been implemented including memetic theory based SSA (Yang et al.,

2019), mathematical simplex method inspired SSA (Wang et al., 2018), multiple leader selection

based SSA (Bairathi & Gopalani, 2019), binary based SSA for application to discrete optimization

problems (Mirjalili et al., 2017) and others. Note that a detailed discussion on the literature has

been presented in subsequent section.

Though SSA is a highly competitive algorithm and has been found to be effective for various

real world applications, it suffers from the problem of local optima stagnation and hence poor

exploration operation (Chen et al., 2018). The algorithm also suffers from unbalanced exploration

and exploitation operation and hence has a slow convergence (Qais et al., 2019). On exploiting

the basics of SSA, it can be seen that it has only one parameter to be optimized and any small

change in the basic parameter makes the algorithm switch from exploration to exploitation and

vice verse. Thus making it vulnerable to various problems including poor convergence and local

optima stagnation. The general equation of SSA is also based on the lower and upper bounds of

the problem only and doesn’t include any neighbouring solutions. The use of neighbouring solutions

make the algorithm more exploratory and hence helps the algorithm in moving towards particular

direction. Another disadvantage of using lower and upper bound based solution update is that

no information about the previous solutions is kept in the next generation. Thus providing weak

exploration operation. Overall, it can be concluded that SSA suffers from various problems and
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more work is required to be done in order to improve its working capability.

In present work, different aspects of SSA are exploited by using seven new mutation operators

to improve its overall performance. Seven different mutation operators have been identified and

implemented to make the algorithm more capable in exploring and exploiting the search space. The

following modifications have been added to basic SSA:

• The concept of division of iterations is followed to perform two operations. Firstly, derive

new exploration equations so as to reduce the effect of random upper and lower bound and

improve the exploration capabilities. Secondly, addition of a new phase based on the concepts

of GWO and CS algorithms to improve the exploitation operation and add a balance between

the exploration and exploitation operation.

• In order to reduce the required number of function evaluations, a linear population size reduc-

tion scheme is followed.

• Seven different mutation operators have been identified and linked to basic SSA to analyze the

effect of these operators to SSA and improve overall performance. Based on these, seven new

versions of SSA are proposed.

• Apart from all the above said modifications, exponential decreasing SSA parameter c1, is also

used to balance the exploration and exploitation operations.

Based on the above discussed points, SSA is modified and seven new versions are proposed.

The newly proposed algorithms for performance evaluation are tested on CEC 2005 (Suganthan

et al., 2005), CEC 2015 (Liang et al., 2014) benchmark problems and some real world optimization

problems (Das & Suganthan, 2010). The algorithms have been subjected to multiple population

and dimensional analysis and best among them is compared with the standard state-of-the-art

algorithms. Apart from this, statistical tests and convergence profiles are also drawn to prove the

significance of proposed algorithm statistically.

The article is divided into 6 sections with introduction in section 1, basics of SSA in section 2 and

literature with respect to modified versions and application to real world problems is presented in

section 3. Here it should be noted that section 3 specifically details about the various drawbacks of

basic SSA and also defines the motivation behind present work. In section 4, new modified versions

are proposed using the concepts of mutation operators. Here new mutation operators are proposed

and based on them modifications are added in the basic SSA. The fifth section, presents the result

and discussion. In this section, details of test functions, parametric details, result with respect

to variable population and dimension size, effect of mutations and discussion based on results has

been added. Finally, based on the results, conclusions are drawn in section 6 and future scope is

highlighted. The outline of major works carried out in the paper is given in Figure 1.

2. Salp Swarm Algorithm

SSA is a recent introduction in the field of swarm intelligent algorithms, based on the navigation

and foraging pattern of salps found in ocean. Salps have a body structure similar to jelly fishes and
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Figure 1: Outline of the paper

follow almost similar patterns for pumping water, moving forward and other tasks. These species

live in groups and based on their grouping patterns, SSA has been formulated (Mirjalili et al., 2017).

The algorithm uses the concept of salp chains, with leader salp as the first member of the chain

and follower salps as the other members. Each salp chain has only one leader and others are the

follower salps. Here it should be noted that the leader salp is meant for guiding the follower salps

for searching food. The follower salps also follow each other as well in order to remain as a member

of the group or salp chain.

The position update for different salps for an n-dimensional search space is represented by the

amount of food source S and it is the target vector. The general equation for position update of

salps with respect to food sources is given by (1)

Y 1
j =

Sj + c1((ubj − lbj)c2 + lbj) C3 ≥ 0

Sj − c1((ubj − lbj)c2 + lbj) C3 ≤ 0

(1)

where Y 1
j and Sj is the position of first salp and food source in jth dimension respectively, ubj

and lbj represents the upper and lower boundary of jth dimensional problem, c1, c2 and C3 are the

random initialization parameters drawn from uniformly distributed parameters in the range of [0,1].

Here coefficient c1 is the only parameter which is required to be optimized and serves as the most

important factor in deciding the extent of exploration and exploitation in SSA and is given by (2):

c1 = 2 e−( 4i
I )2

(2)

where i is current iteration and I is the maximum count of iterations. The equation (1) discussed

above deals with the position update of leader salps only. For position update with respect to the
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follower salps, the equation (3) is sued and is given by

Y kj =
1

2
at2 + v0t (3)

where k ≥ 2, Y kj is the position of kth salp with respect to jth dimension, t is time per iteration, v0

is the initial speed and a =
vfinal
v0

. Also v0 = 0 is taken into consideration and hence the equation

(3) becomes

Y kj =
1

2
(Y kj + Y k−1

j ) (4)

Here it should be noted that equations (1) and (4) are used for updating the positions of leader

as well as follower salps respectively. The leader salp is updated in accordance with the food source

and follower salps is meant for following it until the maximum number of iterations are reached. The

parameter c1 is decreasing and helps in shifting the algorithm from exploration operation toward

exploitation operation over the course of iterations. Thus, maintaining a proper balance between

the global and local search and avoiding local optima stagnation problem for finding the correct

estimated optimal solution.

3. Literature review

SSA because of its simple structure and limited number of parametric requirements, has been

applied to a large number of optimization problems. The algorithm is very promising and fast

in optimizing and hence can be considered as one among the emerging standard state-of-the-art

algorithms. A lot of work has been done to improve it working capabilities and application to real

world optimization problems. A binary version of SSA was proposed by using s-shaped and v-shaped

transfer functions in (Faris et al., 2018), chaotic SSA using 10 chaotic maps was proposed in (Sayed

et al., 2018) to improve its local optima stagnation problem, chaotic SSA based on quadratic integrate

and fire neural model to optimize different functions (Majhi et al., 2019). Inertia weight controlled

SSA was proposed in (Hegazy et al., 2018) to control the current best solution. This is meant for

improving the reliability, local optima stagnation and switching capabilities. Another modification to

convergence factor has been done in (Chen et al., 2018) to improve the switching capabilities of SSA.

Gravitational search algorithm (GSA) was hybridized with SSA to avoid premature convergence in

(Li et al., 2018). Here GSA was added for exploration operation whereas SSA was meant for

exploitation operation. Opposition based concepts were exploited for SSA in (Bairathi & Gopalani,

2018). Here new population is initialized using the concepts of opposition based learning to improve

the diversity with in the search agents. In (Wang et al., 2018), simplex method was added in SSA

to diversify the population and improve the local search operation. The algorithm proposed was

tested over a limited set of benchmark functions and require further investigation. Hybridized PSO-

SSA was proposed by changing the position of SSA using the concepts of PSO (Ibrahim et al.,

2019). SSA with sine cosine algorithm (Mirjalili, 2016b) was modified in (Singh et al., 2019) for

improving its convergence rate. Different transfer function including sigmoid and arctan have also

been used to implement the binary version of SSA in (Rizk-Allah et al., 2019). The reason for using

these functions was to improve the mobility and multiplicity features in SSA. Controlling parameter
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c1 was remodelled for higher dimensional problems in (Qais et al., 2019). The results presented

are extensive but do not pose much variations in the end results and require more investigation.

Mutated SSA was proposed in (Rajalaxmi & Vidhya, 2019) to enhance diversity and avoid premature

convergence. Weighted SSA was proposed in (Syed & Syed, 2019) by modifying the position using

weighted average of best solutions. The modification has been added to improve the convergence

properties of SSA. Chaos based SSA using five different chaotic maps was used for feature selection

problem in (Hegazy et al., 2019). Dynamic adaptive weights were used by (Wu et al., 2019) to

improve the equation update in SSA. The drawback with this approach is that multiplying a weight

directly with the basic equation may lead to entrapment of algorithm is some local optima. Multi-

leader based SSA was proposed in (Bairathi & Gopalani, 2019) to enhance the exploration and

division of single group into multiple salps chains was also followed.

Apart from the various modifications, SSA has been applied to a large set of real world opti-

mization problems. These include analysis of chemical compounds (Hussien et al., 2017), biomedical

feature selection (Ibrahim et al., 2017), feature selection using SSA with chaos (Ahmed et al., 2018)

and SSA with sine cosine algorithm (Neggaz et al., 2020), polymer exchange in fuel cells (El-Fergany,

2018), in power system stabilizer (Ekinci & Hekimoglu, 2018), segmentation model for fishes (Ibrahim

et al., 2018), load forecasting in power systems (Wang et al., 2018), training neural networks for

pattern classification (Abusnaina et al., 2018), for renewable distributor generators to minimize the

power loss (Tolba et al., 2018), parameter estimation for soil water retention (Zhang et al., 2018),

flow shop scheduling problem solving (Sun et al., 2018), frequency control in power systems (Ku-

mari & Shankar, 2018), optimization of CMOS comparator and amplifier circuits (Asaithambi &

Rajappa, 2018), in minimizing the cost of wind, thermal and hydro power generation (Das et al.,

2018), optimizing tariff for electrical energy systems (Khalid et al., 2018), solid waste management

and sewage water management (Barik & Das, 2018), minimizing power loss in distributed electric

systems (Reddy & Reddy, Reddy & Reddy), optimizing values for parameter control in automatic

PID controller (Mohapatra & Sahu, 2018), for solving economic load dispatch problem in power

generation systems (Mallikarjuna et al., 2018), for localization problem solving to optimize time dif-

ference of arrival (TDoA) (Liu & Xu, 2018), hybridization with WOA for power generation (Alzaidi

et al., 2019), in software defined networking to find the optimum number of controllers and connec-

tion between the controllers (Ateya et al., 2019), training of multilayer perceptron for sonar target

classification (Khishe & Mohammadi, 2019), extracting parameters of photo voltaic cells (Abbassi

et al., 2019), for solving localization problems in wireless sensor nodes (Kanoosh et al., 2019), digital

infinite impulse response differentiator and integrator designing (Ali et al., 2019) and others.

3.1. Inferences and motivation behind present work

The above discussed literature poses following major drawbacks of the basic SSA algorithm:

• First of all, the algorithm consists of only one single parameter to be optimized and random

values of this parameter make it more of a stagnator. That is providing one single value for

the parameter to be optimized makes the algorithm perform exploration for some particular

iterations and exploitation for rest of the iterations. It actually switches directly from one
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operation to another without any proper investigation. So more work is required to be done

to improve its switching properties.

• Secondly, the SSA algorithm suffers from the problem of local optima stagnation and has

poor convergence properties. It need more time to evaluate new solution and require major

modifications before implementation to real world problems.

• Another major drawback is that most of the literature focused only on the basic changes in

one or two properties of the basic SSA. Not much work has been done to improve the overall

performance of the algorithm.

• Also, adaptive properties is a new technique to adjust the parameters of any algorithm by

itself and not much work has been done to provide such operation in SSA.

Based on the points discussed above, the authors have formulated seven new version of SSA. The

newly proposed algorithms aims at mitigating the problems with basic SSA. All the new version em-

ploy certain similar adaptive parameter and seven different mutation operators. Detailed discussion

on the algorithmic part is given in the subsequent sections.

4. The proposed Salp Swarm Algorithms

SSA is highly competitive and has proven its worth for various real world problems. The algo-

rithm is simple, linear and has served as a problem solver since its inception but still suffers from

various problems. As pointed out in (Chen et al., 2018), the algorithm suffers from the problem of

poor exploration and may lead to local optima stagnation. The algorithm also suffers form other

problems such as slow convergence (Qais et al., 2019) and lack a proper balance between the diver-

sification and intensification operation (Li et al., 2018). So in present work, seven new versions of

SSA using the concepts of mutation operators are proposed. Each of the proposed algorithm follow

certain common modifications and in addition to them, a new mutation operator based operation

is also added to test the applicability of these operators to SSA. Here it should be noted that the

proposed modifications are new and no such work has been done on improving the performance of

SSA. Firstly, let us introduce the basic concepts used in the modified version and then elaborate

all the concepts under different sub headings. The following points elaborate the basics of proposed

modifications:

• A new concept based on division of generations is followed by using the original SSA equations

for first half and new equations using the concepts of GWO and CS for second half of the

iterations.

• The linear population size reduction phenomena is followed to reduce the total number of

function evaluations required for solving the problem under test.

• Exponential decreasing parameter c1, is used to balance the extent of exploration and exploita-

tion.
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• Cauchy, Gaussian, Lévy , Neighbourhood, Trigonometric and other mutation operators are

exploited to improve the performance of SSA.

Based on the above said points, the proposed versions are formulated. Here it should be noted that

the concept of division of generations, linear population size reduction and exponential parametric

optimization is followed in all the proposed versions and has not been discussed in all the subsections.

Division of generations and exponential parametric setting: Exploration and exploitation are the

two basic operations which helps in proper functioning of any optimization algorithm. An algorithm

which is found to gradually decent from exploration to exploitation with balanced operations, is

considered as an optimal algorithm. SSA algorithm has poor exploitation operation and requires

more balanced performance. Here division of generations is followed by using two new concepts

as inspired from GWO and CS to improve its overall working capability. For the first half of

the generations, general equations of SSA are used whereas for the second half of generations,

new equation are formulated using the concepts of GWO and CS. The reason for using equations

inspired from GWO and CS is to improve the exploitation operation in SSA. As both GWO and CS

algorithm are found to provide highly competitive exploitation operation (Salgotra et al., 2018), it

is imperative to use them during final stages due to poor capability of SSA. Whereas in the initial

stages, SSA equations are self sufficient and are better at exploration, so are used as such with

mutation operators. The new solution using this equations is given by



x1 = xi −A1(C1.xnew − xti);

x2 = xi −A2(C2.xnew − xti);

x3 = xi −A3(C3.xnew − xti);

xt+1
new = x1+x2+x3

3

(5)

where xnew is the new solution and A1 6= A2 6= A3 and C1 6= C2 6= C3 are generated as given

by A1 = 2a1.r1 − a1, C1 = 2.r2; A2 = 2a2.r1 − a2, C2 = 2.r2 and A3 = 2a3.r1 − a3, C3 = 2.r2.

Here a1 6= a2 6= a3 are linearly decreasing random numbers, r1 6= r2 are random numbers. The

above discussed equation (5) is based on the concepts of GWO. The second part is the integration

of GWO with CS and use it in SSA. The equation (5) is subjected to basic global search equation

of CS (Yang & Deb, 2010) and new equation is formulated as given in (6)

xt+1
new = xtnew + α⊗ L(λ)(xbest − xtnew) (6)

where α and L(λ) are basic and Lévy distributed random numbers. All other notations have the

same significance as given by SSA.

The second step is to use a modified exponential (Chen et al., 2006) parameter c1 instead of

basic c1. The parametric equation used is given by

c1 = cmin + (cmax − cmin). exp− I

maxgen/10
(7)
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Here cmax = 0.95 and cmin = 0.05, I is the current generation and maxgen is the maximum

number of generations.

Linearly decreasing population adaptation: Computational complexity is a very important pa-

rameter in any optimization algorithm. With so many new optimization algorithms in use, it is

the requirement of time to have minimum computational complex algorithm with maximum stable

output. One parameter which makes all the algorithms equally well aligned and computationally

less expensive is the population adaptation. Population size is a common factor in all the algorithms

and for almost all the cases it is similar. But present case, a linearly decreasing population adapta-

tion is followed. Thus accounting for reduction in the total number of function evaluations required

for solving the problem under test. The major aim is to reduce the total computational burden

of the algorithm under test. The reduction process in present case if followed in such a way that

the minimum population is kept to 4. This is because only 4 minimum number of individuals are

required to perform the general operation of SSA. The general equation (8) is given by

N(g + 1) = round[(
Nmin −Nmax
FEsmax

).FEs+Nmax] (8)

where Nmax and Nmin are the minimum and maximum population sizes. The above discussed

modifications are added in all the proposed version of SSA and are not discussed in all the below

subsections. Note that the proposed modifications are added in the equation (6) of the algorithm

and each modification is presented in the consecutive subsections.

4.1. Cauchy Salp Swarm Algorithm: CSSA

This kind of mutation operation was first implemented by Yao et al. (Yao et al., 1999) for

conventional evolutionary algorithms. The main aim of Cauchy mutation was to produce smaller

step sizes with in the bigger search space so that the algorithm is able to explore every local optimal

point with in the search space. Thus overall helping the algorithm to come out of local minimal and

hence reducing the problem of local optima stagnation and premature convergence. The Cauchy

distribution function to generate the Cauchy random number is given by

y =
1

2
+

1

π
arctan(

δ

g
) (9)

The Cauchy density function is given by

fC(0,g)(δ) =
1

π

g

g2 + δ2
(10)

Here g = 1 is the scale parameter, y ∈ [0, 1] is a uniformly distributed random number. Now in order

to generate the Cauchy distributed random number C(δ), equation (9) is solved and the solution is

thus given by

δ = tan(π(y − 1

2
)) (11)

This Cauchy distributed random number C(δ) is incorporated in place of c1 parameter in the general

equation (1) of the basic SSA.
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4.2. Diversity Mutated Salp Swarm Algorithm: DSSA

GA is one of the oldest algorithm known till date in the field of numerical optimization. A lot of

mutation strategies were exploited on GA to improve its working capabilities and one among them

is diversity mutation. The concept was formulated by (Deb & Deb, 2014) and it was found that

this kind of mutation improve the exploration properties of any algorithm. In present work, the

same diversity mutation operator has been exploited and the algorithm thus formulated has been

named as DSSA. The distribution is an adaptation of exponential distribution (p(i) = te−ti) for

i ∈ [0, n − 1]. The above equation is a simple formulation and for fixed integer values n, the roots

of probability distribution is given by

te−nt − e−t − t+ 1 = 0 (12)

The general equation for this kind of mutation as derived from the above equations is given by

c1(t) =
1

t
log(1− u(1− e−nt)) (13)

Here c1 is the general parameter of SSA adapted with respect to diversity mutation, t is the iteration

counter, u is a uniformly distributed random number in the range of [0, 1], p(i) is the probability

parameter and i is any member of the population. Here it should be noted that the general equation

of SSA are kept same and changes are made only in the parametric details.

4.3. Gaussian Salp Swarm Algorithm: GSSA

The density function for Gaussian mutation is given by

fG(0,σ2)(α) =
1√

2πσ2
e
α2

2σ2 (14)

where σ2 is variance, α is a random number distributed in the range of [0,1]. This kind of formulation

is common in evolutionary computing and aims at providing smaller step sizes to update the parent

solutions. The search agents keep moving within the close proximity of the other search agents and

hence explore every corner within the search space. The early formulation concepts of Gaussian

distributed mutation was given by (Yao et al., 1999) for fast evolutionary programming algorithms.

Salgotra et al. exploited the work and implemented them on FPA and it has been found that

Gaussian mutation is highly effective and helps in exploring the search space in a potentially much

better way (Salgotra & Singh, 2017). In present case, equation (14) is modified by using mean as

zero and standard deviation as one. The general random numbers thus generated follow the patterns

of Gaussian distributed random number and the equation for this case is given by

Y 1
j =

Sj +G(α)((ubj − lbj)c2 + lbj) C3 ≥ 0

Sj −G(α)((ubj − lbj)c2 + lbj) C3 ≤ 0

(15)

where Y 1
j and Sj is the position of first salp and food source in jth dimension respectively, ubj

and lbj represents the upper and lower boundary of jth dimensional problem, c1, c2 and c3 are the
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random initialization parameters drawn from uniformly distributed parameters in the range of [0,1].

Here this equation (15) is same as of the original SSA but instead of c1, G(α) is used.

4.4. Lévy Flight based Salp Swarm Algorithm: LSSA

The concept of Lévy flights is not new to the field of optimization research and has been exploited

on various algorithms namely CS (Yang & Deb, 2010), FPA (Yang, 2012) and others. The mechanism

is based on far field randomization and uses the concepts of fatter tail optimization. Here fatter tail

corresponds to more randomization, highly stochastic behavior and in turn more exploration. The

general equation for this kind of mutation is given by (Yang & Deb, 2010)


L(x) = 0.01× r1×σ

|r2|1/β
r1, r2 ∈ [0, 1];β = 1.5

σ = (
Γ(1+β)×sin(πβ2 )

Γ( 1+β
2 )×β×2( β−1

2 )
)1/β Γ(x) = (x− 1)!

(16)

where L(x) corresponds to Lévy distributed random number with x variable size, α, β and γ are

random numbers and particular values for these functions is presented in subsequent subsections as

per the problem requirement.

4.5. Mutation Clock Salp Swarm Algorithm: MSSA

In an optimization algorithm, mutation is followed using n random solutions per individual.

Thus there is requirement of more individuals per random solution and hence more is the average

number of functions evaluations required to perform a particular operation. So in order to overcome

this problem, mutation clock based SSA is proposed and has been named as MSSA. The concept

of mutation clock was formulated by (Goldberg, 1989) and aimed at enhancing the performance of

GA. In mutation clock one individual is mutated, the corresponding other individual in the next

iteration is generated by using exponential probability values ((p(i) = λe−λt)). The new mutation

operator thus generated is given by u =
∫ µ
t=0

pme
−pmtdt. Here values of λ is the inverse of average

number of mutation operations, pm is the probability, u ∈ [0, 1] is a random variable and the final

equation thus generated is given by

c1 =
1

pm
log(1− u) (17)

Now if kth variable for the ith individual is mutated, the next mutation event is ((k + µ)n) − th

variable of ((k + µ)/n)− th individual in the current population and c1 is the general parameter of

SSA. Here it should be noted that initial variable is mutated using i = k = 1 for every generation.

Overall this strategy helps in increasing diversity among the search agents and hence improves the

exploration properties of SSA algorithm.

4.6. Neighbourhood based Salp Swarm Algorithm: NBSSA

Neighbourhood based strategy has been exploited in the recent past for DE algorithm (Das et al.,

2009) and has been found viable solutions for optimizing the exploration and exploitation capabilities

of the algorithm. Since the neighbourhood based search improves the exploration properties of the

DE algorithm, it is expected that because of the presence of two new solutions will add up in

providing better results. The proposed algorithm has been named as neighbourhood based SSA
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(NBSSA) and is aimed at improving the exploration properties of SSA. The algorithm consists of

new random solutions to be generated while preserving the diversity among the individuals. Here

Xt
i (i = 1, 2, ....N) is the solution vector for N population size, of k radius neighbourhood (k is taken

from 0 to (N − 1)/2 and is a non zero vector). The major point which is to be kept in mind is that

the total neighbourhood size must be less than the total population size and the solution vectors

generated must be from the same neighbourhood. The general equation thus derived from whole of

the solution space is given by

Xt+1
i = Xt

i + U [0, 1](Xt
r1 −X

t
rN−1

) (18)

Here U [0, 1] is a uniformly distributed random number, Xt
r1 and Xt

rN−1
are two neighbours around

Xt
i and t is the generation or iteration count. Here it should be noted that the new solution generated

by equation (18) are fed to the solution generated using the original equation (1) of basic SSA. The

overall aim is to increase diversity and improve the exploration properties of the algorithm.

4.7. Trigonometric Salp Swarm Algorithm: TSSA

Trigonometric mutation is a new kind of mutation and is followed by using three individuals

from the population. One among the members is the donor which is changed with respect to the

scaled differential vector, considering two other members to be mutated. Three new individuals are

generated as Xt
r1, Xt

r2 and Xt
r3, where Xt

i is the ith individual in the tth generation, r1, r2, r3 = 1, ...N

for r1 6= r2 6= r3 6= i and N being the population size. For trigonometric mutation to take place, the

members of the population need to be adapted with respect to the center of a hypothetical hyper-

geometric triangle. The perturbation operation to be performed is done by using three differential

vectors and their weighted sum. The general equation in this case is given by

V t+1
i =

Xt
r1 +Xt

r2 +Xt
r3

3
+(p2−p1)(Xt

r1−Xt
r2)+(p3−p2)(Xt

r2−Xt
r3)+(p1−p3)(Xt

r3−Xt
r1) (19)

here p1, p2, p3 are the random weights (p1 = 1 and p2 + p3 = 0) that perturb and produce better

individuals. In present case, the above equation (19) is adapted to formulate the new equation.

After parameter adaptation, the general equation becomes

Xt+1 =
Xt
r1 +Xt

r2 +Xt
r3

3
+Xt

r2 +Xt
r3 − 2Xt

r1 (20)

Here it should be noted that the three solutions used are derived from the whole population and the

algorithm thus formulated is named as trigonometric SSA (TSSA). This modification is also added

to increase diversity among the search agents and hence increase the exploration properties along

with better convergence activities.

4.8. Computational complexity

The computational complexity in the case of SSA can be represented in the form of O(n.d.tmax)

where tmax is the maximum number of a d dimensional problem with a population size of n. The

reason for providing the complexity analysis is to find the suitable run-time for the algorithm and
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analyse its operation with the worst case complexities. The equation listed above is obtained from

the basic population size n, dimension size d of the problem under test and the maximum number

of iterations tmax required for finding the global optimum of the problem under test. For a single

member of the population, the complexity analysis is given by the general equation O(d). This

is because the dimension size of the problem remains constant. Now as the algorithm requires

multiple agents or a set of population members, the general equation is enhanced to O(n.d). Also

because of the stochastic nature of the algorithms, it needs to be evaluated over multiple iterations

tmax and hence the overall complexity becomes O(n.d.tmax). This is the complexity of the original

SSA. If we compare the complexity of original with respect to the proposed algorithm, there is

only one adaptation and that is the linear decreasing population size. So in present case, the total

computational complexity of proposed variants of SSA becomes O(nreduced.d.tmax). Here it should

be noted that nreduced is the reduction per iteration for the problem under test. Also, all the proposed

variants employ linear population size reduction, the overall complexity for all the variants is almost

similar. Further, in comparison to basic SSA, all the proposed versions have lower computational

complexity.

All the algorithms proposed above are aimed at enhancing the exploration and exploitation

operation of SSA with specific focus on balancing the two phenomena. Here all the algorithms follow

similar structure with changes in the type of mutation they use and hence are named differently. A

generalized pseudo-code for all the algorithm is presented in Algorithm 1.

Algorithm 1: Pseudo-code of proposed MSSA algorithm
Begin
Define: population size (N ); (c1)
Find initial best solution evaluate and choose the best salp
until termination criteria is met
if iterations < maxiter

2
find new solution using (1)
evaluate fitness f(i)
update c1 using (7) and N using (8)
else
find new solution using (6)
evaluate fitness f(i)
update c1 using (7) and N using (8)
end
find the current best
endUntil
update final best
End

5. Result and Discussion

In this section, details about the proposed variants and their applicability to various benchmark

and real world problems is presented. The results are extensively discussed and performance eval-

uation is done using CEC 2005 (Suganthan et al., 2005), CEC 2015 (Liang et al., 2014) and other

real world optimization problems. First of all, the different proposed strategies are compared with

each other for variable population size and dimension sizes and then best among them is compared

with standard algorithms from the literature. These algorithms are BA (Yang, 2010), FA (Yang,
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2009), FPA (Yang & Deb, 2010), DE (Storn & Price, 1997), GWO (Mirjalili et al., 2014), DA

(Mirjalili, 2016a), SCCSA (Khalilpourazari & Pasandideh, 2019), PSOGSA (Mirjalili & Hashim,

2010) and SSA (Mirjalili et al., 2017). The results are taken for 50 runs with best, worst, mean

and standard deviation values evaluated for each of them. As far as statistical tests are concerned,

Wilcoxon rank-sum test (Wilcoxon et al., 1970) and Mann-Whitney U rank tests (Ruxton, 2006) are

performed using the best values of 50 runs for all the algorithms under test. More details about the

same is presented in the subsequent subsections. All the algorithms are evaluated using windows

10, x64-bit system having Intel core i7 processor, 32.00 GB RAM and MATLAB version R2016a.

The section also provides detailed summary of results, drawback of the proposed approach and some

insightful implications. More detailed discussion about the experimental results is presented in the

consecutive subsections.

5.1. Test Suite

In this paper, the performance of proposed seven mutation properties of SSA have been evaluated

by taking 16 traditional numerical CEC 2005 benchmark functions listed in Table 1. The benchmark

functions are classified into three categories: unimodal, multimodal and fixed dimension functions.

The unimodal functions F1 − F7 are used to attain one global minimal solution with focusing on

exploitation properties of algorithm run. The multimodal functions F8−F13 have a large number of

local minima and are used to test exploitation as well as exploration ability of proposed mutations.

The fixed dimension functions F13− F15 are used to test consistency of an algorithm to find best

global minimal solution. For functions F1− F13, the dimension size is taken as D = 30 and fitness

fmin = 0. For functions F14, F15 and F16, dimension size is taken as D = 2, 3, 6 and fitness

fmin = 3,−3.86,−3.86, respectively.

Table 1: CEC 2005 Benchmark functions used for comparison

Function Dim Range Shift position fmin
Unimodal functions

F1(x)=
∑n
i=1 x

2
i 30 [−100, 100] [−30,−30, ..,−30] 0

F2(x)=
∑n
i=1 |xi| + Πni=1|xi| 30 [−10, 10] [−3,−3, ..,−3] 0

F3(x)=
∑n
i=1(

∑i
j−1 xj)2 30 [−100, 100] [−3,−3, ..,−3] 0

F4(x)= maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] [−3,−3, ..,−3] 0

F5(x)=
∑n−1
i=1

100(xi+1 − x
2
i )2 + (x1 − 1)2 30 [−30, 30] [−3,−3, ..,−3] 0

F6(x)=
∑n
i=1([xi + 0.5])2 30 [−10, 10] [−3,−3, ..,−3] 0

F7(x)=
∑n
i=1 ix

4
i = random[0, 1] 30 [−1.28, 1.28] [−3,−3, ..,−3] 0

Multimodal functions

F8(x)=
∑n
i=1[xisin(

√
|xi|)] 30 [−30,−30, ..,−30] −418.982 ×D

F9(x)=
∑n
i=1[x2

i − 10cos(2πxi) + 10] 30 [−5.12, 5.12] [−30,−30, ..,−30] 0

F10(x)= −20exp(−0.2
√

1
n

∑n
i=1 x

2
i ) − exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e 30 [−100, 100] [−30,−30, ..,−30] 0

F11(x)= 1
4000

∑N
i=1 x

2
i − ΠNi=1cos(

xi√
i
) + 1 30 [−600, 600] [−30,−30, ..,−30] 0

F12(x)= π
n

10sin(πy1) +
∑n
i=1 −1(yi − 1)2[1 + 10sin2(πyi+1)] 30 [−50, 50] [−30,−30, ..,−30] 0

(yn − 1)2 +
∑u
i=1(xi, 10, 100, 4)yi = 1 =

xi+1
4

F13(x)= 0.1(sin2(3πx1) +
∑n
i=1(xi − 1)2(1 + sin2(3πxi + 1))) 30 [−50, 50] [−30,−30, ..,−30] 0

+0.1((xn − 1)2[1 + sin2(2πxn]) +
∑n
i=1 u(x1, 5, 100, 4)

Fixed dimension functions

F14(x)= [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]∗ 2 [−2, 2] 3

[30 + (2x1 − 3x2)2 ∗ (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

F15(x)= −
∑4
i=1 ci exp(−

∑3
j=1 aij(xj − pij)2) 3 [0, 1] −3.86

F16(x)= −
∑4
i=1 ci exp(−

∑6
j=1 aij(xj − pij)2) 6 [0, 1] −3.86

5.2. Parameter Settings

The performance evaluation of proposed mutated salp swarm algorithm (MSSA) has been done by

comparing performance of MSSA with the original SSA and another eight state-of-the-art algorithms

such as BA, DA, DE, FA, SCCSA, PSOGSA, flower pollination algorithm (FPA) and grey wolf

optimization (GWO). The Performance of each algorithm is again compared on the basis of 16
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Table 2: Parameter Settings

Algorithm
Parameters

Pop Size Dim tmax other parameters
BA 60 30 500 Loudness=0.5; Pulse rate=0.5; Stopping criteria= Max Iteration.
DA 60 30 500 w, s, a, c, f, e = constant
DE 60 30 500 F=0.5; CR=0.5; Stopping criteria= Max Iteration.
FA 60 30 500 α=0.5; β=0.2; γ = 1; Stopping criteria= Max Iteration.
FPA 60 30 500 P=0.8; Stopping criteria= Max Iteration.
GWO 60 30 500 α= Linearly decreased from 2 to 0; Stopping criteria= Max Iteration.
SCCSA 60 30 500 r1, r2, r3, r4

SSA 60 30 500 c1, c2, c3 =constant
MSSA 60 30 500 c1, c2, c3 =adaptive

different CEC 2005 numerical benchmark functions listed in Table 1. The parameter settings of

these algorithms is given in Table 2 and value of these parameters has been selected from recent

reported literature. in the case of BA, the loudness and pule rate are important parameters and

their values are taken from (Yang, 2010). The (Mirjalili, 2016a) provided optimal parameter values

in the case of DA. To improve the exploration and exploitation capability of DE, it has been found

that higher value of crossover rate (CR) and lower value of scaling or control parameter (F) is an

important aspect, now in present case the F and CR are taken as 0.9 and 0.5 respectively. in the

case of FA, the light absorption co-efficient (γ) is an important parameter and it is selected as γ = 1

with respect to α = 0.5 and β = 0.2 to get best results for most of the cases (Storn & Price, 1997).

In FPA, only switch probability is an important parameter for analysis and it is taken as P = 0.8

(Yang, 2012) which fits to most of the cases. In GWO, it has been found that parameter α is

acting as a decision parameter for analysing the algorithm ability of exploration and exploitation

and its value is linearly decreasing number in the range of 2 to 0 (Mirjalili et al., 2014) and for

SSA, parameters are generally taken as same as (Mirjalili et al., 2017). The final MSSA algorithm

is proposed in this paper to show its ability to attain best optimal solution with fast convergence

as compared to other algorithms. Apart from these algorithms, the common parameter values are

taken as dimension size (Dim): 30 and number of runs: 50, population Size of 60 and maximum

number of Iterations of 500.

5.3. Sensitivity to population Size

This subsection describes the effect of population size for the newly proposed seven different

versions of SSA algorithm as discussed above by using the applications of mutation operators in

accordance with conventional SSA algorithm. To analyze the effect of population, the six sets of

population sizes such as (20, 40, 60, 80, 100 and 120) are used for all the algorithms and number of

iterations are kept to 500.The results are measured in terms of best, worst, mean and standard

deviation as given in Table 3 for population sizes of 20, 40, 60 and in Table 4 for population sizes

of 80, 100, 120. Here, the results are obtained over 50 runs for all the algorithms under test. These

results are discussed in detail as:

Population size 20: For functions F1, F2, F4, F5, F12 and F13, SSA was not able to approach

the global optimum value while all other proposed variants provided competitive results and MSSA

is the best among them. For function F3, DSSA provides the best results in comparison with other
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algorithms. For function F6, SSA provides somewhat better result among all other algorithms. For

function F7, TSSA is found to be best. For function F8, all the algorithms provided the same results

in terms of best values except SSA and MSSA which perform better in terms of standard deviation

values. For functions F9 and F11, CSSA, DSSA, LSSA and MSSA attain a value of global optima

in terms of best, worst, mean and standard deviation respectively. For function F10 CSSA, DSSA,

LSSA and MSSA provide the same results so here it is difficult to tell which one is better. Overall

for population size of 20, SSA is better for two functions, CSSA for three functions, DSSA for four

functions, GSSA for no function, LSSA for three functions, MSSA for nine functions, NBSSA for no

function and TSSA for one function. So, MSSA is found to be overall best among all the proposed

variants for this case.

Population size 40: For functions F1, F2, F3, F4, F7, F12 and F13 MSSA provided the best

results among all the proposed variants and approach towards near to global optimum value. For

function F5, it is also found that MSSA provides the good results in terms of best values and a little

difference exist for worst, mean and standard deviation values. For function F6, conventional SSA

is better while the other versions provide very competitive results. For function F8, MSSA gives

the best results in terms of standard deviation only. For functions F9 and F11 CSSA, DSSA, LSSA

and MSSA attain a value near to global optimum in terms of best, worst, mean as well as standard

deviation. For function F10, CSSA, DSSA, LSSA and MSSA also provide the same results so here

it is difficult to say which one is better for these functions. In this case it is found that SSA is best

for one function, CSSA and DSSA for three functions, GSSA and LSSA also for three functions,

MSSA for twelve functions, NBSSA for no function, TSSA for no function. So, overall it is found

that MSSA is best among all the proposed algorithms for the population size of 40.

Population size 60: For functions F1, F2, F3, F4, F7, F12 and F13 the proposed algorithm

MSSA is found to be better among all the other algorithms. For function F5, GSSA gives best results

in terms of best values but all the other algorithms approximately provide similar results in terms of

worst, mean and standard deviation. For function F6, standard SSA is able to attain a value near

to global optimum solution although all the proposed algorithms provided very competitive results.

For function F8, MSSA is only algorithm to provide significantly better results in terms of standard

deviation. For functions F9 and F11, proposed variants CSSA, DSSA, LSSA and MSSA attain a

value of global optima while all the other algorithms suffer from local optima stagnation problem.

For function F11, results of CSSA, DSSA, LSSA and MSSA are almost similar so here it is difficult

to find the best algorithm for this function. It is found that SSA is best for only one function, CSSA

and DSSA for three functions, GSSA for no function, LSSA for three functions, MSSA for eleven

functions, NBSSA and TSSA for no function. Overall MSSA performs best among all the proposed

variants for population size of 60.

Population size 80: In this case , for functions F1, F2, F3, F4, F7, F12 and F13 MSSA provides

better results among all the other proposed variants. For function F5, the results are comparable

in terms of best, worst and mean values where MSSA is found to be best. For function F6, SSA

is again found to be best as similar to population size of 60. For function F8, all the algorithms

provide same results in terms of best values except SSA and NBSSA which are found to provide

16



good results in terms of standard deviation. For functions F9, F10 and F11 the results of CSSA,

DSSA, LSSA and MSSA are almost similar . Here it is found that SSA is best for one function,

CSSA and DSSA for three functions, GSSA and TSSA for no function, MSSA for eleven functions

and NBSSA for one function. So this case also proves that MSSA is best for the 80 population size.

Population size 100: For functions F1, F2, F3, F4, F7, F12 and F13, it is found that MSSA

again able to approaching towards near global optimum value. For function F5, MSSA provided

the best results in terms of best and mean values. For function F6, the result of SSA is better in

comparison with all other algorithms. For function F8, the results are comparable only in term of

standard deviation where performance of MSSA is found to be best. For functions F9, F10 and F11,

proposed variants CSSA, DSSA, LSSA and MSSA provided the almost similar results. So overall it

is found that SSA is best for one function, CSSA and DSSA for three functions, GSSA and TSSA

for no function, LSSA for three functions, NBSSA for no function and MSSA for twelve functions.

Hence again MSSA is found to be best for this population size.

Population size 120: For functions F1, F2, F3, F4, F5, F7 and F12, MSSA is able to provide

best results in terms of best, worst, standard deviation and even mean also. For function F6, SSA

provided a value near to global optimum while all other variants also give competitive results. For

function F8, results are comparable only in terms of standard deviation where MSSA is found to be

best. For function F9, F10 and F11, results of CSSA, DSSA, LSSA and MSSA are almost similar

so it is difficult to find the best algorithm for these functions. For function F13, MSSA attains a

better results only in terms of best and mean. So in this case it is found that SSA is best for one

function, CSSA and DSSA for three functions, GSSA and NBSSA for none of the function, MSSA

for twelve functions and TSSA for no function. So, overall MSSA provided the best results for this

population size 120.

Inferences from effect of population size: From the results, it has been analyzed that for variable

population size, results become better with increase in the population size. The improvement is less

for the initial population sizes of 20 and 40, but as the population size reaches 60, the overall results

improve. But as population size is increased beyond 60, there is no significant improvement in the

simulation results. Here, it should be noted that with increase in population size, the total number

of function evaluations also increase many folds. So overall, we can say that MSSA performance is

best for a population size of 60 in comparison with other algorithms.

5.4. Sensitivity to dimension Size

In this subsection, the effect of dimension size for the seven different proposed variants of SSA

has been discussed. Here, the six number of dimension sets are used i.e. (10, 30, 50, 100, 200 and

500) for analyzing the results. All the results are taken for 500 iterations and rest of the parameters

are same as discussed in relevant subsections. The results for dimension sizes 10, 30, 50 are given in

Table 5 and for 100, 200, 500 are given in Table 6, respectively. The performance evaluation of all

the algorithms are measured in terms of beat, worst, mean and standard deviation for 50 runs. The

results are discussed in detail under subheadings as:

Dimension size 10: In this case, for functions F1, F2 and F12, MSSA is able to provide best

results in terms of worst, mean and even standard deviation. For functions F3 and F7, MSSA is
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Table 3: Statistical results for population size of 20, 40, 60

Function Algorithm
Population Size 20 Population Size 40 Population Size 60
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F1

SSA 2.21E-06 1.10E-03 1.19E-04 1.93E-04 1.73E-08 5.66E-08 2.94E-08 9.59E-09 8.27E-09 2.48E-08 1.66E-08 4.06E-09
CSSA 5.07E-98 2.41E-82 7.13E-84 3.75E-83 2.82E-109 1.87E-90 3.74E-92 2.64E-91 3.71E-113 6.69E-97 1.46E-98 9.45E-98
DSSA 2.88E-104 2.50E-84 5.01E-80 3.54E-79 3.25E-106 2.54E-88 5.25E-90 3.59E-89 1.79E-112 9.31E-94 1.94E-95 1.31E-94
GSSA 3.04E-10 2.90E-01 1.04E-02 4.24E-02 6.12E-12 2.28E-01 9.90E-03 3.30E-02 4.72E-13 5.48E-02 2.40E-03 8.30E-03
LSSA 9.32E-100 2.50E-84 5.84E-86 3.54E-85 5.35E-110 3.29E-90 1.13E-91 4.98E-91 1.23E-115 8.87E-96 2.41E-97 1.29E-96
MSSA 4.93E-102 1.22E-85 3.52E-87 1.81E-86 7.37E-107 1.43E-92 3.12E-94 2.03E-93 1.41E-115 7.34E-98 2.13E-99 1.09E-98
NBSSA 1.27E-13 6.18E+00 1.52E-01 8.75E-01 3.86E-12 2.77E-02 2.20E-03 5.50E-03 1.90E-26 2.59E-01 6.20E-03 3.67E-02
TSSA 7.79E-14 1.02E+00 5.03E-02 1.73E-01 8.84E-11 2.84E-01 8.70E-03 4.07E-02 8.71E-10 1.62E-02 1.10E-03 3.10E-03

F2

SSA 3.45E-01 4.45E+01 5.47E+00 6.28E+00 1.08E-01 7.37E+00 1.59E+00 1.61E+00 8.70E-03 3.26E+00 9.35E-01 9.30E-01
CSSA 1.63E-54 1.17E-44 3.06E-46 1.68E-45 2.99E-56 1.54E-48 5.09E-50 2.34E-49 1.25E-59 5.03E-51 1.65E-52 7.41E-52
DSSA 2.94E-52 8.47E-45 4.91E-46 1.66E-45 2.89E-57 9.79E-49 6.07E-50 1.91E-49 2.51E-59 9.89E-51 4.21E-52 1.73E-51
GSSA 1.13E-06 4.34E-01 6.15E-02 1.04E-01 1.60E-05 4.00E-01 1.91E-02 5.86E-02 9.32E-10 5.81E-02 9.80E-03 1.38E-02
LSSA 2.32E-55 5.24E-44 1.26E-45 7.45E-45 1.18E-58 6.84E-49 2.30E-50 1.00E-49 9.61E-58 2.07E-49 4.60E-51 2.94E-50
MSSA 3.46E-56 7.60E-46 1.83E-47 1.07E-46 1.69E-58 6.65E-49 1.38E-50 9.40E-50 1.59E-59 2.36E-53 1.60E-54 4.89E-54
NBSSA 8.38E-06 3.43E-01 4.46E-02 6.93E-02 9.68E-09 1.48E-01 1.69E-02 2.77E-02 4.90E-08 6.65E-02 1.02E-02 1.60E-02
TSSA 3.05E-08 5.04E-01 3.19E-02 8.16E-02 1.50E-05 1.83E-01 2.21E-02 3.28E-02 3.42E-07 1.19E-01 8.60E-02 1.90E-02

F3

SSA 9.17E+02 9.69E+03 3.38E+03 1.92E+03 2.89E+02 2.21E+03 8.92E+02 4.32E+02 4.28E+01 1.16E+03 3.43E+02 2.53E+02
CSSA 1.88E-15 3.90E-03 1.48E-04 6.43E-04 4.76E-31 2.05E-04 4.53E-06 2.90E-05 5.47E-56 5.54E-07 1.34E-08 7.91E-08
DSSA 1.18E-43 3.03E-02 8.68E-04 4.40E-03 4.79E-20 1.42E-04 3.12E-06 2.02E-05 1.59E-34 5.68E-06 1.17E-07 8.03E-07
GSSA 2.40E-03 2.83E+03 2.97E+02 5.01E+02 3.04E-02 3.25E+02 4.40E+01 8.17E+01 2.22E-06 5.99E+01 4.31E+00 1.09E+01
LSSA 5.01E-21 5.60E-03 1.39E-04 7.90E-04 6.84E-27 1.77E-05 4.06E-07 2.50E-06 8.49E-34 6.60E-09 1.36E-10 9.33E-10
MSSA 9.43E-31 2.08E-06 4.17E-08 2.94E-07 6.24E-42 2.53E-11 5.69E-13 3.58E-12 6.61E-57 3.50E-16 1.48E-17 6.42E-17
NBSSA 4.60E-03 2.28E+03 2.78E+02 5.02E+02 4.43E-07 5.45E+02 4.80E+01 1.01E+02 7.17E-09 1.20E+02 7.50E+00 2.33E+01
TSSA 1.56E-02 1.94E+03 3.91E+02 5.37E+02 3.40E-03 3.63E+02 2.39E+01 5.72E+01 3.51E-06 7.09E+01 6.54E+00 1.53E+01

F4

SSA 8.81E+00 2.98E+01 1.73E+01 4.89E+00 2.87E+00 1.50E+01 8.24E+00 3.13E+00 1.06E+00 1.38E+01 5.88E+00 2.51E+00
CSSA 1.09E-45 4.10E-34 8.60E-36 5.79E-35 2.11E-49 8.62E-40 3.19E-41 1.36E-40 5.91E-52 4.09E-42 9.82E-44 5.81E-43
DSSA 2.58E-44 1.16E-33 4.16E-35 1.96E-34 1.02E-49 2.53E-38 7.58E-40 3.90E-39 2.30E-51 4.82E-43 2.58E-44 9.32E-44
GSSA 1.22E-06 3.85E-01 3.62E-02 7.36E-02 5.32E-08 1.47E-01 1.50E-02 2.97E-02 4.80E-07 3.90E-02 6.00E-03 9.10E-03
LSSA 5.16E-46 2.66E-35 2.00E-36 5.82E-36 9.39E-49 4.64E-39 1.79E-40 7.11E-40 2.15E-53 7.70E-42 2.09E-43 1.12E-42
MSSA 4.91E-49 1.05E-34 2.17E-36 1.49E-35 1.26E-51 3.83E-41 1.80E-42 6.58E-42 2.03E-52 1.71E-43 3.98E-45 2.44E-44
NBSSA 7.91E-06 2.24E-01 1.87E-02 3.52E-02 1.94E-09 8.60E-02 9.50E-03 1.83E-02 2.33E-06 4.69E-02 4.20E-03 7.80E-03
TSSA 4.46E-06 6.08E-01 4.85E-02 1.12E-01 5.59E-06 1.84E-01 1.32E-02 2.87E-02 4.25E-06 7.39E-01 6.50E-03 1.30E-02

F5

SSA 3.06E+01 7.05E+03 5.94E+02 1.29E+03 1.98E+01 1.30E+03 1.47E+02 2.65E+02 1.93E+01 7.23E+02 1.08E+02 1.37E+02
CSSA 3.86E+00 2.88E+01 2.65E+01 6.75E+00 1.39E+00 2.88E+01 2.64E+01 6.92E+00 9.07E-01 2.87E+01 2.47E+01 8.94E+00
DSSA 2.81E+01 2.89E+01 2.87E+01 1.23E-01 2.84E+01 2.89E+01 2.87E+01 8.26E-02 2.82E+01 2.88E+01 2.86E+01 1.45E-01
GSSA 1.47E+00 3.80E+01 1.43E+01 9.55E+00 2.79E-01 2.89E+01 9.57E+00 7.85E+00 4.70E-03 1.02E+01 2.05E+00 2.49E+00
LSSA 9.29E+00 2.89E+01 2.80E+01 3.54E+00 2.89E-01 2.88E+01 2.68E+01 6.45E+00 5.63E-02 2.87E+01 2.47E+01 9.18E+00
MSSA 5.13E-02 2.88E+01 2.09E+01 1.12E+01 7.05E-02 2.87E+01 1.38E+01 1.29E+01 9.20E-03 2.86E+01 2.41E+00 6.69E+00
NBSSA 1.45E+00 3.62E+01 1.30E+01 9.47E+00 7.57E-02 2.88E+01 7.53E+00 6.80E+00 1.07E-02 2.15E+01 2.93E+00 4.48E+00
TSSA 7.81E-02 2.91E+01 1.28E+01 8.30E+00 2.97E-01 2.50E+01 7.32E+00 6.89E+00 3.41E-02 2.69E+01 2.53E+00 4.02E+00

F6

SSA 1.12E-06 2.90E-03 1.81E-04 4.34E-04 1.56E-08 8.29E-08 3.43E-08 1.43E-08 9.49E-09 2.60E-08 1.60E-08 4.16E-09
CSSA 2.40E-03 3.50E+00 1.14E+00 7.88E-01 2.00E-03 2.49E+00 6.75E-01 7.18E-01 4.20E-03 2.44E+00 4.97E-01 6.10E-01
DSSA 6.70E-01 3.66E+00 2.00E+00 6.86E-01 7.44E-01 2.73E+00 1.56E+00 5.04E-01 5.65E-01 2.59E+00 1.22E-01 4.39E-01
GSSA 4.80E-03 3.06E+00 5.20E-01 6.68E-01 4.00E-03 8.86E-01 1.36E-01 1.88E-01 3.79E-04 2.75E-01 4.99E-02 6.07E-02
LSSA 1.75E-01 3.25E+00 1.72E+00 7.91E-01 5.26E-02 2.79E+00 1.21E+00 7.09E-01 2.24E-04 2.31E+00 8.91E-01 6.35E-01
MSSA 6.20E-03 1.65E+00 4.02E-01 4.42E-01 3.60E-03 8.25E-01 1.05E-01 1.43E-01 3.26E-04 2.72E-01 4.30E-02 4.65E-02
NBSSA 5.10E-03 4.88E+00 5.81E-01 9.54E-01 4.50E-03 1.45E+00 2.09E-01 3.41E-01 1.40E-03 4.01E-01 5.93E-02 7.52E-02
TSSA 4.70E-03 1.79E+00 3.58E-01 3.77E-01 6.33E-04 1.18E+00 1.64E-01 2.40E-01 6.06E-04 5.20E-01 6.17E-02 1.00E-01

F7

SSA 7.55E-02 6.21E-01 3.11E-01 1.37E-01 2.56E-02 2.61E-01 1.20E-01 4.40E-02 2.15E-02 1.59E-01 8.57E-02 3.15E-02
CSSA 5.37E-05 6.00E-03 1.10E-03 1.30E-03 1.09E-05 5.30E-03 7.96E-04 1.10E-03 3.95E-05 3.10E-03 5.00E-04 5.98E-04
DSSA 1.01E-05 7.80E-03 1.20E-03 1.80E-03 5.05E-05 2.60E-03 6.67E-04 5.86E-04 7.35E-06 3.30E-03 4.56E-04 5.77E-04
GSSA 7.75E-04 6.53E-02 1.52E-02 1.38E-02 6.17E-05 1.27E-02 3.80E-03 3.10E-03 1.66E-06 1.75E-02 2.90E-03 3.10E-03
LSSA 1.29E-05 4.30E-03 8.09E-04 8.91E-04 1.61E-06 3.10E-03 6.60E-04 7.82E-04 8.29E-06 3.50E-03 5.41E-04 6.63E-04
MSSA 1.04E-05 3.40E-03 7.31E-04 8.84E-04 1.11E-05 2.70E-03 5.31E-04 5.52E-04 7.96E-06 1.10E-03 3.04E-04 2.50E-04
NBSSA 3.26E-04 9.95E-02 1.69E-02 1.62E-02 3.36E-04 2.25E-02 5.70E-03 5.30E-03 1.48E-04 1.15E-02 2.70E-03 2.60E-03
TSSA 1.40E-03 6.83E-02 1.37E-02 1.23E-02 1.93E-04 2.38E-02 5.30E-03 5.20E-03 1.02E-04 1.11E-02 2.80E-03 3.10E-03

capable to give better results while the results of all other algorithms are still competitive. For

function F4, the results of MSSA and CSSA are very similar for best and worst values but for mean

values MSSA gives better results. For function F5, the results are comparable only in terms of best

where NBSSA is found to be best. For functions F6 and F13, SSA is found to be best as compared

to other variants of algorithms. For function F8, the results of MSSA found to be better only in

terms of standard deviation values. For functions F9 and F11, CSSA, DSSA, LSSA, MSSA provided

a results near to global optima. For function F10 CSSA, DSSA, LSSA and MSSA give the similar

results so here it is difficult to say which one is better. So overall it is concluded that SSA is best

for two functions, CSSA and DSSA for three functions, GSSA and TSSA for no function, LSSA for

three functions, MSSA for ten functions and NBSSA for one function. Hence, MSSA is found to be

overall best for 10 dimension size.

Dimension size 30: For functions F1, F2, F3, F4, F7, F12 and F13, it is found that MSSA

provided the best results in terms of beat, mean, worst as well as standard deviation. For function

F5, the results are comparable only in terms of best values where MSSA gives better results in

comparison with all other variants of algorithms. For function F6, SSA provides the best results

while results of all other algorithms are still competitive. For function F8, the MSSA is best in

terms of standard deviation. For functions F9, F10 and F11, the results of CSSA, DSSA, LSSA

and MSSA are almost similar so it is difficult to find the best algorithm. Hence, in this case it is
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Table 3: Statistical results for population size of 20, 40, 60(Continued)

Function Algorithm
Population Size 20 Population Size 40 Population Size 60
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F8

SSA -8.78E+03 -5.73E+03 -7.40E+03 7.74E+02 -9.04E+03 -5.98E+03 -7.36E+03 6.53E+02 -9.31E+03 -5.71E+03 -7.37E+03 7.05E+02
CSSA -1.25E+04 -4.86E+03 -1.05E+04 2.26E+03 -1.25E+04 -7.38E+03 -1.14E+04 1.58E+03 -1.25E+04 -5.45E+03 -1.10E+04 1.94E+03
DSSA -1.10E+04 -5.15E+03 -8.20E+03 1.80E+03 -1.25E+04 -5.45E+03 -8.48E+03 1.92E+03 -1.25e+04 -5.87E+03 -8.48E+03 1.90E+03
GSSA -1.25E+04 -1.24E+04 -1.25E+04 2.72E+01 -1.25E+04 -1.25E+04 -1.25E+04 3.99E+00 -1.25E+04 -1.25E+04 -1.25E+04 1.22E+00
LSSA -1.25E+04 -5.47E+03 -9.71E+03 1.99E+03 -1.25E+04 -5.87E+03 -1.01E+04 2.14E+03 -1.25E+04 -5.42E+03 -9.70E+03 2.24E+03
MSSA -1.25E+04 -1.25E+04 -1.25E+04 1.50E+00 -1.25E+04 -1.25E+04 -1.25E+04 1.02E+00 -1.25E+04 -1.25E+04 -1.25E+04 2.48E-01
NBSSA -1.25E+04 -1.24E+04 -1.25E+04 2.88E+01 -1.25E+04 -1.25E+04 -1.25E+04 4.18E+00 -1.25E+04 -1.25E+04 -1.25E+04 1.04E+00
TSSA -1.25E+04 -1.24E+04 -1.26E+04 2.54E+01 -1.25E+04 -1.25E+04 -1.25E+04 4.55E+00 -1.25E+04 -1.25E+04 -1.25E+04 1.55E+00

F9

SSA 3.18E+01 1.32E+02 6.93E+01 2.29E+01 1.98E+01 8.35E+01 4.81E+01 1.48E+01 1.09E+01 7.86E+01 4.49E+01 1.70E+01
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 2.50E-12 3.69E-01 1.83E-02 6.42E-02 1.29E-10 1.21E-02 4.10E-03 1.21E-02 1.71E-09 1.23E-02 5.29E-04 1.90E-03
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 0.00E+00 6.37E-02 5.60E-03 1.21E-02 0.00E+00 3.21E-02 2.70E-03 6.30E-03 7.73E-12 9.50E-03 6.28E-04 1.70E-03
TSSA 2.66E-11 5.31E-01 3.16E-02 1.05E-01 9.76E-11 1.84E-02 5.80E-03 1.84E-02 5.67E-11 1.00E-02 5.48E-04 1.50E-03

F10

SSA 1.50E+00 5.81E+00 3.17E+00 1.05E+00 9.31E-01 4.07E+00 2.23E+00 7.30E-01 2.55E-05 3.57E+00 1.86E+00 8.72E-01
CSSA 8.88E-16 4.44E-15 1.45E-15 1.31E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15
DSSA 8.88E-16 4.44E-15 1.81E-15 1.57E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15 8.88E-16 4.44E-15 1.81E-15 1.57E-15
GSSA 5.05E-07 2.26E-01 2.23E-02 3.85E-02 5.03E-06 1.52E-01 1.53E-02 3.18E-02 1.29E-07 3.71E-02 5.00E-03 8.40E-03
LSSA 8.88E-16 4.44E-15 1.59E-15 1.43E-15 8.88E-16 4.44E-15 1.52E-15 1.57E-15 8.88E-16 4.44E-15 1.10E-15 8.52E-16
MSSA 8.88E-16 4.44E-15 1.81E-15 1.57E-15 8.88E-16 4.44E-15 1.52E-15 1.43E-15 8.88E-16 4.44E-15 1.31E-15 1.16E-15
NBSSA 6.91E-11 3.50E-01 3.51E-02 7.46E-02 2.12E-09 5.37E-02 9.30E-03 1.48E-02 8.80E-07 7.72E-02 5.70E-03 1.32E-02
TSSA 1.17E-07 8.19E-01 4.39E-02 1.43E-01 3.42E-06 1.12E-01 1.25E-02 2.14E-02 4.17E-06 3.59E-02 3.60E-03 6.30E-03

F11

SSA 1.25E-02 1.50E-01 5.45E-02 3.04E-02 2.54E-05 4.18E-02 1.00E-02 9.00E-03 9.21E-07 3.94E-02 9.60E-03 9.70E-03
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 2.38E-10 1.02E+00 5.79E-02 1.75E-01 8.77E-15 9.22E-01 5.44E-02 1.79E-01 0.00E+00 3.72E-02 2.40E-03 7.50E-03
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 1.02E-10 4.57E-01 3.37E-02 8.00E-02 1.35E-10 2.77E-01 8.80E-03 3.99E-02 3.72E-12 2.67E-02 1.70E-03 4.30E-03
TSSA 3.90E-11 1.03E+00 6.65E-02 1.92E-01 0.00E+00 4.66E-02 4.90E-03 1.12E-02 3.28E-11 2.71E-02 1.50E-03 4.30E-03

F12

SSA 2.10E+00 2.32E+01 9.78E+00 4.32E+00 1.54E+00 1.05E+01 5.47E+00 9.06E-02 2.62E-01 1.13E+01 4.34E+00 1.94E+00
CSSA 3.58E-05 2.42E-01 4.84E-02 6.49E-02 1.21E-04 6.09E-01 4.24E-02 1.08E-01 2.32E-06 1.12E-01 1.66E-02 2.65E-02
DSSA 2.91E-02 5.10E-01 1.20E-01 1.07E-01 2.06E-02 6.59E-01 1.08E-01 3.70E-03 1.30E-02 4.31E-01 8.26E-02 6.88E-02
GSSA 6.92E-05 8.31E-02 1.10E-02 1.57E-02 4.13E-05 2.01E-02 2.50E-03 6.54E-02 4.83E-06 5.40E-03 5.67E-04 8.99E-04
LSSA 1.19E-04 3.87E-01 8.04E-02 8.95E-02 2.71E-07 3.47E-01 4.43E-02 6.54E-02 1.65E-04 1.72E-01 3.54E-02 4.31E-02
MSSA 8.42E-08 8.15E-02 1.13E-02 1.75E-02 4.32E-06 1.11E-02 1.50E-03 2.40E-03 9.18E-07 8.00E-03 4.39E-04 1.20E-03
NBSSA 1.33E-04 5.10E-02 8.30E-03 1.10E-02 6.76E-05 8.40E-03 2.10E-03 2.10E-03 2.71E-06 4.70E-03 5.93E-04 8.46E-04
TSSA 1.96E-05 3.99E-02 5.80E-03 9.10E-03 2.20E-05 1.80E-02 1.80E-03 3.20E-03 2.92E-02 3.40E-03 6.07E-04 7.62E-04

F13

SSA 6.85e-01 5.91E+01 3.15E+01 1.43E+01 5.50E-06 4.46E+01 1.06E+01 1.27E+01 7.42E-09 1.85E+01 9.91E-01 2.93E+00
CSSA 4.20E-03 1.40E+00 3.39E-01 3.49E-01 1.80E-03 1.53E+00 1.91E-01 3.04E-01 1.10E-03 1.03E+00 1.63E-01 2.76E-01
DSSA 4.59E-01 2.52E+00 1.08E+00 4.86E-01 2.42E-01 1.36E+00 8.38E-01 2.53E-01 2.45E-01 1.46E+00 7.66E-01 2.62E-01
GSSA 1.70E-03 3.10E-01 7.18E-02 6.83E-02 4.72E-04 1.42E-01 3.61E-02 4.01E-02 4.37E-06 3.02E-02 7.70E-03 7.20E-03
LSSA 6.90E-03 2.78E+00 7.25E-01 6.33E-01 1.75E-04 1.22E+00 3.33E-01 3.65E-01 4.70E-03 1.55E+00 3.39E-01 4.15E-01
MSSA 2.50E-03 5.10E-01 7.81E-02 8.81E-02 3.45E-06 1.87E-01 2.58E-02 3.72E-02 2.33E-06 4.32E-02 7.10E-03 1.04E-02
NBSSA 3.20E-03 4.63E-01 9.55E-02 9.78E-02 3.43E-04 1.44E-01 3.56E-02 3.40E-02 1.22E-04 6.25E-02 9.80E-03 1.64E-02
TSSA 3.60E-03 4.11E-01 8.48E-02 8.20E-02 3.03E-04 1.70E-01 2.68E-02 3.21E-02 1.75E-05 6.10E-02 9.50E-03 1.35E-02

found that SSA is able to give best results for one function, CSSA and DSSA for three functions,

GSSA and NBSSA for no function, LSSA for three functions, MSSA for twelve functions and TSSA

for no function. So overall MSSA proves the best for 30 dimension size.

Dimension Size 50: In this case, for functions F1, F2, F3, F7, F12 and F13, all the versions

of algorithms are able to provide competitive results where MSSA is found to be best among them.

For function F4, CSSA is provided best results in terms of worst, mean and standard deviation. For

function F5, results are same for worst, mean and standard deviation so here comparison is done

only in terms of best where MSSA provided best results. For function F6, SSA results are better in

comparison to all other proposed variants. For function F8, MSSA is able to provide comparatively

better results only in terms of standard deviation. For functions F9, F10 and F11, results are almost

similar for proposed variants such as CSSA, DSSA, LSSA and MSSA. So here it is found that SSA

is best for one function, CSSA for four functions, DSSA and LSSA for three functions, GSSA and

NBSSA for no function, MSSA for eleven functions and TSSA for no function. Hence again MSSA

is best for this dimension size.

Dimension Size 100: For functions F1, F2, F3, F7 and F13, the performance of MSSA is best

as compared to other variants of algorithms. For function F4, CSSA is able to attain a value near

near to global optima. For function F5, all algorithms provided the almost same results in terms of

mean, worst and standard deviation so here comparison is to be done only in terms of best where

MSSA is found to best. For functions F6 and F12, TSSA results are better among all the other

algorithms. For function F8, the results are comparable only in terms of standard deviation and

found that MSSA is the best. For functions F9, F10 and F11, the performance of CSSA, DSSA,
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Table 4: Statistical results for population size of 80, 100, 120

Function Algorithm
Population Size 80 Population Size 100 Population Size 120
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F1

SSA 5.49E-09 1.75E-08 1.19E-08 2.82E-09 6.45E-09 1.74E-08 1.07E-08 2.29E-09 5.77E-09 1.37E-08 9.38E-09 1.94E-09
CSSA 1.09E-113 1.14E-97 3.19E-99 1.66E-98 3.83E-121 7.69E-104 1.54E-105 1.08E-104 1.07E-124 2.13E-107 4.68E-109 3.02E-108
DSSA 7.00E-115 1.19E-98 2.79E-100 1.69E-99 1.64E-117 5.74E-102 1.31E-103 8.13E-103 1.20E-124 5.03E-105 1.03E-106 7.11E-106
GSSA 3.36E-13 4.30E-03 3.64E-04 8.38E-04 2.14E-11 7.20E-03 4.11E-04 1.40E-03 1.13E-15 2.90E-03 1.66E-04 4.61E-03
LSSA 2.28E-118 4.68E-103 1.30E-104 6.66E-104 2.50E-121 1.00E-103 3.02E-105 1.53E-104 2.20E-123 5.67E-106 1.14E-107 8.02E-107
MSSA 1.24E-118 1.45E-103 2.92E-105 2.06E-104 1.19E-124 1.14E-107 2.31E-109 1.62E-108 3.19E-127 1.57E-111 4.51E-113 2.25E-112
NBSSA 2.05E-15 2.73E-02 8.12E-04 3.90E-03 1.90E-18 1.20E-03 1.38E-04 2.88E-04 2.17E-13 1.17E-02 2.95E-04 1.70E-03
TSSA 9.58E-16 6.90E-03 3.14E-04 1.00E-03 4.67E-18 9.10E-04 8.17E-05 2.07E-04 9.80E-14 1.30E-03 1.06E-04 2.56E-04

F2

SSA 1.10E-03 2.39E+00 4.46E-01 5.29E-01 1.10E-03 1.67E+00 4.04E-01 3.92E-01 1.20E-03 2.85E+00 3.84E-01 5.97E-01
CSSA 6.54E-63 4.19E-53 1.01E-54 5.95E-54 3.14E-65 1.55E-54 3.35E-56 2.20E-55 1.01E-64 7.22E-57 1.66E-58 1.02E-57
DSSA 5.37E-60 2.21E-53 1.17E-54 4.30E-54 6.48E-63 4.56E-54 1.04E-55 6.45E-55 1.40E-65 1.46E-55 4.24E-57 2.13E-56
GSSA 4.05E-06 2.87E-02 5.80E-03 8.40E-03 4.50E-08 2.05E-02 2.90E-03 4.40E-03 4.14E-07 2.07E-02 2.20E-03 4.30E-03
LSSA 1.75E-60 1.56E-53 3.84E-55 2.21E-54 4.73E-63 1.84E-53 4.08E-55 2.61E-54 7.79E-65 2.26E-57 1.68E-58 4.61E-58
MSSA 6.25E-63 1.12E-55 4.76E-57 1.73E-56 1.82E-64 3.32E-57 8.65E-59 4.71E-58 8.36E-66 2.69E-58 1.43E-59 5.19E-59
NBSSA 7.83E-08 2.94E-02 4.10E-03 7.10E-03 1.82E-06 3.33E-02 3.90E-03 6.80E-03 8.93E-07 2.50E-02 3.00E-03 5.00E-03
TSSA 2.97E-09 4.10E-02 4.40E-03 8.40E-03 8.05E-08 1.71E-02 2.60E-03 4.30E-03 1.94E-07 1.92E-02 2.90E-03 4.20E-01

F3

SSA 4.02E+01 7.54E+02 1.72E+02 1.23E+02 5.56E+00 3.70E+02 1.08E+02 8.18E+01 5.20E+00 1.56E+02 5.45E+01 3.37E+01
CSSA 1.71E-39 1.47E-11 3.11E-13 2.08E-12 1.59E-51 2.54E-13 7.06E-15 3.82E-14 1.45E-49 1.37E-17 3.19E-19 1.96E-18
DSSA 3.89E-32 7.67E-12 1.91E-13 1.09E-12 2.94E-51 3.73E-11 7.50E-13 5.28E-12 4.56E-40 1.22E-16 4.53E-18 2.12E-17
GSSA 3.81E-07 7.40E+01 2.96E+00 1.08E+01 2.56E-14 1.33E+01 5.49E-01 2.04E+00 2.14E-10 5.60E+00 2.08E-01 8.32E-01
LSSA 4.70E-40 3.68E-12 1.47E-13 6.19E-13 7.73E-67 6.26E-12 1.39E-13 8.86E-13 1.25E-49 1.29E-17 3.99E-19 1.92E-18
MSSA 3.44E-67 1.83E-16 3.67E-18 2.60E-17 5.06E-57 1.12E-17 2.24E-19 1.58E-18 1.78E-60 6.97E-21 1.39E-22 9.85E-22
NBSSA 2.89E-10 6.30E+01 2.14E+00 9.15E+00 3.02E-11 1.00E+02 2.70E+00 1.45E+01 1.14E-06 1.03E+01 3.52E-01 1.50E+00
TSSA 7.93E-13 2.33E+01 1.13E+00 3.52E+00 3.79E-13 1.19E+01 5.32E-01 1.92E+00 4.93E-08 4.08E+00 2.90E-01 8.72E-01

F4

SSA 3.10E-01 8.07E+00 3.63E+00 1.92E+00 3.07E-01 8.52E+00 2.51E+00 1.68E+00 2.07E-01 6.35E+00 1.89E+00 1.35E+00
CSSA 3.45E-53 2.39E-45 7.29E-47 3.67E-46 6.55E-56 2.42E-46 5.32E-48 3.42E-47 3.89E-61 5.84E-50 2.95E-51 9.46E-51
DSSA 1.83E-53 1.84E-43 3.94E-45 2.60E-44 4.80E-54 5.94E-47 3.08E-48 1.02E-47 9.52E-58 4.45E-48 1.57E-49 7.12E-49
GSSA 6.11E-14 1.56E-02 2.30E-03 3.90E-03 2.25E-07 6.81E-02 3.50E-03 1.00E-02 1.83E-07 8.00E-03 1.60E-03 2.20E-03
LSSA 2.44E-55 1.89E-45 7.75E-47 2.94E-46 4.74E-58 3.36E-47 1.46E-48 5.35E-48 1.34E-59 9.98E-50 4.57E-51 1.77E-50
MSSA 8.96E-56 2.75E-47 1.47E-48 5.42E-48 1.31E-57 2.10E-49 1.21E-50 4.16E-50 9.19E-60 9.14E-52 2.89E-53 1.32E-52
NBSSA 2.79E-08 2.49E-02 2.70E-03 4.50E-03 1.18E-09 9.90E-03 1.20E+03 1.90E-03 5.20E-08 2.67E-02 1.80E-03 4.50E-03
TSSA 7.92E-07 4.19E-02 4.10E-03 7.50E-03 1.23E-07 2.35E-02 2.70E+03 4.90E-03 8.70E-07 1.13E-02 1.90E-03 2.40E-03

F5

SSA 2.23E+01 4.83E+02 8.98E+01 1.09E+02 2.14E+01 4.59E+02 6.03E+01 7.46E+01 2.26E+01 5.33E+02 7.83E+01 1.03E+02
CSSA 7.93E-01 2.87E+01 2.33E+01 1.03E+01 6.73E-01 2.87E+01 2.27E+01 1.09E+01 2.13E-01 2.87E+01 2.37E+01 1.00E+01
DSSA 2.80E+01 2.88E+01 2.85E+01 2.11E-01 2.78E+01 2.87E+01 2.85E+01 2.76E-01 2.79E+01 2.88E+01 2.85E+01 2.21E-01
GSSA 2.80E-03 4.70E+00 1.05E+00 1.16E+00 1.87E-04 7.56E+00 7.07E-01 1.34E+00 1.20E-03 4.77E+00 4.18E-01 7.96E-01
LSSA 9.37E-02 2.88E+01 2.36E+01 9.96E+00 1.85E+00 2.88E+01 2.39E+01 9.85E+00 9.99E-02 2.87E+01 2.13E+01 1.14E+01
MSSA 6.62E-05 4.16E+00 5.49E-01 8.65E-01 1.50E-04 2.70E+00 2.40E-01 4.19E-01 2.73E-06 4.93E-01 7.84E-02 1.06E-01
NBSSA 1.09E-05 9.11E+00 1.27E+00 1.81E+00 1.20E-03 3.99E+00 5.85E-01 8.25E-01 5.27E-04 2.64E+00 3.78E-01 5.18E-01
TSSA 5.10E-03 3.10E+00 9.29E-01 9.17E-01 1.50E-03 2.39E+00 4.98E-01 6.29E-01 2.05E-04 1.72E+00 3.53E-01 4.56E-01

F6

SSA 7.45E-09 2.15E-08 1.26E-08 2.51E-09 6.56E-09 1.49E-08 1.07E-08 1.82E-09 4.78E-09 1.34E-08 9.43E-09 1.76E-09
CSSA 3.80E-03 2.03E+00 4.85E-01 5.67E-01 2.69E-04 1.28E+00 2.83E-01 3.45E-01 3.00E-03 1.25E+00 2.03E-01 2.93E-01
DSSA 3.61E-01 2.08E+00 1.14E+00 4.25E-01 2.46E-01 1.86E+00 9.31E-01 4.40E-01 1.74E-01 1.71E+00 7.38E-01 3.24E-01
GSSA 3.56E-05 1.74E-01 2.80E-02 3.74E-02 6.93E-05 6.55E-02 1.37E-02 1.43E-02 1.56E-05 7.78E-02 1.87E-02 2.34E-02
LSSA 2.63E-04 1.94E+00 6.06E-01 4.82E-01 4.30E-03 1.90E+00 5.03E-01 4.55E-01 2.40E-03 1.63E+00 3.91E-01 4.19E-01
MSSA 2.28E-05 1.02E-01 1.57E-02 2.17E-02 1.16E-04 3.99E-02 6.50E-03 9.10E-03 5.39E-06 1.81E-02 2.90E-03 3.90E-03
NBSSA 5.79E-05 2.71E-01 2.39E-02 4.08E-02 6.88E-05 8.62E-02 1.43E-02 1.65E-02 1.11E-05 5.29E-02 9.50E-03 1.11E-02
TSSA 1.71E-05 1.12E-01 2.11E-02 2.63E-02 4.82E-05 1.01E-01 1.58E-02 1.91E-02 1.84E-05 9.01E-02 9.90E-03 1.47E-02

F7

SSA 1.20E-02 1.64E-01 5.94E-02 2.42E-02 1.47E-02 9.75E-02 4.50E-02 1.80E-02 1.12E-02 9.09E-02 3.51E-02 1.84E-02
CSSA 1.19E-05 2.50E-03 4.08E-04 4.52E-04 1.02E-05 2.90E-03 4.01E-04 5.31E-04 1.14E-05 3.70E-03 3.03E-04 5.81E-04
DSSA 1.17E-05 3.00E-03 4.69E-04 5.37E-04 1.92E-05 1.20E-03 4.11E-04 3.22E-04 3.38E-06 2.70E-03 3.14E-04 4.26E-04
GSSA 5.36E-05 7.80E-03 1.70E-03 1.50E-03 5.53E-05 4.80E-03 1.40E-03 1.30E-03 6.23E-05 5.10E-03 1.20E-03 1.10E-03
LSSA 1.92E-05 3.00E-03 4.07E-04 4.95E-04 2.36E-07 1.10E-03 2.90E-04 2.46E-04 1.95E-05 1.80E-03 3.45E-04 3.19E-04
MSSA 8.39E-06 1.20E-03 2.65E-04 2.25E-04 4.50E-06 5.88E-04 1.46E-04 1.29E-04 6.66E-07 6.11E-04 1.42E-04 1.39E-04
NBSSA 8.06E-05 1.01E-02 2.10E-03 2.00E-03 9.05E-05 9.40E-03 1.50E-03 1.60E-03 2.03E-04 5.70E-03 1.50E-03 1.20E-03
TSSA 6.53E-05 1.08E-02 2.40E-03 2.20E-03 6.92E-05 8.10E-03 1.60E-03 1.50E-03 2.10E-05 4.50E-03 1.30E-03 1.20E-03

LSSA and MSSA are almost similar. So in this case SSA and GSSA is best for no function, CSSA

for four functions, DSSA and LSSA for three functions, MSSA for ten functions, NBSSA for no

function and TSSA for two functions. Here, Overall MSSA again provided the best results for this

dimension size too.

Dimension Size 200: In this case, for functions F1, LSSA provided the best results in terms of

mean while the results are very competitive in terms of best, worst and standard deviation. For

functions F2, F4, F7 and F13, MSSA is found to be give overall best results. For function F2, the

results are comparable only in terms of best values where the performance of CSSA is found to be

best among all the variants of algorithms. For functions F5 and F6, MSSA is capable to give best

results only in terms of best values while the results of all other terms are difficult to differentiate.

For function F8, MSSA results are best in terms of standard deviation. For functions F9, F10 and

F11 the four algorithms CSSA, DSSA, LSSA and MSSA again provided the similar results. For

function F12, NBSSA is able to provide best results in terms of mean only. Overall it is found that

SSA is best for no function, CSSA for four functions, DSSA for three functions, GSSA and TSSA

for no function, lssa for four functions, MSSA for ten functions and NBSSA for one function. Hence

again it is found that MSSA is best for 200 dimension size.

Dimension Size 500: For functions F1, F2, F4 and F7, SSA was not able to approach the global

optimum value while all other proposed variants provided competitive results and MSSA is found to
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Table 4: Statistical results for population size of 80, 100, 120(Continued)

Function Algorithm
Population Size 80 Population Size 100 Population Size 120
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F8

SSA -9.29E+03 -5.91E+03 -7.56E+03 7.29E+02 -8.95E+03 -6.13E+03 -7.53E+03 6.79E+02 -9.03E+03 -6.18E+03 -7.62E+03 6.97E+02
CSSA -1.25E+04 -6.55E+03 -1.14E+04 1.78E+03 -1.25E+04 -6.03E+03 -1.12E+04 1.76E+03 -1.25E+04 -6.85E+03 -1.18E+04 1.18E+03
DSSA -1.12E+04 -5.93E+03 -8.68E+03 1.73E+03 -1.16E+04 -5.07E+03 -8.93E+03 1.83E+03 -1.14E+04 -4.87E+03 -8.88E+03 1.87E+03
GSSA -1.25E+04 -1.25E+04 -1.25E+04 5.17E-01 -1.25E+04 -1.25E+04 -1.25E+04 2.89E-01 -1.25E+04 -1.25E+04 -1.25E+04 1.88E-01
LSSA -1.25E+04 -5.94E+03 -1.03E+04 1.94E+03 -1.25E+04 -5.73E+03 -1.06E+04 2.08E+03 -1.25E+04 -5.82E+03 -1.08E+04 1.96E+03
MSSA -1.25E+04 -1.25E+04 -1.25E+04 5.80E-01 -1.25E+04 -1.25E+04 -1.25E+04 8.72E-02 -1.25E+04 -1.25E+04 -1.25E+04 3.18E-02
NBSSA -1.25E+04 -1.25E+04 -1.25E+04 3.70E-01 -1.25E+04 -1.25E+04 -1.25E+04 1.71E-01 -1.25E+04 -1.25E+04 -1.25E+04 1.85E-01
TSSA -1.25E+04 -1.25E+04 -1.25E+04 1.11E+00 -1.25E+04 -1.25E+04 -1.25E+04 5.76E-01 -1.25E+04 -1.25E+04 -1.25E+04 4.22E-01

F9

SSA 1.79E+01 1.00E+02 3.85E+01 1.62E+01 1.69E+01 6.76E+01 3.69E+01 1.22E+01 8.95E+00 6.96E+01 3.34E+01 1.42E+01
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 0.00E+00 2.60E-03 1.83E-04 5.70E-04 0.00E+00 5.70E-03 2.34E-04 9.53E-04 4.54E-11 4.65E-04 3.41E-05 9.70E-05
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 0.00E+00 5.20E-03 2.78E-04 8.51E-04 9.66E-13 2.00E-03 1.15E-04 3.96E-04 0.00E+00 3.89E-04 2.25E-05 7.13E-05
TSSA 3.80E-12 1.50E-03 9.27E-05 2.53E-04 0.00E+00 2.10E-03 9.16E-05 3.28E-04 6.25E-13 6.84E-04 6.12E-05 1.30E-04

F10

SSA 2.40E-05 3.62E+00 1.49E+00 8.49E-01 2.18E-05 3.02E+00 1.28E+00 8.08E-01 1.76E-05 3.51E+00 1.49E+00 9.26E-01
CSSA 8.88E-16 4.44E-15 1.38E-15 1.24E-15 8.88E-16 4.44E-15 1.31E-15 1.16E-15 8.88E-16 4.44E-15 1.38E-15 1.24E-15
DSSA 8.88E-16 4.44E-15 1.45E-15 1.31E-15 8.88E-16 4.44E-15 1.38E-15 1.24E-15 8.88E-16 4.44E-15 1.17E-15 9.73E-16
GSSA 4.61E-10 2.29E-02 2.50E-03 4.70E-03 4.15E-08 2.83E-02 2.40E-03 5.60E-03 2.18E-06 7.30E-03 1.30E-03 1.90E-03
LSSA 8.88E-16 4.44E-15 1.81E-15 1.57E-15 8.88E-16 4.44E-15 1.38E-15 1.24E-15 8.88E-16 4.44E-15 1.45E-15 1.31E-15
MSSA 8.88E-16 4.44E-15 1.31E-15 1.16E-15 8.88E-16 4.44E-15 1.31E-15 1.16E-15 8.88E-16 4.44E-15 9.59E-16 5.02E-16
NBSSA 2.41E-08 2.51E-02 2.40E-03 4.70E-03 1.94E-08 1.61E-02 2.00E-03 3.80E-03 1.67E-08 6.60E-03 7.39E-04 1.40E-03
TSSA 3.53E-09 8.33E-02 3.10E-03 1.19E-02 1.10E-08 2.33E-02 1.50E-03 3.70E-03 4.34E-07 8.60E-03 1.70E-03 2.10E-03

F11

SSA 8.64E-08 3.94E-02 8.90E-03 1.16E-02 5.47E-08 4.43E-02 1.09E-02 1.23E-02 2.55E-08 3.20E-02 7.00E-03 9.20E-03
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.10E-02 7.81E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 1.11E-16 2.24E-02 1.40E-03 4.60E-03 8.49E-13 6.31E-02 1.60E-03 8.90E-03 6.66E-16 2.00E-03 1.38E-04 4.03E-04
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 0.00E+00 2.17E-02 5.85E-04 3.10E-03 5.59E-12 9.10E-03 3.34E-04 1.40E-03 0.00E+00 2.00E-03 1.21E-04 3.70E-04
TSSA 0.00E+00 4.59E-02 1.90E-03 7.00E-03 2.88E-15 2.79E-02 6.50E-04 4.00E-03 0.00E+00 3.25E-04 4.28E-05 7.92E-05

F12

SSA 2.69E-01 1.12E+01 3.96E+00 2.43E+00 1.32E-02 8.31E+00 2.93E+00 1.78E+00 1.55E-02 6.32E+00 2.40E+00 1.41E+00
CSSA 2.97E-08 8.32E-02 8.20E-03 1.82E-02 1.04E-04 1.07E-01 8.30E-03 1.83E-02 1.37E-06 1.16E-01 1.13E-02 2.10E-02
DSSA 2.29E-02 4.40E-01 7.91E-02 6.59E-02 1.81E-02 1.59E-01 5.98E-02 2.75E-02 1.52E-02 1.58E-01 5.66E-02 2.97E-02
GSSA 3.65E-06 2.10E-03 3.20E-04 4.38E-04 1.05E-07 2.00E-03 2.14E-04 3.73E-04 1.48E-07 1.60E-03 1.32E-04 2.59E-04
LSSA 3.57E-06 2.03E-01 3.53E-02 3.83E-02 1.05E-04 8.94E-02 2.13E-02 2.63E-02 3.43E-05 1.81E-01 1.95E-02 3.02E-02
MSSA 1.02E-08 3.10E-03 1.99E-04 4.63E-04 1.57E-07 1.80E-03 1.19E-04 2.87E-04 2.32E-08 1.10E-03 6.88E-05 1.87E-04
NBSSA 1.41E-06 5.30E-03 4.02E-04 8.30E-04 1.17E-08 1.20E-03 1.42E-04 2.11E-04 2.08E-07 9.77E-04 1.41E-04 2.15E-04
TSSA 2.18E-07 2.90E-03 4.20E-04 7.45E-04 2.64E-06 1.00E-03 1.77E-04 2.31E-04 9.64E-08 4.70E-04 1.07E-04 1.20E-04

F13

SSA 8.77E-10 4.09E+00 1.65E-01 7.16E-01 7.68E-10 7.16E+00 1.49E-01 1.01E+00 6.51E-10 1.48E-01 8.00E-03 2.10E-02
CSSA 1.80E-03 8.46E-01 1.16E-01 2.00E-01 2.90E-03 3.50E-01 5.33E-02 7.55E-02 1.00E-03 5.51E-01 9.45E-02 1.46E-01
DSSA 3.06E-01 2.28E+00 7.02E-01 3.02E-01 1.88E-01 9.92E-01 6.09E-01 2.15E-01 1.95E-01 1.00E+00 5.72E-01 1.82E-01
GSSA 2.55E-05 3.94E-02 6.30E-03 9.40E-03 2.18E-06 2.99E-02 3.70E-03 5.30E-03 2.03E-06 9.10E-03 1.30E-03 1.90E-03
LSSA 1.10E-03 1.19E+00 2.07E-01 2.85E-01 1.00E-03 1.02E+00 1.61E-01 2.45E-01 5.56E-04 8.26E-01 1.67E-01 2.14E-01
MSSA 6.21E-07 1.15E-02 2.60E-03 3.30E-03 3.02E-07 3.90E-03 6.77E-04 1.00E-03 4.25E-07 1.58E-02 9.59E-04 2.60E-03
NBSSA 4.76E-05 7.47E-02 6.30E-03 1.12E-02 1.27E-07 1.85E-02 2.20E-03 3.70E-03 4.27E-07 1.32E-02 1.90E-03 2.50E-03
TSSA 7.45E-06 3.16E-02 5.10E-03 6.50E-03 4.94E-06 3.02E-02 4.00E-03 6.70E-03 1.82E-05 1.59E-02 1.50E-03 2.90E-03

be best among them. For function F3, the results are almost same in terms of worst, mean as well

as standard deviation so comparison is to be done only in terms of best values where performance

of CSSA is found to best. For function F5, F6 NBSSA and TSSA provided the best results in

terms of best values respectively. For function F8, the results are distinguishable in standard

deviation values where MSSA is found to be best. For functions F9, F10 and F11, the results of

four algorithms CSSA, DSSA, LSSA and MSSA again attains a value near to global optimum as

similar to dimension size of 10. For functions F12 and F13, NBSSA and GSSA are able to provide

better results respectively. Overall it is concluded that SSA is best for no function, CSSA for four

functions, DSSA and LSSA for three functions, GSSA for one function, MSSA for eight functions,

NBSSA and TSSA for one function. So MSSA is again found to be overall best for this case.

Inferences from effect of dimension size: From the results it has been analyzed that SSA is only

best for one function F6 beyond dimension size 50. After this SSA is not able to provide best results

for higher dimensions. So all the proposed algorithms with the help of different mutation operators

provide better results for lower dimension sizes such as 10 and 30. Although the performance of

proposed algorithms degrades up to certain extent at higher dimension sizes but deviation in results

are under marginal limits. Here, it can be seen that proposed algorithms especially MSSA is found

to be best for higher dimension sizes.

5.5. Comparison of best proposed with respect to other algorithms

5.5.1. Experimental Testing

Comparison with SSA Variants: This section details about the results for various SSA

variants with respect to the proposed MSSA algorithm. The results are presented in terms of mean
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Table 5: Statistical results for Dimension size of 10, 30, 50

Function Algorithm
Dimension Size 10 Dimension Size 30 Dimension Size 50
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F1

SSA 3.70E-10 1.76E-09 8.23E-10 2.76E-10 1.73E-08 5.66E-08 2.94E-08 9.59E-09 1.50E-03 1.15E-01 2.96E-02 2.92E-02
CSSA 7.02E-114 3.13E-96 8.95E-98 4.66E-97 2.82E-109 1.87E-90 3.74E-92 2.64E-91 5.34E-105 2.10E-90 9.36E-92 3.31E-91
DSSA 5.06E-112 6.62E-97 1.48E-98 9.38E-98 3.25E-106 2.54E-88 5.25E-90 3.59E-89 5.20E-103 2.52E-89 1.01E-90 4.06E-90
GSSA 8.48E-13 5.07E-02 2.10E-03 7.50E-03 6.12E-12 2.28E-01 9.90E-03 3.30E-02 1.67E-13 4.49E-01 1.11E-02 6.35E-02
LSSA 1.63E-112 1.21E-95 2.63E-97 1.71E-96 5.33E-110 3.29E-90 1.13E-91 4.98E-91 3.66E-108 2.26E-88 4.89E-90 3.19E-89
MSSA 5.67E-112 1.27E-97 2.61E-99 1.80E-98 7.37E-107 1.43E-92 3.12E-94 2.03E-93 7.39E-108 1.14E-89 2.31E-91 1.61E-90
NBSSA 2.06E-15 3.67E-02 2.10E-03 6.80E-03 3.86E-12 2.77E-02 2.20E-03 5.50E-03 6.12E-14 3.75E-01 1.32E-02 5.46E-02
TSSA 1.99E-12 3.15E-01 1.02E-02 4.61E-02 8.84E-11 2.84E-01 8.70E-03 4.07E-02 3.20E-10 5.05E-01 2.63E-02 8.26E-02

F2

SSA 3.89E-06 2.70E-01 5.40E-03 3.83E-02 1.08E-01 7.37E+00 1.59E+00 1.61E+00 2.08E+00 1.31E+01 6.38E+00 2.48E+00
CSSA 1.05E-59 1.08E-51 6.20E-53 2.21E-52 2.99E-56 1.54E-48 5.09E-50 2.33E-49 9.89E-56 7.55E-47 1.53E-48 1.06E-47
DSSA 4.08E-57 1.29E-50 4.52E-52 1.99E-51 2.89E-57 9.79E-49 6.07E-50 1.91E-49 3.06E-55 7.90E-47 2.86E-48 1.32E-47
GSSA 4.13E-09 5.99E-02 6.60E-03 1.29E-02 1.60E-05 4.00E-01 1.91E-02 5.86E-02 2.53E-06 4.11E-01 3.56E-02 6.97E-02
LSSA 1.02E-61 8.54E-50 1.93E-51 1.21E-50 1.18E-58 6.84E-49 2.30E-50 1.00E-49 6.15E-57 4.92E-47 1.29E-48 7.09E-48
MSSA 2.45E-60 6.13E-52 1.92E-53 8.87E-53 1.69E-58 6.65E-49 1.38E-50 9.40E-50 1.42E-57 2.80E-48 5.88E-50 3.95E-49
NBSSA 2.08E-06 8.19E-02 6.60E-03 1.51E-02 9.68E-09 1.48E-01 1.69E-02 2.77E-02 1.21E-05 2.69E-01 3.50E-02 6.21E-02
TSSA 3.27E-07 8.14E-02 5.40E-03 1.35E-02 1.50E-05 1.83E-01 2.21E-02 3.28E-02 8.99E-06 1.73E-01 3.21E-02 4.52E-02

F3

SSA 9.59E-10 6.26E-08 6.48E-09 9.86E-09 2.89E+02 2.21E+03 8.92E+02 4.32E+02 1.96E+03 1.60E+04 6.90E+03 3.25E+03
CSSA 2.12E-56 2.25E-20 4.51E-22 3.19E-21 4.76E-31 2.05E-04 4.53E-06 2.90E-05 5.57E-21 2.66E-01 9.00E-03 4.01E-02
DSSA 1.86E-63 2.67E-19 6.34E-21 3.83E-20 4.79E-20 1.42E-04 3.12E-06 2.02E-05 4.67E-17 1.80E-01 5.00E-03 2.67E-02
GSSA 4.06E-05 4.69E+01 1.33E+00 6.62E+00 3.04E-02 3.25E+02 4.40E+01 8.17E+01 4.70E-03 1.37E+03 1.48E+02 3.11E+02
LSSA 2.17E-59 1.57E-21 5.05E-23 2.34E-22 6.84E-27 1.77E-05 4.06E-07 2.50E-06 1.49E-15 6.16E-01 1.34E-02 8.72E-02
MSSA 1.31E-64 6.99E-27 2.84E-28 1.21E-27 6.24E-42 2.53E-11 5.69E-13 3.58E-12 1.76E-36 2.18E-07 6.41E-09 3.29E-08
NBSSA 4.14E-07 1.92E+01 1.18E+00 3.24E+00 4.43E-07 5.45E+02 4.80E+01 1.01E+02 4.25E-08 1.58E+03 1.10E+02 2.46E+02
TSSA 3.32E-15 9.99E+00 6.38E-01 1.65E+00 3.40E-03 3.63E+02 2.39E+01 5.72E+01 1.80E-02 1.42E+03 2.05E+02 3.08E+02

F4

SSA 1.17E-05 3.05E-05 1.80E-05 4.62E-06 2.87E+00 1.50E+01 8.24E+00 3.13E+00 1.04E+01 2.32E+01 1.63E+01 2.85E+00
CSSA 1.44E-52 7.31E-43 5.46E-44 1.48E-43 2.11E-49 8.65E-40 3.19E-41 1.36E-40 4.73E-48 2.05E-39 8.35E-41 3.33E-40
DSSA 7.59E-54 9.73E-40 2.13E-41 1.37E-40 1.02E-49 2.53E-38 7.58E-40 3.90E-39 1.79E-45 5.86E-37 2.38E-38 1.07E-37
GSSA 1.28E-05 1.54E-01 1.32E-02 2.74E-02 5.32E-08 1.47E-01 1.50E-02 2.97E-02 1.07E-05 8.67E-02 1.53E-02 2.08E-02
LSSA 1.55E-51 1.07E-39 3.71E-41 1.80E-40 9.39E-49 4.64E-39 1.79E-40 7.11E-40 1.28E-50 3.77E-38 1.25E-39 5.75E-39
MSSA 9.26E-52 1.43E-42 3.42E-44 2.03E-43 1.26E-51 3.83E-41 1.80E-42 6.58E-42 1.36E-49 1.77E-38 4.17E-40 2.51E-39
NBSSA 5.43E-06 4.56E-02 4.20E-03 9.10E-03 1.94E-09 8.60E-02 9.50E-03 1.83E-02 5.83E-12 8.89E-02 1.15E-02 1.82E-02
TSSA 1.11E-06 1.36E-01 1.07E-02 2.48E-02 5.59E-06 1.84E-01 1.32E-02 2.87E-02 1.18E-05 1.83E-01 1.98E-02 3.60E-02

F5

SSA 4.52E+00 2.12E+03 1.17E+02 3.37E+02 1.98E+01 1.30E+03 1.47E+02 2.65E+02 9.84E+01 9.53E+03 7.08E+02 1.36E+03
CSSA 2.68E-02 8.94E+00 7.09E+00 3.25E+00 1.39E+00 2.88E+01 2.64E+01 6.92E+00 3.47E+00 4.86E+01 4.35E+01 1.26E+01
DSSA 7.95E+00 8.94E+00 8.64E+00 2.71E-01 2.84E+01 2.88E+01 2.87E+01 8.26E-02 4.83E+01 4.87E+01 4.85E+01 9.04E-02
GSSA 3.92E-02 6.33E+00 1.50E+00 1.51E+00 2.79E-01 2.89E+01 9.57E+00 7.85E+00 1.32E-01 4.80E+01 1.34E+01 1.17E+01
LSSA 1.32E-01 8.93E+00 7.33E+00 3.11E+00 2.89E-01 2.88E+01 2.68E+01 6.45E+00 1.99E+00 4.86E+01 4.38E+01 1.31E+01
MSSA 1.07E-02 8.88E+00 2.55E+00 3.78E+00 7.05E-02 2.87E+01 1.38E+01 1.29E+01 4.04E-02 4.86E+01 2.63E+01 2.21E+01
NBSSA 2.50E-03 8.95E+00 2.33E+00 2.38E+00 7.57E-02 2.87E+01 7.53E+00 6.80E+00 7.44E-02 4.87E+01 1.67E+01 1.50E+01
TSSA 4.53E-02 7.81E+00 2.25E+00 2.13E+00 2.97E-01 2.50E+01 7.32E+00 6.89E+00 3.34E-01 4.85E+01 1.61E+01 1.32E+01

F6

SSA 1.67E-10 1.73E-09 7.51E-10 3.22E-10 1.56E-08 8.29E-08 3.43E-08 1.43E-08 5.13E-04 3.08E-01 4.38E-02 7.12E-02
CSSA 1.02E-05 6.20E-01 1.25E-01 1.68E-01 2.00E-03 2.49E+00 6.75E-01 7.18E-01 3.20E-03 3.41E+00 1.40E+00 1.09E+00
DSSA 8.50E-03 8.16E-01 2.34E-01 2.01E-01 7.44E-01 2.73E+00 1.56E+00 5.04E-01 1.65E+00 5.97E+00 3.35E+00 8.55E-01
GSSA 8.14E-04 2.15E-01 3.57E-02 3.81E-02 4.00E-03 8.86E-01 1.36E-01 1.88E-01 2.30E-03 1.09E+00 2.00E-01 2.53E-01
LSSA 6.27E-04 8.57E-01 1.93E-01 1.61E-01 5.26E-02 2.79E+00 1.21E+00 7.09E-01 5.90E-03 5.93E+00 2.10E+00 5.23E-01
MSSA 1.71E-04 6.70E-02 1.11E-02 1.59E-02 3.60E-03 8.25E-01 1.05E-01 1.43E-01 4.30E-03 1.12E+00 1.93E-01 2.29E-01
NBSSA 8.90E-04 2.76E-01 4.08E-02 5.60E-02 4.50E-03 1.45E+00 2.09E-01 3.41E-01 5.30E-03 1.72E+00 2.28E-01 2.72E-01
TSSA 6.40E-04 3.81E-01 4.30E-02 6.77E-02 6.33E-04 1.18E+00 1.64E-01 2.40E-01 3.50E-03 1.70E+00 2.27E-01 3.23E-01

F7

SSA 2.10E-03 4.03E-02 1.27E-02 9.90E-03 2.56E-02 2.61E-01 1.20E-01 4.40E-02 1.44E-01 7.42E-01 3.94E-01 1.32E-01
CSSA 5.25E-05 5.40E-03 1.00E-03 1.00E-03 1.09E-05 5.30E-03 7.96E-04 1.10E-03 5.27E-05 3.40E-03 5.78E-04 5.96E-04
DSSA 1.55E-05 2.70E-03 8.96E-04 7.41E-04 5.05E-05 2.60E-03 6.67E-04 5.86E-04 3.68E-05 9.20E-03 1.00E-03 1.60E-03
GSSA 1.06E-04 9.60E-03 2.60E-03 2.40E-03 6.17E-05 1.27E-02 3.80E-03 3.10E-03 4.16E-04 3.35E-02 8.40E-03 7.40E-03
LSSA 1.75E-05 4.90E-03 9.00E-04 9.73E-04 1.61E-06 3.10E-03 6.60E-04 7.82E-04 1.06E-05 4.80E-03 7.53E-04 1.10E-03
MSSA 3.72E-06 1.90E-03 4.04E-04 4.06E-04 1.11E-05 2.70E-03 5.31E-04 5.52E-04 7.28E-07 4.80E-03 5.31E-04 8.34E-04
NBSSA 5.51E-05 1.25E-02 2.30E-03 2.20E-03 3.36E-04 2.25E-02 5.70E-03 5.30E-03 2.19E-04 3.98E-02 8.30E-03 9.20E-03
TSSA 1.57E-05 2.11E-02 3.70E-03 3.60E-03 1.93E-04 2.38E-02 5.30E-03 5.20E-03 1.87E-04 4.43E-02 6.30E-03 8.20E-03

and standard deviation values in Table 7 and the dimension size for this set is 10 (as used by the

other algorithms under comparison). Three versions of SSA namely salp swarm algorithm based

on particle swarm optimization (SSAPSO) (Ibrahim et al., 2019), chaotic salp swarm algorithm

(CSSA) (Majhi et al., 2019) and chaotic salp swarm algorithm with logistic map (CSSA5) (Sayed

et al., 2018) have been employed to test the proposed MSSA. The results of mean and standard

deviation are taken from their respective papers and analysis is performed on CEC 2005 unimodal

and multi-modal benchmark problems. From the results, it can be seen that for F1, F2, F4, F5, F7,

F8, F9, F10, F11 and F12, MSSA is found to be the best whereas for F3, SSAPSO was found as the

best. Apart from that CSSA was found best on F6 and F13. Thus overall we can say that, CSSA5

did not performed well on any of the functions, SSAPSO for one function, CSSA for two functions

and for rest of the ten functions, MSSA performed exceptionally well. From the statistical Friedman

rank (f-rank) (Tejani et al., 2018) and Wilcoxon rank-sum test further prove the significance of the

proposed algorithm.

Comparison with other State-of-the-art algorithms: In this section, the simulation results

of different algorithms as given in Table 8 have been discussed. The results are presented in terms of

best, worst, mean and standard deviation values for 30 Dimension problems. It has been analyzed

from the table that for functions F1, F2, F3, F4 and F5, the performance of proposed MSSA

is found to be best and none of the algorithm is capable to reach the performance of MSSA. For
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Table 5: Statistical results for dimension size of 10, 30, 50(Continued)

Function Algorithm
Dimension Size 10 Dimension Size 30 Dimension Size 50
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F8

SSA -3.61E+03 -2.18E+03 -2.83E+03 3.62E+02 -9.04E+03 -5.98E+03 -7.36E+03 6.53E+02 -1.44E+04 -9.59E+03 -1.20E+04 1.04E+03
CSSA -4.18E+03 -2.79E+03 -4.05E+03 3.57E+02 -1.25E+04 +7.36E+03 -1.14E+04 1.58E+03 -2.09E+04 -1.22E+04 -1.78E+04 2.99E+03
DSSA -3.94E+03 -4.17E+03 -3.16E+03 4.43E+02 -1.25E+04 -5.45E+03 -8.48E+03 1.92E+03 -1.76E+04 -7.43E+03 -1.18E+04 2.76E+03
GSSA -4.18E+03 -4.17E+03 -4.18E+03 2.07E+00 -1.25E+04 -1.25E+04 -1.25E+04 3.99E+00 -2.09E+04 -2.07E+04 -2.09E+04 2.25E+01
LSSA -4.18E+03 -2.46E+03 -3.60E+03 6.53E+02 -1.25E+04 -5.87E+03 -1.01E+04 2.14E+03 -2.09E+04 -6.88E+03 -1.53E+04 4.07E+03
MSSA -4.18E+03 -4.18E+03 -4.18E+03 1.30E-01 -1.25E+04 -1.25E+04 -1.25E+04 1.01E+00 -2.09E+04 -2.09E+04 -2.09E+04 1.50E+00
NBSSA -4.18E+03 -4.18E+03 -4.18E+03 1.17E+00 -1.25E+04 -1.25E+04 -1.25E+04 4.18E+00 -2.09E+04 -2.09E+04 -2.09E+04 6.93E+00
TSSA -4.18E+03 -4.17E+03 -4.18E+03 1.84E+00 -1.25E+04 -1.25E+04 -1.25E+04 4.55E+00 -2.09E+04 -2.08E+04 -2.09E+04 1.32E+01

F9

SSA 5.96E+00 4.37E+01 1.82E+01 8.23E+00 1.98E+01 8.35E+01 4.81E+01 1.48E+01 3.58E+01 1.35E+02 7.84E+01 2.33E+01
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 1.20E-11 5.91E-02 2.00E-03 8.60E-03 1.29E-10 7.22E-02 4.10E-03 1.21E-02 4.54E-13 3.70E-01 1.19E-02 5.28E-02
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 9.11E-11 1.29E-02 6.87E-04 2.20E-03 0.00E+00 3.21E-02 2.70E-03 6.30E-03 0.00E+00 3.80E-02 2.80E-03 7.10E-03
TSSA 1.47E-12 3.65E-02 1.20E-03 5.30E-03 9.76E-11 9.69E-02 5.80E-03 1.84E-02 1.69E-10 8.02E-02 6.10E-03 1.65E-02

F10

SSA 6.19E-06 3.73E+00 7.32E-01 9.70E-01 9.31E-01 4.07E+00 2.23E+00 7.30E-01 2.01E+00 5.97E+00 3.81E+00 9.51E-01
CSSA 8.88E-16 4.44E-15 1.74E-15 1.53E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15 8.88E-16 4.44E-15 1.45E-15 1.31E-15
DSSA 8.88E-16 4.44E-15 1.52E-15 1.37E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15
GSSA 1.92E-06 9.89E-02 1.22E-02 2.15E-02 5.03E-06 1.52E-01 1.53E-02 3.18E-02 2.45E-07 1.17E-01 1.34E-02 2.51E-02
LSSA 8.88E-16 4.44E-15 1.45E-15 1.31E-15 8.88E-16 4.44E-15 1.81E-15 1.57E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15
MSSA 8.88E-16 4.44E-15 1.74E-15 1.53E-15 8.88E-16 4.44E-15 1.59E-15 1.43E-15 8.88E-16 4.44E-15 1.66E-15 1.48E-15
NBSSA 4.44E-06 2.35E-01 1.15E-02 3.53E-02 2.12E-09 5.37E-02 9.30E-03 1.48E-02 1.92E-12 5.01E-02 8.70E-03 1.22E-02
TSSA 6.86E-07 2.07E-01 1.62E-02 3.78E-02 3.42E-06 1.12E-01 1.25E-02 2.14E-02 2.03E-08 8.42E-02 9.80E-03 1.59E-02

F11

SSA 5.91E-02 7.62E-01 2.65E-01 1.55E-01 2.54E-05 4.18E-02 1.00E-02 9.00E-03 4.51E-02 3.67E-01 1.53E-01 6.23E-02
CSSA 0.00E+00 9.62E-01 5.60E-02 1.97E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 7.26E-01 1.45E-02 1.02E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 9.54E-11 2.63E-01 1.29E-02 4.50E-02 8.77E-15 9.22E-01 5.44E-02 1.79E-01 5.17E-11 3.08E-01 1.97E-02 5.67E-02
LSSA 0.00E+00 4.61E-01 9.20E-03 6.53E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 3.03E-09 9.92E-01 6.28E-02 2.19E-01 1.35E-10 2.77E-01 8.80E-03 3.99E-02 1.56E-14 3.50E-01 2.65E-02 7.25E-02
TSSA 5.32E-15 8.93E-01 1.12E-01 2.45E-01 0.00E+00 4.66E-02 4.90E-03 1.12E-02 4.72E-09 2.15E-01 1.21E-02 3.37E-02

F12

SSA 4.54E-12 3.52E+00 5.21E-01 8.56E-01 1.54E+00 1.05E+01 5.47E+00 2.16E+00 3.44E+00 2.04E+01 9.50E+00 4.00E+00
CSSA 1.10E-04 3.83E-01 4.99E-02 6.91E-02 1.21E-04 6.09E-01 4.24E-02 9.06E-02 1.34E-05 1.86E-01 2.55E-02 4.24E-02
DSSA 1.90E-03 1.57E+00 9.42E-02 2.20E-01 2.06E-02 6.59E-01 1.08E-01 1.08E-01 3.64E-02 4.37E-01 1.09E-01 7.71E-02
GSSA 2.69E-05 9.60E-02 4.70E-03 1.36E-02 4.13E-05 2.01E-02 2.50E-03 3.70E-03 1.77E-05 7.30E-03 1.60E-03 1.70E-03
LSSA 4.46E-05 1.55E-01 5.69E-02 4.63E-02 2.71E-07 3.47E-01 4.43E-02 6.54E-02 6.59E-04 1.97E-01 4.08E-02 4.53E-02
MSSA 1.30E-06 5.60E-03 9.77E-04 1.40E-03 4.32E-06 1.11E-02 1.50E-03 2.40E-03 2.24E-05 1.02E-02 1.40E-03 1.90E-03
NBSSA 5.80E-05 3.77E-02 3.40E-03 6.00E-03 6.76E-05 8.40E-02 2.10E-03 2.10E-03 2.15E-06 8.30E-03 1.70E-03 1.90E-03
TSSA 1.92E-05 8.59E-02 6.00E-03 1.39E-02 2.20E-05 1.80E-02 1.80E-03 3.20E-03 7.71E-05 1.29E-02 1.80E-03 2.40E-03

F13

SSA 3.15E-11 2.10E-02 2.80E-03 5.70E-03 5.50E-06 4.46E+01 1.06E+01 1.27E+01 3.47E+01 9.58E+01 6.48E+01 1.48E+01
CSSA 2.42E-06 3.71E-01 9.97E-02 1.07E-01 1.80E-03 1.53E+00 1.91E-01 3.04E-01 2.34E-04 1.44E+00 2.81E-01 3.32E-01
DSSA 4.10E-02 6.94E-01 2.10E-01 1.38E-01 2.42E-01 1.36E+00 8.38E-01 2.52E-01 6.38E-01 2.80E+00 1.60E+00 4.33E-01
GSSA 5.78E-05 7.94E-02 1.59E-02 1.87E-02 4.72E-04 1.42E-01 3.61E-02 4.01E-02 1.57E-04 1.99E-01 3.71E-02 4.81E-02
LSSA 2.34E-04 5.08E-01 1.42E-01 1.28E-01 1.75E-04 1.22E+00 3.33E-01 3.65E-01 4.27E-04 2.89E+00 6.25E-01 6.99E-01
MSSA 1.42E-06 7.49E-02 9.40E-03 1.68E-02 3.45E-06 1.87E-01 2.58E-02 3.72E-02 3.28E-05 2.29E-01 3.49E-02 4.82E-02
NBSSA 3.54E-04 6.12E-02 1.21E-02 1.25E-02 3.43E-04 1.44E-01 3.56E-02 3.40E-02 6.15E-04 2.25E-01 4.60E-02 4.73E-02
TSSA 2.47E-04 7.07E-02 1.40E-02 1.43E-02 3.03E-04 1.70E-01 2.68E-02 3.21E-02 2.18E-04 1.78E-01 3.87E-02 4.53E-02

functions F6 and F13, proposed MSSA results are competitive but PSOGSA provided the best

results. For functions F7 and F8, MSSA is the best algorithm as compared to other algorithms.

For functions F9 and F11, the proposed MSSA attains a value of global optimum solution. For

functions F10 and F12, MSSA, SCCSA, GWO and FA are capable to approach near global optima

while rest of the algorithms suffer from local optima stagnation problem, but MSSA is found to

be best. For the fixed dimension functions such as F14 and F15 the results are comparable only

in terms of standard deviation where DE and SSA provided the best results respectively. In the

same way, for function F16, the results are differentiated only in terms of mean values and FPA

performance is found to be better among all the other algorithms under consideration. So overall,

proposed MSSA is found to be best for 11 benchmark functions out of the total 16 functions, SSA

for 1 functions, DE for 1 function, PSOGSA for 2 function, FPA for 1 function and BA, DA, FA,

SCCSA and GWO for none of the function.

5.5.2. Statistical Testing

For statistical performance evaluation of proposed MSSA, two statistically significance tests

namely Wilcoxon rank-sum test (Wilcoxon et al., 1970) and Mann-Whitney U rank sum test (Tersoff,

1988) are performed. In Wilcoxon rank-sum test, two different samples of best values are used and

correspondingly p-value is generated. The two algorithms are compared at 5% significance level

to show the statistical relevance between them. The results for algorithms under comparison are

shown in Table 8. Here the proposed MSSA is compared with other algorithms and comparison

is performed as MSSA with BA, MSSA/DA, MSSA/DE, MSSA/FA, MSSA/FPA, MSSA/GWO,

MSSA/SCCSA, MSSA/PSOGSA and MSSA/SSA to prove the efficiency of MSSA statistically. The

23



.

Table 6: Statistical results for Dimension size of 100, 200, 500

Function Algorithm
Dimension Size 100 Dimension Size 200 Dimension Size 500
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F1

SSA 3.04E+02 9.56E+02 5.98E+02 1.75E+02 9.51E+03 1.53E+04 1.19E+04 1.43E+03 6.24E+04 8.15E+04 7.12E+04 4.78E+03
CSSA 4.58E-106 9.32E-85 1.91E-86 1.31E-85 7.18E-108 6.42E-83 1.28E-84 9.08E-84 9.04E-100 1.49E-86 8.68E-88 2.98E-87
DSSA 2.02E-103 2.11E-85 5.09E-87 3.00E-86 8.96E-101 6.12E-86 2.07E-87 9.96E-87 2.60E-98 4.45E-86 2.02E-87 7.59E-87
GSSA 9.87E-13 2.37E+00 7.56E-02 3.38E-01 3.09E-07 1.51E+00 6.84E-02 2.21E-01 1.50E-09 2.18E+01 4.80E-01 3.08E+00
LSSA 3.03E-102 1.10E-86 2.21E-88 1.56E-87 3.31E-100 1.62E-88 9.69E-90 3.13E-89 1.79E-100 3.43E-83 6.89E-85 4.85E-84
MSSA 3.07E-107 3.32E-92 1.91E-93 7.14E-93 5.49E-105 2.29E-86 4.59E-88 3.23E-87 7.63E-102 9.26E-87 4.31E-88 1.76E-87
NBSSA 2.01E-10 3.39E-01 3.00E-02 6.37E-02 8.21E-11 3.50E-01 1.81E-02 5.88E-02 6.66E-10 1.36E+00 7.97E-02 2.50E-01
TSSA 1.22E-09 7.15E-01 2.81E-02 1.06E-01 2.04E-08 3.31E-01 1.85E-02 5.16E-02 1.79E-07 1.36E+00 7.67E-02 2.18E-01

F2

SSA 2.28E+01 5.45E+01 3.73E+01 6.10E+00 1.10E+02 1.57E+02 1.30E+02 9.84E+00 4.31E+02 5.11E+02 4.68E+00 1.89E+01
CSSA 4.30E-54 2.61E-46 5.50E-48 3.70E-47 2.38E-54 4.24E-47 2.74E-48 7.81E-48 1.91E-54 7.69E-46 3.51E-47 1.45E-46
DSSA 1.24E-53 3.59E-47 3.25E-48 8.28E-48 2.38E-54 1.50E-46 8.27E-48 2.69E-47 3.74E-54 3.65E-46 1.96E-47 6.84E-47
GSSA 5.61E-06 5.47E-01 9.11E-02 1.30E-01 2.35E-08 5.90E-01 6.73E-02 1.04E-01 1.54E-05 2.41E+00 3.01E-01 4.78E-01
LSSA 3.60E-54 2.14E-47 8.36E-49 3.36E-48 9.27E-55 1.02E-46 6.51E-48 2.13E-47 3.85E-53 6.13E-46 1.80E-47 8.79E-47
MSSA 3.40E-57 6.89E-49 3.88E-50 1.23E-49 1.40E-58 3.22E-48 1.90E-49 6.20E-49 2.10E-55 1.66E-46 4.60E-48 2.41E-47
NBSSA 3.46E-05 1.36E+00 7.53E-02 2.04E-01 1.03E-05 1.11E+00 1.08E-01 2.16E-01 4.45E-05 1.70E+00 2.20E-01 3.25E-01
TSSA 7.11E-06 2.14E-01 4.18E-02 5.26E-02 2.10E-03 1.14E+00 1.37E-01 1.96E-01 8.46E-05 1.94E+00 2.41E-01 4.60E-01

F3

SSA 1.11E+04 9.57E+04 3.74E+04 2.04E+04 4.80E+04 4.06E+05 1.55E+05 7.74E+04 2.76E+05 2.12E+06 9.98E+05 4.57E+05
CSSA 3.59E-13 2.02E+01 1.10E+00 3.06E+00 2.89E-22 2.31E+04 7.15E+02 3.30E+03 3.89E-27 7.36E+05 5.57e+04 1.26E+05
DSSA 2.99E-08 2.44E+02 9.89E+00 3.75E+01 2.53E-04 9.11E+03 7.44E+02 1.68E+03 1.54E-01 2.86E+05 2.40E+04 4.92E+04
GSSA 4.10E-03 1.16E+04 2.03E+03 2.89E+03 1.50E-03 3.77E+04 9.93E+03 1.12E+04 1.45E+02 1.15E+06 1.67E+05 2.33E+05
LSSA 1.56E-07 1.19E+03 4.03E+01 1.78E+02 1.32E-02 1.02E+04 7.21E+02 1.91E+03 1.27E+00 7.40E+05 4.86E+04 1.41E+05
MSSA 1.79E-19 4.15E-02 8.77E-04 5.90E-03 7.39E-18 2.20E+02 4.62E+00 3.11E+01 3.79E-09 1.81E+02 1.34E+01 3.94E+01
NBSSA 1.40E-01 2.81E+04 2.71E+03 5.20E+03 9.67E-01 6.82E+04 1.23E+04 1.53E+04 1.18E+03 1.34E+06 1.52E+05 2.28E+05
TSSA 1.57E+00 1.45E+04 2.08E+03 3.21E+03 1.89E+00 1.10E+05 1.20E+04 2.02E+04 7.27E-02 1.44E+06 1.50E+05 2.33E+05

F4

SSA 1.90E+01 3.21E+01 2.41E+01 2.80E+00 2.54E+01 3.62E+01 3.03E+01 2.59E+00 3.17E+01 4.30E+01 3.60E+01 2.32E+00
CSSA 3.45E-48 2.68E-38 1.02E-39 4.15E-39 9.95E-46 5.76E-38 1.88E-39 8.42E-39 1.57E-46 6.08E-36 2.08E-37 9.26E-37
DSSA 1.13E-45 4.00E-38 1.49E-39 5.92E-39 4.18E-46 4.18E-36 8.49E-38 5.92E-37 3.15E-43 4.29E-35 1.02E-36 6.10E-36
GSSA 1.91E-06 9.74E-02 1.36E-02 1.87E-02 2.23E-06 3.87E-01 3.50E-02 6.51E-02 5.67E-06 3.79E-01 3.46E-02 6.40E-02
LSSA 3.56E-48 4.31E-36 8.94E-38 6.09E-37 1.97E-45 4.51E-37 1.35E-38 6.54E-38 2.03E-44 2.72E-36 8.89E-38 4.04E-37
MSSA 1.62E-47 4.64E-37 1.02E-38 6.56E-38 3.52E-48 6.29E-38 1.34E-39 8.94E-39 4.31E-46 2.57E-37 7.90E-39 3.75E-38
NBSSA 3.41E-06 2.21E-01 2.33E-02 3.73E-02 2.32E-06 2.02E-01 3.45E-02 5.05E-02 1.32E-04 2.12E-01 3.00E-02 3.85E-02
TSSA 1.31E-06 1.12E-01 1.83E-02 2.65E-02 4.10E-05 1.15E-01 2.00E-02 2.53E-02 8.54E-04 3.31E-01 4.39E-02 5.94E-02

F5

SSA 1.10E+04 1.63E+05 5.37E+04 3.03E+04 6.62E+05 3.86E+06 2.00E+06 6.16E+05 1.60E+07 3.07E+07 2.22E+07 3.05E+06
CSSA 4.15E-01 9.83E+01 8.69E+01 2.61E+01 1.19E-01 1.97E+02 1.79E+02 5.08E+01 1.53E+01 4.96E+02 4.83E+02 6.86E+01
DSSA 9.80E+01 9.84E+01 9.82E+01 7.55E-02 1.97E+02 1.98E+02 1.97E+02 1.24E-01 4.95E+02 4.96E+02 4.96E+02 3.32E-01
GSSA 1.65E-01 8.83E+01 2.49E+01 2.43E+01 3.22E+00 2.04E+02 7.94E+01 6.25E+01 4.35E-01 5.17E+02 1.84E+02 1.65E+02
LSSA 1.64E+01 9.84E+01 9.65E+01 1.15E+01 9.21E+01 1.98E+02 1.93E+02 1.76E+01 9.41E+01 4.96E+02 4.75E+02 8.06E+01
MSSA 1.85E-02 9.81E+01 4.84E+01 4.39E+01 1.65E-01 1.97E+02 6.62E+01 8.35E+01 4.35E-01 4.96E+02 2.61E+02 2.18E+02
NBSSA 4.36E-01 9.90E+01 3.08E+01 2.72E+01 2.48E+00 1.97E+02 6.72E+01 5.99E+01 4.61E-02 5.02E+02 2.17E+02 1.72E+02
TSSA 1.31E-01 1.02E+02 2.79E+01 2.61E+01 1.10E+00 1.97E+02 7.40E+01 5.43E+01 2.94E+00 5.17E+02 1.82E+02 1.52E+02

F6

SSA 4.12E+02 1.08E+03 6.87E+02 1.85E+02 8.27E+03 1.45E+04 1.15E+04 1.51E+03 6.43E+04 8.56E+04 7.19E+04 4.38E+03
CSSA 3.16E-01 1.04E+01 4.16E+00 2.80E+00 4.90E-02 2.04E+01 8.55E+00 5.73E+00 2.36E-01 5.96E+01 1.66E+01 1.56E+01
DSSA 5.20E+00 1.15E+01 7.90E+00 1.66E+00 9.23E+00 2.51E+01 1.71E+01 3.49E+00 3.60E+01 6.41E+01 4.66E+01 6.10E+00
GSSA 1.58E-02 1.95E+00 4.78E-01 4.38E-01 2.63E-02 3.44E+00 9.43E-01 9.70E-01 1.18E-01 1.31E+01 2.66E+00 2.79E+00
LSSA 1.35E-01 1.29E+01 6.03E+00 2.98E+00 9.39E-02 2.35E+01 1.15E+01 6.98E+00 1.17E+00 7.08E+01 3.17E+01 1.99E+01
MSSA 1.02E-02 4.33E+00 5.60E-01 7.16E-01 3.70E-03 4.10E+00 1.12E+00 1.01E+00 5.24E-02 2.23E+01 3.49E+00 3.85E+00
NBSSA 1.58E-02 3.53E+00 5.84E-01 6.70E-01 2.71E-02 4.67E+00 1.25E+00 1.19E+00 5.52E-02 1.05E+01 2.53E+00 2.44E+00
TSSA 6.40E-03 2.52E+00 5.01E-01 5.08E-01 8.05E-02 5.72E+00 8.64E-01 1.18E+00 5.11E-02 1.85E+01 3.53E+00 3.25E+00

F7

SSA 7.05E-01 2.60E+00 1.85E+00 4.18E-01 7.30E+00 1.89E+01 1.17E+01 2.48E+00 1.26E+02 2.24E+02 1.68E+02 2.14E+01
CSSA 1.24E-06 3.70E-03 6.65E-04 8.56E-04 1.92E-05 4.10E-03 5.11E-04 6.27E-04 2.72E-05 7.20E-03 7.47E-04 1.30E-03
DSSA 1.95E-05 6.10E-03 1.20E-03 1.50E-03 2.58E-05 3.20E-03 6.72E-04 7.28E-04 1.69E-05 5.20E-03 1.30E-03 1.40E-03
GSSA 4.24E-04 5.09E-02 9.20E-03 9.40E-03 3.18E-04 6.31E-02 1.57E-02 1.37E-02 9.94E-05 6.38E-02 1.37E-02 1.34E-02
LSSA 9.21E-06 4.10E-03 6.81E-04 7.31E-04 2.65E-06 8.90E-03 8.01E-04 1.40E-03 9.50E-06 8.60E-03 9.81E-04 1.40E-03
MSSA 1.61E-05 4.10E-03 4.86E-04 6.59E-04 1.53E-05 3.00E-03 4.67E-04 5.94E-04 1.62E-05 5.10E-03 9.19E-04 1.10E-03
NBSSA 4.05E-04 6.08E-02 1.12E-02 1.32E-02 7.52E-04 6.42E-02 1.68E-02 1.45E-02 1.77E-04 1.53E-01 1.92E-02 2.52E-02
TSSA 7.78E-04 6.95E-02 1.13E-02 1.31E-02 1.75E-04 5.66E-02 1.32E-02 1.39E-02 5.32E-04 1.15E-01 2.13E-02 2.26E-02

best algorithm cannot be compared with itself so NA (Not Applicable) is used in the Table. If the

two algorithms under comparison provided the same results statistically or if there is no statistical

relevance between them then ’∼’ sign is inserted. From the results in Table 8, it has been found

that performance of MSSA is significantly better for maximum number of cases and is statistically

best among the algorithms under comparison.

The second statistical test used here is Mann- Whitney U rank sum test. This test is also a

non-parametric test and is executed at 5% significance level. Here the proposed MSSA is compared

with other existing algorithm as given in Table 8. If significant difference is not observed between

two samples of best values then ’=’ sign is inserted in its place. In the same way if significant

difference is observed between the algorithms then ’+’ sign is used and ’−’ sign is used for worst

performing algorithm. As from the Table 8 it can be seen that it consist of ’+’ sign for MSSA in

maximum number of cases, it is proved that performance of proposed MSSA is statistically better

among all the other algorithms.

5.6. Convergence profiles

In this section convergence profiles of different algorithms has been compared. Here, the proposed

MSSA is compared over different benchmark functions as shown in Figure 2. From the convergence

plots it has been analyzed that convergence of proposed MSSA converges gradually during the

initial iterations and faster towards the later iterations. This is due to fact that a good algorithm
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Table 6: Statistical results for Dimension size of 100, 200, 500(Conitnued)

Function Algorithm
Dimension Size 100 Dimension Size 200 Dimension Size 500
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

F8

SSA -2.51E+04 -1.86E+04 -2.21E+04 1.74E+03 -4.12E+04 -3.02E+04 -3.66E+04 2.68E+03 -7.36E+04 -5.31E+04 -6.39E+04 4.63E+03
CSSA -4.18E+04 -1.54E+04 -3.20E+04 7.03E+03 -8.37E+04 -2.90E+04 -6.69E+04 1.43E+04 -2.09E+05 -1.42E+05 -1.75E+05 2.95E+04
DSSA -3.37E+04 -1.41E+04 -2.42E+04 5.54E+03 -6.53E+04 -2.09E+04 -4.51E+04 1.06E+04 -1.81E+05 -6.86E+04 -1.16E+05 2.46E+04
GSSA -4.18E+04 -4.17E+04 -4.18E+04 1.87E+01 -8.37E+04 -8.36E+04 -8.37E+04 2.10E+01 -2.09E+05 -2.09E+05 -2.09E+05 4.67E+01
LSSA -4.18E+04 -1.43E+04 -2.65E+04 7.23E+03 -8.37E+04 -2.57E+04 -6.37E+04 1.73E+04 -2.09E+05 -8.02E+04 -1.52E+05 3.58E+04
MSSA -4.18E+04 -4.18E+04 -4.18E+04 2.17E+00 -8.37E+04 -8.37E+04 -8.37E+04 4.06E+00 -2.09E+05 -2.09E+05 -2.09E+05 1.68E+01
NBSSA -4.18E+04 -4.18E+04 -4.18E+04 1.39E+01 -8.37E+04 -8.36E+04 -8.37E+04 4.01E+01 -2.09E+05 -2.09E+05 -2.09E+05 7.60E+01
TSSA -4.18E+04 -4.18E+04 -4.18E+04 9.19E+00 -8.37E+04 -8.37E+04 -8.37E+04 2.97E+01 -2.09E+05 -2.09E+05 -2.09E+05 7.50E+01

F9

SSA 1.10E+02 2.83E+02 1.91E+02 4.62E+01 5.56E+02 8.99E+02 7.16E+02 6.41E+01 2.64E+03 3.16E+03 2.91E+03 1.07E+02
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 6.70E-12 1.35E-01 7.70E-03 2.09E-02 0.00E+00 6.73E-01 3.98E-02 1.15E-01 1.06E-07 1.17E+00 6.85E-02 1.90E-01
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 3.53E-07 5.28E-02 5.20E-03 1.22E-02 8.45E-11 4.98E-01 4.35E-02 1.01E-01 5.55E-09 2.25E+00 1.28E-01 3.95E-01
TSSA 1.90E-08 1.90E-01 1.31E-02 3.65E-02 9.81E-08 1.29E+00 4.01E-02 1.88E-01 9.86E-08 4.87E+00 2.44E-01 8.77E-01

F10

SSA 6.47E+00 1.14E+01 8.82E+00 9.77E-01 1.08E+01 1.33E+01 1.20E+01 6.02E-01 1.28E+01 1.39E+01 1.33E+01 2.50E-01
CSSA 8.88E-16 4.44E-15 1.81E-15 1.57E-15 8.88E-16 4.44E-15 1.95E-15 1.64E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15
DSSA 8.88E-16 4.44E-15 1.45E-15 1.57E-15 8.88E-16 4.44E-15 1.66E-15 1.48E-15 8.88E-16 4.44E-15 1.45E-15 1.31E-15
GSSA 1.33E-06 7.79E-02 1.00E-02 1.39E-02 5.90E-10 2.39E-01 1.73E-02 4.08E-02 5.81E-06 5.72E-02 1.19E-02 1.54E-02
LSSA 8.88E-16 4.44E-15 1.66E-15 1.48E-15 8.88E-16 4.44E-15 1.52E-15 1.37E-15 8.88E-16 4.44E-15 1.66E-15 1.48E-15
MSSA 8.88E-16 4.44E-15 1.66E-15 1.48E-15 8.88E-16 4.44E-15 1.45E-15 1.31E-15 8.88E-16 4.44E-15 1.59E-15 1.43E-15
NBSSA 4.21E-08 7.75E-02 1.22E-02 1.46E-02 1.58E-06 1.78E-01 1.49E-02 3.13E-02 1.85E-06 7.64E-02 1.04E-02 1.69E-02
TSSA 7.00E-05 9.52E-02 1.08E-02 1.69E-02 2.00E-05 2.07E-01 1.65E-02 3.50E-02 2.71E-05 1.51E-01 1.80E-02 3.08E-02

F11

SSA 3.97E+00 1.22E+01 7.13E+00 1.96E+00 7.64E+01 1.45E+02 1.04E+02 1.32E+01 5.40E+02 7.10E+02 6.35E+02 4.25E+01
CSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GSSA 2.31E-13 1.19E-01 1.44E-02 2.67E-02 4.88E-09 1.96E-01 1.72E-02 4.29E-02 3.75E-10 3.52E-01 3.20E-02 7.77E-02
LSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
NBSSA 2.13E-10 5.83E-01 3.35E-02 1.04E-01 1.40E-11 1.29E-01 1.79E-02 3.04E-02 4.66E-08 1.06E+00 4.78E-02 1.60E-01
TSSA 4.84E-12 7.82E-01 2.98E-02 1.22E-01 1.05E-13 4.39E-01 3.19E-02 8.06E-02 9.79E-08 1.10E+00 5.63E-02 1.82E-01

F12

SSA 9.52E+00 2.69E+01 1.87E+01 4.77E+00 2.56E+01 2.75E+03 1.21E+02 3.84E+02 1.31E+04 1.09E+06 2.12E+05 1.86E+05
CSSA 1.99E-04 1.97E-01 3.34E-02 4.54E-02 4.62E-07 1.91E-01 3.45E-02 4.71E-02 4.21E-05 1.97E-01 1.88E-02 3.79E-02
DSSA 4.46E-02 2.60E-01 1.30E-01 5.00E-02 1.14E-01 2.34E-01 1.58E-01 2.80E-02 1.26E-01 3.47E-01 1.93E-01 3.94E-02
GSSA 4.00E-06 8.10E-03 1.40E-03 1.80E-03 4.79E-06 6.00E-03 9.90E-04 1.10E-03 1.23E-05 1.50E-02 1.40E-03 2.40E-03
LSSA 2.02E-06 1.95E-01 3.43E-02 5.37E-02 1.89E-05 2.05E-01 6.28E-02 6.77E-02 2.03E-04 3.61E-01 7.32E-02 9.10E-02
MSSA 1.08E-05 1.18E-02 1.80E-03 2.30E-03 1.42E-06 6.30E-03 1.00E-03 1.40E-03 6.97E-06 2.03E-02 1.90E-03 3.50E-03
NBSSA 5.83E-05 8.50E-03 1.70E-03 2.00E-03 2.46E-07 4.00E-03 9.67E-04 1.00E-03 2.79E-05 1.02E-02 8.96E-04 1.60E-03
TSSA 6.78E-05 8.50E-03 1.60E-03 2.00E-03 5.52E-06 4.40E-03 1.00E-03 9.14E-04 3.88E-05 4.20E-03 1.00E-03 1.10E-03

F13

SSA 1.49E+02 3.85E+03 3.86E+02 5.63E+02 7.09E+04 1.44E+06 3.64E+05 2.96E+05 7.41E+06 2.48E+07 1.45E+07 3.97E+06
CSSA 2.00E-03 4.42E+00 9.77E-01 1.22E+00 1.18E-01 1.03E+01 2.56E+00 2.97E+00 6.87E-02 2.86E+01 4.61E+00 7.08E+00
DSSA 2.31E+00 5.59E+00 3.74E+00 7.40E-01 6.84E+00 1.38E+01 8.77E+00 1.25E+00 1.94E+01 3.95E+01 2.48E+01 3.88E+00
GSSA 7.54E-04 3.69E-01 6.71E-02 8.41E-02 3.90E-03 4.39E-01 1.14E-01 1.26E-01 8.07E-04 1.74E+00 3.16E-01 4.11E-01
LSSA 7.90E-02 5.67E+00 1.99E+00 1.71E+00 4.44E-02 9.98E+00 3.17E+00 3.52E+00 7.99E-02 2.63E+01 7.92E+00 9.49E+00
MSSA 3.53E-04 3.46E-01 8.53E-02 1.00E-01 6.96E-05 7.43E-01 1.40E-01 1.84E-01 4.50E-03 2.93E+00 5.57E-01 6.93E-01
NBSSA 3.92E-04 2.89E-01 7.14E-02 7.38E-02 2.49E-04 8.46E-01 1.17E-01 1.74E-01 8.10E-03 2.65E+00 4.40E-01 5.25E-01
TSSA 4.80E-04 3.60E-01 6.21E-02 6.16E-02 1.50E-03 4.73E-01 1.12E-01 1.32E-01 3.00E-03 1.98E+00 2.87E-01 3.82E-01

requires large exploration steps during initial stages but towards the later stages it must move from

exploration to exploitation phase and converge faster. Here, the algorithm has to maintain a balance

between exploration and exploitation so that algorithm converge to optimal solution. Hence, from

the convergence profiles it can be seen that proposed MSSA is able to converge at the end of the

iterations and attaining a value near to optimal solution. So, overall we can say that MSSA is better

in terms of fitness values.

5.7. Comparison on CEC2015 benchmark problems

This section describes the performance evaluation of proposed MSSA with respect to BA, DA, FA,

DE, FPA, GWO and SSA on CEC2015 benchmark functions. The benchmark functions used here

are 2 unimodal functions (F1−F2), 3 multimodal functions (F3−F5), 3 hybrid functions (F6−F8)

and 7 composition functions (F9 − F15) as given in Table 9. In this case, the common parameters

such as population size, dimension size, number of runs and maximum number of iterations are

selected as 50, 30, 50 and 25000, respectively. The results are compared in terms of best, worst,

mean and standard deviation values for all the algorithms and are listed in Table 10.

It has been analyzed from the Table 10 that for functions F1, F6, F8 and F10, proposed MSSA

provides best results as compared to other algorithms. For function F2, the results of MSSA is highly

competitive but FA is found to be best. For function F3, the results are comparable only in terms

of standard deviation where BA performance is significantly better among the other algorithms. For

functions F4, F7 and F9, all the algorithms have same performance in terms of best, worst and mean

values while difference exist for standard deviation values so here MSSA provides lower standard

deviation in comparison with other algorithms. For function F5, the performance of MSSA is little
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Figure 2: Convergence profiles of MSSA versus others algorithms
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Figure 2: (Contd.) Convergence profiles of MSSA versus others algorithms

27



Figure 2: (Contd.) Convergence profiles of MSSA versus others algorithms
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Table 7: Statistical results of comparison with SSA variants (D = 10)

Function SSA SSAPSO CSSA CSSA5 MSSA
(Ibrahim et al., 2019) (Majhi et al., 2019) (Sayed et al., 2018)

F1

mean 8.23E-10 8.17E-10 1.74E-50 1.40E-09 2.61E-99
std 2.76E-10 6.82E-10 1.34E-50 3.31E-10 1.80E-98

p-rank − − − −
f-rank 4 3 2 5 1

F2

mean 5.40E-03 8.21E-23 1.77E-16 4.14E-06 1.92E-53
std 3.83E-02 2.80E-22 4.49E-16 1.68E-06 8.87E-53

p-rank − − − −
f-rank 5 2 3 4 1

F3

mean 6.48E-09 1.09E-34 1.54E-10 9.01E-10 2.84E-28
std 9.86E-09 4.09E-34 2.56E-10 4.87E-10 1.21E-27

p-rank − + − −
f-rank 5 1 3 4 2

F4

mean 1.80E-05 8.77E-21 1.40E-07 1.08E-05 3.42E-44
std 4.62E-06 3.16E-20 3.11E-07 1.55E-06 2.03E-43

p-rank − − − −
f-rank 5 2 3 4 1

F5

mean 1.17E+02 7.87E+00 1.95E+01 8.94E+00 2.55E+00
std 3.37E+02 2.62E-01 3.40E+01 1.92E-02 3.78E+00

p-rank − − − −
f-rank 5 2 4 3 1

F6

mean 7.51E-10 6.40E-10 6.74E-32 1.83E-10 1.11E-02
std 3.22E-10 3.76E-10 1.41E-31 5.02E-11 1.59E-02

p-rank + + + +
f-rank 4 3 1 2 5

F7

mean 1.27E-02 9.12E-04 3.40E-03 9.30E-04 4.04E-04
std 9.90E-03 8.48E-04 1.90E-03 1.94E-04 4.06E-04

p-rank − − − −
f-rank 5 2 4 3 1

F8

mean -2.83E+03 -2.68E+03 -2.80E+03 -2.51E+03 -4.18E+03
std 3.26E+02 1.74E+02 2.56E+02 3.35E+02 1.30E-01

p-rank − − − −
f-rank 4 2 3 5 1

F9

mean 1.82E+01 1.47E-14 1.74E-08 1.30E-10 0.00E+00
std 8.23E+00 3.43E-14 3.40E-09 2.26E-10 0.00E+00

p-rank − − − −
f-rank 5 2 4 3 1

F10

mean 7.32E-01 1.82E-15 5.50E-15 7.03E-06 1.74E-15
std 9.70E-01 1.46E-15 1.71E-15 2.41E-06 1.53E-15

p-rank − − − −
f-rank 5 2 3 4 1

F11

mean 2.65E-01 3.30E-13 0.00E+00 2.84E-09 0.00E+00
std 1.55E-01 9.35E-13 1.64E-01 1.48E-09 0.00E+00

p-rank − − − −
f-rank 5 3 2 4 1

F12

mean 5.21E-01 1.50E-01 1.49E-01 1.46E-01 9.77E-04
std 8.56E-01 4.26E-02 8.09E-02 6.27E-02 1.40E-03

p-rank − − − −
f-rank 5 4 3 2 1

F13

mean 2.80E-03 1.76E-05 8.06E-32 1.50E-03 9.40E-03
std 5.70E-03 1.50E-05 3.50E-32 1.10E-03 1.68E-02

p-rank + + + +
f-rank 4 2 1 3 5

w/l/t 2/11/0 3/10/0 2/11/0 2/11/0 NA

Overall f-rank value 61 30 37 46 22

Overall f-rank 5 2 3 4 1

bit better in terms of best values only. For function F11, the results of all the algorithms are almost

similar, so here it is difficult to comment which algorithm is best for this function. For functions

F12 and F13, FA is best in terms of standard deviation value. For function F14, performance of

MSSA is best in terms of mean values. For function F15, SSA provides the best results for standard

deviation values. So, from the 15 functions used here for comparison, MSSA is found to be best

for 10 functions, FA for three functions, SSA and BA for one function whereas DA, DE, FPA and

GWO for none of the function.

5.8. Comparison on real World CEC2011 benchmarks problems

In this section, the performance of proposed algorithm has been tested to solve real world prob-

lems. The detailed descriptions of some selected applications is as follows:

5.8.1. Parameter Estimation for Frequency-wave (FM) sound waves

The frequency modulated (FM) signal analysis is improtant in wireless communication in terms of

modern music system sound wave applications. In this case, FM multi-model function is a six dimen-

sional optimization problem in which the optimization vector of sound wave X= {α1, ω1, α2, ω2, α3, ω3}

and is given in equation (21) and the parametric detail is listed in Table 11. The aim of this work is

to define a fitness function so as to reduce the error between estimated sound and the actual sound.

This problem has been tackled by GA in (Horner & Haken, 1993), (Herrera & Lozano, 2000). The
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Table 8: Statistical results of comparison with other algorithms

Function Algorithm Best Worst Mean Std p-value U-rank Function Algorithm Best Worst Mean Std p-value U-rank

F1

BA 4.68E+03 2.46E+04 1.26E+04 4.54E+03 7.06E-18 +

F5

BA 3.92E+05 2.39E+07 6.07E+06 4.83E+06 7.06E-18 +
DA 3.27E+01 2.12E+03 5.69E+02 5.60E+02 7.06E-18 + DA 8.11E+02 7.49E+05 8.36E+04 1.67E+05 7.06E-18 +
DE 4.44E+04 7.61E+04 6.36E+04 6.39E+03 7.06E-18 + DE 1.17E+08 2.93E+08 2.29E+08 4.17E+07 7.06E-18 +
FA 6.10E-03 3.50E-02 1.49E-02 6.20E-03 7.06E-18 + FA 2.76E+01 1.62E+03 1.04E+02 2.29E+02 8.99E-17 +
FPA 2.09E+03 6.83E+03 4.59E+03 1.01E+03 7.06E-18 + FPA 5.12E+05 3.69E+06 1.96E+06 8.27E+05 7.06E-18 +
GWO 5.51E-40 1.05E-37 2.04E-38 2.46E-38 7.06E-18 + GWO 2.53E+01 2.85E+01 2.66E+01 7.24E-01 4.65E-13 +
SCCSA 2.77E-79 2.27E-67 9.22E-69 3.81E-68 7.06E-18 + SCCSA 3.39E+00 8.71E+00 5.90E+00 9.13E-01 7.06E-18 +
PSOGSA 2.75E-21 1.00E+04 2.00E+02 1.41E+03 7.06E-18 + PSOGSA 6.74E-01 9.00E+04 7.21E+03 2.46E+04 7.06E-18 +
SSA 9.59E-09 2.82E-08 1.75E-08 5.00E-09 7.06E-18 + SSA 2.60E+01 1.14E+03 1.24E+02 1.99E+02 2.39E-16 +
MSSA 4.10E-117 1.07E-99 3.83E-101 1.74E-100 NA MSSA 8.90E-03 2.87E+01 3.17E+00 7.78E+00 NA

F2

BA 8.79E+00 6.05E+05 2.31E+04 1.07E+05 7.06E-18 +

F6

BA 5.69E+03 2.41E+04 1.19E+04 4.24E+03 7.06E-18 +
DA 1.57E+00 2.36E+01 1.24E+01 5.96E+00 7.06E-18 + DA 3.59E+01 2.93E+03 6.31E+02 7.13E+02 7.06E-18 +
DE 6.13E+01 5.07E+08 1.02E+07 7.18E+07 7.06E-18 + DE 3.47E+04 7.32E+04 6.20E+04 7.22E+03 7.06E-18 +
FA 2.69E-01 7.46E-01 4.70E-01 1.23E-01 7.06E-18 + FA 4.60E-03 3.76E-02 1.36E-02 6.90E-03 7.06E-18 −
FPA 3.37E+01 9.86E+01 6.12E+01 1.36E+01 7.06E-18 + FPA 2.65E+03 7.54E+03 4.87E+03 9.78E+02 7.06E-18 +
GWO 2.65E-23 4.26E-22 1.22E-22 8.75E-23 7.06E-18 + GWO 8.90E-06 1.00E+00 2.94E-01 2.61E-01 7.06E-18 +
SCCSA 1.03E-45 2.93E-39 8.25E-41 4.19E-40 7.06E-18 + SCCSA 1.24E-09 2.72E-07 4.14E-08 5.22E-08 7.06E-18 −
PSOGSA 1.58E-10 1.20E+01 1.03E+00 3.15E+00 7.06E-18 + PSOGSA 3.94E-21 2.20E-20 1.13E-20 3.94E-21 NA −
SSA 1.45E-02 3.57E+00 8.95E-01 9.02E-01 7.06E-18 + SSA 7.31E-09 2.78E-08 1.64E-08 4.65E-09 7.06E-18 −
MSSA 9.46E-62 1.45E-52 3.32E-54 2.05E-53 NA MSSA 7.50E-05 1.07E-01 2.63E-02 2.48E-02 7.06E-18

F3

BA 8.87E+03 7.99E+04 3.39E+04 1.49E+04 7.06E-18 +

F7

BA 4.51E-01 7.58E+00 3.47E+00 1.52E+00 7.06E-18 +
DA 3.80E+02 2.70E+04 7.38E+03 6.42E+03 7.06E-18 + DA 1.02E-02 2.83E+00 2.41E-01 4.07E-01 7.06E-18 +
DE 4.50E+04 1.58E+05 9.17E+04 2.75E+04 7.06E-18 + DE 4.66E+01 1.59E+02 1.08E+02 2.76E+01 7.06E-18 +
FA 3.92E+02 2.74E+03 1.44E+03 5.72E+02 7.06E-18 + FA 7.60E-03 1.71E-01 2.95E-02 2.50E-02 7.06E-18 +
FPA 3.97E+03 2.08E+04 1.03E+04 3.56E+03 7.06E-18 + FPA 2.81E-01 2.59E+00 1.33E+00 5.88E-01 7.06E-18 +
GWO 1.67E-12 1.83E-08 1.67E-09 3.84E-09 7.06E-18 + GWO 6.48E-05 1.40E-03 4.62E-04 2.99E-04 4.50E-03 +
SCCSA 3.63E-44 2.00E-29 4.31E-31 2.83E-30 7.06E-18 + SCCSA 6.04E-06 1.05E-02 1.33E-03 1.72E-03 7.06E-18 +
PSOGSA 1.43E-20 1.00E+04 1.50E+03 2.71E+03 7.06E-18 + PSOGSA 6.88E-04 1.94E-02 6.87E-03 4.24E-03 7.06E-18 +
SSA 6.32E+01 1.61E+03 3.91E+02 3.57E+02 7.06E-18 + SSA 3.49E-02 1.29E-01 7.80E-02 2.49E-02 7.06E-18 +
MSSA 1.96E-64 8.63E-16 4.38E-17 1.63E-16 NA MSSA 1.33E-05 1.30E-03 3.19E-04 2.92E-04 NA

F4

BA 2.44E+01 6.48E+01 4.27E+01 7.94E+00 7.06E-18 +

F8

BA -Inf -Inf -Inf NaN 3.31E-20 +
DA 3.38E+00 4.00E+01 1.92E+01 9.41E+00 7.06E-18 + DA -7.86E+03 -4.49E+03 -5.84E+03 7.89E+02 7.06E-18 +
DE 7.73E+01 9.13E+01 8.58E+01 2.90E+00 7.06E-18 + DE -8.85E+04 -7.56E+04 -9.52E+04 6.52E+01 7.06E-18 +
FA 7.93E-02 2.41E+00 4.00E-01 4.40E-01 7.06E-18 + FA -7.75E+03 -4.02E+03 -5.55E+03 8.47E+02 7.06E-18 +
FPA 2.42E+01 4.32E+01 3.45E+01 4.67E+00 7.06E-18 + FPA -5.21E+42 -1.33E+36 -1.43E+41 7.61E+41 7.06E-18 +
GWO 7.35E-11 7.47E-09 1.83E-09 1.66E-09 7.06E-18 + GWO -1.92E+54 -1.97E+47 -1.56E+53 4.11E+53 7.06E-18 +
SCCSA 8.31E-26 6.11E-16 2.15E-17 1.06E-16 7.06E-18 + SCCSA -3.72E+03 -2.43E+03 -3.07E+03 3.19E+02 7.06E-18 +
PSOGSA 3.54E-11 1.35E+01 1.04E+00 2.30E+00 7.06E-18 + PSOGSA -3.72E+03 -2.12E+03 -3.08E+03 3.55E+02 7.06E-18 +
SSA 1.51E+00 1.11E+01 5.31E+00 2.38E+00 7.06E-18 + SSA -9.45E+03 -6.36E+03 -7.55E+03 7.07E+02 7.06E-18 +
MSSA 1.20E-53 6.26E-43 1.26E-44 8.86E-44 NA MSSA -1.25E+04 -1.25E+04 -1.25E+04 2.15E-01 NA

expressions for proposed estimation and targeted sound waves are given as:

y(t) = α1. sin{ω1.t.θ + α2. sin{ω2.t.θ + α3. sin{ω3.t.θ}}} (21)

y0(t) = (1.0) sin{(5.0).t.θ + (1.5). sin{(4.8).t.θ + (2.0). sin{(4.9).t.θ}}} (22)

where θ = 2π/100 and proposed parameters are defined in the range [-6.4 6.35]. The fitness value

is calculated by summation of square errors between the estimated sound (21) and targeted sound

(22) as:

f(
−→
X ) =

100∑
t=0

{y(t)− y0(t)}2 (23)

5.8.2. Lennard-Jones Potential Problem

It is a potential energy minimization problem (Hoare, 1979), (Moloi & Ali, 2005), in which

involvement of pure Lennard-Jone (LJ) clusters has been considered to reduce the molecular potential

energy level. It is a multi-model optimization problem, having exponential number of local minima

and the lattice structure of LJ cluster. To attain the global minima, structures have used on

the basis of Mackay icosahedrons which are listed in the cambridge cluster Database (http://www-

wales.ch.cam.ac.uk/CCD.html). In this case, the aim of our proposed algorithm is to organise atoms

in such a way that the molecule has minimum energy. The optimal atom organization define its

fitness and capability to reduce its potential. The potential for N number of atoms is calculated as

(25).
−→
Si = [−→xj ,−→yj ,−→zj ], j = 1, 2, 3, .........., N (24)
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Table 8: Statistical results of comparison with other algorithms (continued)

Function Algorithm Best Worst Mean Std p-value U-rank Function Algorithm Best Worst Mean Std p-value U-rank

F9

BA 2.08E+01 1.33E+02 7.19E+01 2.34E+01 3.31E-20 +

F13

BA 1.29E+05 9.13E+07 1.89E+07 1.94E+07 7.06E-18 +
DA 3.49E+01 2.64E+02 1.12E+02 4.64E+01 3.31E-20 + DA 5.69E+00 3.11E+05 2.22E+04 6.70E+04 2.62E-17 +
DE 3.48E+02 4.65E+02 4.19E+02 2.63E+01 3.31E-20 + DE 5.82E+08 1.41E+09 9.78E+08 1.94E+08 7.06E-18 +
FA 1.52E+01 4.36E+01 2.58E+01 7.74E+00 3.31E-20 + FA 7.69E-04 1.45E-02 3.60E-03 2.10E-03 2.70E-03 +
FPA 1.64E+02 2.35E+02 2.04E+02 1.45E+01 3.31E-20 + FPA 2.69E+05 6.62E+06 1.92E+06 1.36E+06 7.06E-18 +
GWO 0.00E+00 1.22E+01 2.21E+00 3.38E+00 5.89E-15 + GWO 6.16E-05 5.84E-01 2.42E-01 1.37E-01 1.41E-06 +
SCCSA 0.00E+00 1.90E+01 5.46E+00 5.62E+00 3.31E-20 + SCCSA 7.81E-06 2.99E-01 2.01E-02 7.23E-02 7.06E-18 +
PSOGSA 7.96E+00 7.86E+01 3.10E+01 1.53E+01 3.31E-20 + PSOGSA 9.81E-22 2.51E+00 5.42E-02 3.55E-01 NA +
SSA 1.49E+01 7.36E+01 3.94E+01 1.44E+01 3.31E-20 + SSA 6.39E-09 2.24E+01 1.44E+00 4.72E+00 7.06E-18 +
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NA MSSA 1.20E-05 5.39E-02 5.60E-03 9.90E-03 1.96E-02

F10

BA 1.16E+01 1.63E+01 1.46E+01 9.61E-01 8.69E-19 +

F14

BA 3.00E+00 3.00E+01 4.08E+00 5.34E+00 5.62E-18 +
DA 3.61E+00 9.89E+00 7.03E+00 1.51E+00 8.69E-19 + DA 3.00E+00 3.00E+00 3.00E+00 1.19E-05 1.42e-09 +
DE 1.95E+01 2.08E+01 2.04E+01 2.75E-01 8.69E-19 + DE 3.00E+00 3.00E+00 3.00E+00 3.35E-15 NA +
FA 3.17E-02 1.23E-01 6.82E-02 2.33E-02 8.69E-19 + FA 3.00E+00 3.00E+00 3.00E+00 3.59E-08 5.62E-18 +
FPA 1.29E+01 1.69E+01 1.47E+01 9.70E-01 8.69E-19 + FPA 3.00E+00 3.00E+00 3.00E+00 6.50E-09 5.62E-18 +
GWO 2.22E-14 3.99E-14 3.17E-14 3.46E-15 3.91E-19 + GWO 3.00E+00 3.00E+00 3.00E+00 8.46E-06 5.62E-18 +
SCCSA 8.88E-16 8.88E-16 8.88E-16 9.96E-32 8.69E-19 + SCCSA 3.00E+00 3.00E+00 3.00E+00 8.93E-09 5.62E-18 +
PSOGSA 4.24E-13 1.52E-11 6.69E-12 3.43E-12 8.69E-19 + PSOGSA 3.00E+00 8.40E+01 9.48E+00 2.21E+01 5.62E-18 +
SSA 2.65E-05 3.46E+00 1.75E+00 8.11E-01 8.69E-19 + SSA 3.00E+00 3.00E+00 3.00E+00 1.52E-13 5.97E-18 +
MSSA 8.88E-16 4.44E-15 1.81E-15 1.57E-15 NA MSSA 3.00E+00 3.00E+00 3.01E+00 3.64E-02 5.62E-18

F11

BA 7.76E-11 1.88E+01 2.08E+00 3.39E+00 3.31E-20 +

F15

BA -3.86E+00 -5.31E-01 -3.42E+00 9.03E-01 7.06E-18 +
DA 0.00E+00 1.18E-02 2.37E-04 1.70E-03 4.33E-02 + DA -3.86E+00 -2.39E+00 -3.72E+00 3.41E-01 7.06E-18 +
DE 0.00E+00 1.45E-01 5.80E-03 2.88E-02 6.50E-03 + DE -3.86E+00 -3.85E+00 -3.86E+00 5.40E-04 1.90E-11 +
FA 1.58E-08 8.55E-06 1.28E-06 1.72E-06 3.31E-20 + FA -3.86E+00 -3.28E+00 -3.80E+00 1.38E-01 7.06E-18 +
FPA 2.37E-08 4.11E-05 8.29E-06 1.03E-05 3.31E-20 + FPA -3.86E+00 -3.77E+00 -3.85E+00 1.82E-02 7.06E-18 +
GWO 0.00E+00 1.45E-01 2.90E-03 2.06E-02 3.27E-01 − GWO -3.86E+00 -3.85E+00 -3.85E+00 4.10E-03 7.06E-18 +
SCCSA 0.00E+00 1.75E-01 3.33E-02 4.56E-02 3.31E-20 + SCCSA -3.86E+00 -3.20E+00 -3.26E+00 6.00E-02 7.06E-18 +
PSOGSA 3.93E-02 9.45E-01 2.28E-01 1.85E-01 3.31E-20 + PSOGSA -3.86E+00 -3.86E+00 -3.86E+00 0.00E+00 7.06E-18 +
SSA 8.65E-15 1.18E-10 1.41E-11 2.12E-11 3.31E-20 + SSA -3.86E+00 -3.86E+00 -3.86E+00 6.61E-12 NA +
MSSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NA MSSA -3.86E+00 -3.66E+00 -3.80E+00 5.17E-02 7.06E-18

F12

BA 1.32E+04 3.38E+07 3.70E+06 5.99E+06 7.06E-18 +

F16

BA -3.32E+00 -6.60E-03 -1.47E+00 1.32E+00 7.14E-08 +
DA 5.72E-01 1.04E+04 3.54E+02 1.72E+03 7.06E-18 + DA -3.32E+00 -5.39E-05 -1.96E+00 1.18E+00 1.04E-12 +
DE 2.00E+08 7.21E+08 5.17E+08 1.28E+08 7.06E-18 + DE -3.32E+00 -6.50E-01 -2.91E+00 6.70E-01 1.53E-17 −
FA 1.49E-04 2.80E-03 7.20E-04 6.85E-04 9.34E-07 + FA -3.32E+00 -5.54E-01 -2.48E+00 1.00E+00 8.99E-17 +
FPA 3.48E+01 1.35E+06 1.21E+05 2.32E+05 7.06E-18 + FPA -1.56E+00 -1.27E-05 -2.75E-01 3.48E-01 NA +
GWO 1.65E-06 7.26E-02 2.26E-02 1.69E-02 1.94E-13 + GWO -3.32E+00 -3.07E+00 -3.24E+00 6.53E-02 7.06E-18 +
SCCSA 1.94E-07 6.03E-02 1.34E-02 1.60E-02 7.06E-18 + SCCSA -3.32E+00 -3.20E+00 -3.26E+00 6.00E-02 7.06E-18 +
PSOGSA 1.98E-22 1.12E+01 1.82E+00 2.50E+00 7.06E-18 + PSOGSA -3.32E+00 -2.87E+00 -3.24E+00 9.63E-02 7.06E-18 +
SSA 4.14E-01 1.08E+01 3.95E+00 2.53E+00 7.06E-18 + SSA -3.32E+00 -2.97E+00 -3.20E+00 8.21E-02 7.06E-18 −
MSSA 2.16E-07 2.30E-03 3.27E-04 5.08E-04 NA MSSA -3.31E+00 -2.86E+00 -3.19E+00 1.00E-01 7.06E-18

Table 9: CEC 2015 Real parameter benchmark optimization functions

No. Functions F∗i = Fi(x
∗)

Unimodal Functions
F1 Rotated High Conditional Elliptic Function 100
F2 Rotated Cigar Function* 200

Multimodal Functions
F3 Shifted and Rotated Ackley’s Function 300
F4 Shifted and Rotated Rastrigin’s Function 400
F5 Shifted and Rotated Schwefel’s Function 500

Hybrid Functions
F6 Hybrid Function 1(N = 3) 600
F7 Hybrid Function 2(N = 3) 700
F8 Hybrid Function 3(N = 3) 800

Composition Functions

F9 Composition Function 1(N = 3) 900
F10 Composition Function 5(N = 3) 1000
F11 Composition Function 6(N = 5) 1100
F12 Composition Function 7(N = 5) 1200
F13 Composition Function 8(N = 5) 1300
F14 Composition Function 9(N = 7) 1400
F15 Composition Function 10(N = 10) 1500

Search Range: [−100, 100]D

where S is the LJ potential vector represented in Cartesian coordinates.

PN (S) =

N−1∑
j=1

N∑
k=1

(r−12
jk − 2.r−6

jk ) (25)

where ri = ‖(−→sk −−→sj )‖2 with gradient

OkPN (S) = −12

N∑
j=1,j 6=k

(r−14
jk − r

−8
jk )(−→sk −−→sj ), k = 1, 2, 3, .........., N (26)

The variation of molecule potential P (r) = (r−12 − 2.r−6) with respect to pair distance r is shown

in Fig 3. It clearly illustrated that potential goes to -1 for a radius of unity (r=1). when r varies

from -1 towards 0, potential increases abruptly and its value approaches to infinity near r=0. This

tendency of pair potential curve increases complexity to optimize this multi-model problem.

5.8.3. Tersoff Potential Function Minimization Problem

The inter atomic potential evaluation of silicon for covalent systems is currently an interesting

area for new researchers (Tersoff, 1988). One important is Tersoff potential, which governs the inter-

action of silicon atoms with a strong covalent bonding. It has two optimization parameters known
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Table 10: Statistical results of comparison with other algorithms for CEC 2015 (D = 30)

Function Algorithm Best Worst Mean Std Function Algorithm Best Worst Mean Std

F1

BA 3.89E+08 4.14E+09 1.86E+09 8.39E+08

F9

BA 1.18E+03 1.72E+03 1.40E+03 1.25E+02
DA 4.44E+07 3.70E+08 1.60E+08 7.54E+07 DA 1.00E+03 1.10E+03 1.04E+03 1.97E+01
DE 4.16E+07 4.59E+09 5.60E+08 6.91E+08 DE 1.03E+03 1.53E+03 1.14E+03 1.02E+02
FA 1.28E+06 1.12E+07 5.52E+06 2.60E+06 FA 1.00E+03 1.14E+03 1.00E+03 1.94E+01
FPA 1.72E+09 8.79E+09 4.66E+09 1.38E+09 FPA 1.33E+03 2.02E+03 1.72E+03 1.53E+02
GWO 1.20E+07 9.22E+07 4.17E+07 2.14E+07 GWO 1.00E+03 1.20E+03 1.03E+03 4.55E+01
SSA 3.72E+05 3.79E+08 4.32E+07 9.54E+07 SSA 1.00E+03 1.52E+03 1.06E+03 1.06E+02
MSSA 3.03E+05 7.90E+06 4.17E+06 1.90E+06 MSSA 1.00E+03 1.00E+03 1.00E+03 1.01E-01

F2

BA 2.78E+10 1.61E+11 8.55E+10 2.40E+10

F10

BA 6.23E+05 3.65E+08 7.68E+07 8.10E+10
DA 1.14E+09 1.33E+10 5.70E+09 2.62E+09 DA 4.49E+05 2.43E+07 6.92E+06 4.90E+06
DE 5.13E+09 8.11E+10 2.73E+10 1.68E+10 DE 1.90E+06 3.12E+08 7.10E+07 6.07E+07
FA 1.63E+03 2.71E+04 6.42E+03 5.65E+03 FA 7.18E+04 3.27E+06 5.87E+05 5.29E+05
FPA 9.02E+10 2.18E+11 1.53E+11 2.64E+10 FPA 6.97E+07 1.01E+09 3.66E+08 1.97E+08
GWO 1.13E+08 9.50E+09 3.65E+09 2.44E+09 GWO 1.97E+05 7.78E+06 1.79E+06 1.87E+06
SSA 3.80E+02 2.74E+10 4.28E+09 5.53E+09 SSA 1.33E+04 1.33E+07 1.12E+06 2.42E+06
MSSA 9.28E+05 4.71E+07 1.02E+07 9.36E+06 MSSA 2.46E+03 5.57E+04 1.50E+04 1.22E+04

F3

BA 3.20E+02 3.20E+02 3.20E+02 4.62E-06

F11

BA 1.92E+03 2.92E+03 2.73E+03 1.34E+02
DA 3.20E+02 3.21E+02 3.20E+02 1.44E-01 DA 1.49E+03 2.80E+03 2.25E+03 4.97E+02
DE 3.20E+02 3.21E+02 3.20E+02 4.83E-02 DE 2.28E+03 2.65E+03 2.46E+03 1.10E+02
FA 3.20E+02 3.20E+02 3.20E+02 1.40E-03 FA 1.41E+03 1.63E+03 1.53E+03 5.53E+01
FPA 3.21E+02 3.21E+02 3.21E+02 6.78E-02 FPA 2.80E+03 4.89E+03 3.16E+03 3.50E+02
GWO 3.20E+02 3.21E+02 3.21E+02 3.59E-02 GWO 1.86E+03 2.14E+03 1.97E+03 6.70E+01
SSA 3.20E+02 3.20E+02 3.20E+02 1.51E-01 SSA 1.40E+03 2.50E+03 2.12E+03 3.47E+02
MSSA 3.20E+02 3.20E+02 3.20E+02 5.69E-02 MSSA 1.10E+03 1.40E+03 1.30E+03 1.41E+02

F4

BA 5.72E+02 8.30E+02 7.02E+02 5.70E+01

F12

BA 1.38E+03 1.44E+03 1.40E+03 8.94E+00
DA 6.00E+02 8.24E+02 7.04E+02 5.65E+01 DA 1.30E+03 1.40E+03 1.34E+03 3.33E+01
DE 5.65E+02 8.58E+02 6.74E+02 6.84E+01 DE 1.40E+03 1.40E+03 1.40E+03 2.00E-04
FA 4.19E+02 4.78E+02 4.42E+02 1.23E+01 FA 1.30E+03 1.30E+03 1.30E+03 7.47E-01
FPA 9.06E+02 1.21E+03 1.07E+03 5.94E+01 FPA 1.40E+03 1.44E+03 1.40E+03 9.79E+00
GWO 4.49E+02 6.55E+02 5.12E+02 4.07E+01 GWO 1.30E+03 1.40E+03 1.34E+03 4.49E+01
SSA 5.48E+02 7.75E+02 6.44E+02 5.39E+01 SSA 1.30E+03 1.40E+03 1.35E+03 2.91E+01
MSSA 4.09E+02 4.38E+02 4.27E+02 6.89E+00 MSSA 1.30E+03 1.30E+03 1.30E+03 1.14E+00

F5

BA 4.15E+03 7.21E+03 5.43E+03 7.03E+02

F13

BA 1.30E+03 1.30E+03 1.30E+03 5.50E-03
DA 4.00E+03 6.63E+03 5.42E+03 6.38E+02 DA 1.30E+03 1.30E+03 1.30E+03 1.18E+00
DE 7.13E+03 1.02E+04 9.17E+03 7.40E+02 DE 1.30E+03 1.30E+03 1.30E+03 2.02E-04
FA 1.86E+03 4.50E+03 3.06E+03 5.71E+02 FA 1.30E+03 1.30E+03 1.30E+03 1.71E-04
FPA 7.53E+03 1.08E+04 9.89E+03 5.60E+02 FPA 1.30E+03 2.44E+03 1.37E+03 1.94E+02
GWO 2.02E+03 8.66E+03 3.92E+03 1.49E+03 GWO 1.30E+03 1.30E+03 1.30E+03 2.59E-04
SSA 3.02E+03 6.10E+03 4.72E+03 6.84E+02 SSA 1.30E+03 1.30E+03 1.30E+03 1.47E-01
MSSA 7.78E+02 1.75E+03 1.23E+03 2.39E+02 MSSA 1.30E+03 1.30E+03 1.30E+03 1.30E-03

F6

BA 2.25E+06 3.61E+08 7.55E+07 8.30E+07

F14

BA 6.08E+04 1.98E+05 1.15E+05 3.13E+04
DA 6.53E+05 3.54E+07 7.73E+06 7.34E+06 DA 4.03E+04 6.26E+04 4.85E+04 5.51E+03
DE 3.82E+06 2.44E+08 5.47E+07 5.03E+07 DE 6.10E+03 6.06E+04 1.75E+04 1.22E+04
FA 1.52E+04 1.12E+06 3.80E+05 2.90E+05 FA 5.92E+03 2.44E+04 1.87E+04 2.44E+03
FPA 9.81E+07 1.08E+09 5.14E+08 2.45E+08 FPA 9.38E+04 1.71E+05 1.33E+05 1.86E+04
GWO 3.60E+05 1.39E+07 2.06E+06 2.51E+06 GWO 2.86E+03 4.08E+04 2.52E+04 6.81E+03
SSA 1.21E+04 2.69E+07 9.93E+05 3.88E+06 SSA 1.30E+03 6.31E+04 4.20E+04 5.95E+03
MSSA 2.40E+03 1.31E+05 1.90E+04 2.53E+04 MSSA 4.33E+03 8.41E+03 6.73E+03 1.87E+03

F7

BA 8.65E+02 1.75E+03 1.15E+03 2.02E+02

F15

BA 9.00E+03 2.25E+05 7.81E+04 5.31E+04
DA 7.25E+02 8.22E+02 7.52E+02 2.85E+01 DA 1.63E+03 3.93E+03 2.01E+03 4.62E+02
DE 7.20E+02 1.13E+03 8.15E+02 9.88E+01 DE 1.74E+03 2.40E+05 1.50E+04 3.48E+04
FA 7.11E+02 7.19E+02 7.14E+02 1.82E+00 FA 1.60E+03 1.60E+03 1.60E+03 1.70E-03
FPA 1.34E+03 3.67E+03 2.23E+03 5.83E+02 FPA 1.07E+05 1.35E+06 6.37E+05 3.31E+05
GWO 7.15E+02 8.22E+02 7.32E+02 2.37E+01 GWO 1.61E+03 2.57E+03 1.71E+03 2.16E+02
SSA 7.11E+02 8.38E+02 7.36E+02 3.12E+01 SSA 1.60E+03 1.60E+03 1.60E+03 3.38E-06
MSSA 7.01E+02 7.06E+02 7.04E+02 1.32E+00 MSSA 1.61E+03 1.663+03 1.63E+03 1.17E+01

F8

BA 9.96E+05 2.27E+08 3.02E+07 4.09E+07
DA 1.55E+05 9.75E+06 1.97E+06 1.59E+06
DE 1.60E+05 5.12E+07 1.21E+07 1.08E+07
FA 1.41E+04 5.68E+05 1.30E+05 1.26E+05
FPA 1.16E+07 4.15E+08 1.68E+08 1.08E+08
GWO 2.53E+04 2.67E+06 4.87E+05 5.17E+05
SSA 4.18E+03 5.19E+06 4.19E+05 9.11E+05
MSSA 1.24E+03 8.23E+03 3.23E+03 2.02E+03

Figure 3: Molecule potential variation with respect to r
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as Sc(B) and Sc(C). The molecular cluster position for N atoms is noted in Cartesian coordinates

as:

−→s = [−→s1 ,
−→s2 , .........,

−→sN ], (27)

where
−→
Si, i = 1, 2, 3, ......, N is a 3D vector presents the coordinates of the ith atom, then total Tersoff

potential function is defined as:

f(−→s1 , ..,
−→s3) = E1(−→s1 , ..,

−→s3) + E2(−→s1 , ..,
−→s3) + .........+ EN (−→s1 , ..,

−→s3) (28)

Now to calculate total potential, we need to add individual potentials of each atom, which is further

explained in equation (29). The individual potential is written as:

Ej = (1/2)
∑
k 6=j

fc(rjk){PR(rjk)−BjkPR(rjk)} (29)

Here PR is a repulsive potential; PA is a attractive potential; rjk is the distance between atoms j

and k; fc(rjk) is probability switching function and Bjk is the constant that depends upon j and k

atoms position and neighours of atom j and it is written as:

Bjk = (1 + γnj ζ
nj
jk )−1/2nj (30)

where, ζjk =
∑
m6=j

fc(rjk) g(θjkm) exp{λ3
3(rjk − rjm)3} (31)

where ζjk is the contribution of the neighbors of the atom j. It increases as the number m increases

but the term Bjk decreases as ζjk increases. The exponential term is used to reduce the effect of

bonds whose length is greater than rjk. The term θjkm is the bond angle between bonds jk and jm,

and the function g is written as:

g(θjkm) = 1 + c2/d2 − c2/(d2 + [h− cos(θjkm)]2) (32)

fc(rjk) =


1, ifrjk <= R−D

1/2− 1/2 sin[π(rjk −R)/D], ifR−D < rjk < R+D

0, ifrjk >= R+D

(33)

PR(rjk) = Ae−λ1 rjk (34)

PA(rjk) = Be−λ2 rjk (35)

Here, A, B, C, D, λ1 and λ2 are fitted parameters. The switching function fc(rjk) is the boundary

define parameter to calculate atom energy potential with in the boundaries (Ali & Törn, 2000).

After all these analysis the fitness function is redefined to:

f(s) = E1(s) + E2(s) + .........+ EN (s), s ∈ Ω (36)

33



Table 11: Summary of the real world problems presented

Sr.No. Problem No. of Dimensions Constraints Bounds

1. Parameter Estimation for 6 Bound All Dimension bound between
FM sound waves Constrained [-6.4, 6.35]

2. Lennard-Jones Potential Problem 3X10 = 30 Bound Let −→x be the variable of the problem, which has three
(10 atom Constrained components for three atoms, six components for 4 atoms
problem) and so on. The first variable due to the second atom i.e.

x1 ε [0, 4], then the second and third variables are such that
x2 ε [0, 4] and x3 ε [0, π]. The coordinates x for any other
atom is taken to be bound in the range:
[−4 − (1/4){(ι − 4)/3}, 4 + (1/4){(ι − 4)/3}]
where [r] is the nearest least integer w.r.t. r ε 1

3. Tersoff Potential Function 3X10 = 30 Bound Let −→x be the variable of the problem, which has three
Minimization Problem (10 atom Constrained components for three atoms, six components for 4 atoms

problem) and so on. The first variable due to the second atom i.e.
x1 ε [0, 4], then the second and third variables are such that
x2 ε [0, 4] and x3 ε [0, π]. The coordinates x for any other
atom is taken to be bound in the range:
[−4 − (1/4){(ι − 4)/3}, 4 + (1/4){(ι − 4)/3}]
where [r] is the nearest least integer w.r.t. r ε 1

Table 12: Comparison on Real World CEC2011 benchmarks problems

Applications Algorithm Best Worst Mean Std

Parameter Estimation for FM sound waves

BA 1.15E+01 2.96E+01 2.49E+01 3.27E+00
DA 9.19E+00 2.78E+01 2.26E+01 3.74E+00
DE 1.63E+01 2.75E+01 2.59E+01 2.05E+00
FA 1.49E+01 2.68E+01 2.32E+01 2.18E+00
FPA 1.46E+01 2.74E+01 2.28E+01 3.08E+00
GWO 5.36E+00 2.50E+01 1.48E+01 4.67E+00
SSA 3.77E-02 2.54E+01 2.11E+01 4.54E+00
MSSA 1.73E-01 2.97E-01 2.57E-01 3.12E-01

Lennard-Jones Potential Problem

BA -2.84E+01 -1.36E+01 -2.34E+01 3.91E+00
DA -1.86E+01 -8.86E+00 -1.28E+01 2.25E+00
DE -1.18E+01 -3.79E+00 -7.75E+00 1.60E+00
FA -2.57E+01 -1.88E+01 -2.25E+01 1.58E+00
FPA -1.12E+01 -8.21E+00 -9.53E+00 7.73E-01
GWO -2.67E+01 -1.21E+01 -2.22E+01 2.80E+00
SSA -2.64E+01 -1.24E+01 -2.11E+01 3.35E+00
MSSA -2.17E+01 -1.14E+01 -1.60E+01 2.61E-01

Tersoff Potential Function Minimization Problem

BA -3.47E+01 -8.45E+00 -2.11E+01 6.09E+00
DA -2.75E+01 -1.62E+01 -2.18E+01 2.55E+00
DE -1.81E+01 -1.04E+01 -1.40E+01 1.81E+00
FA -3.55E+01 -2.32E+01 -2.97E+01 2.68E+00
FPA -2.57E+01 -2.09E+01 -2.28E+01 1.15E+00
GWO -3.42E+01 -1.75E+01 -3.02E+01 3.48E+00
SSA -3.17E+01 -2.33E+01 -2.77E+01 2.19E+00
MSSA -2.66E+01 -1.49E+01 -2.02E+01 2.38E-02

where,Ω = {{X1, X2, ..., Xn} | − 4.25 ≤ x1, xi ≤ 4.25, i = 4, ..., n0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ π} (37)

Comparison results and Inferences: To evaluate performance of proposed mutated salp swarm

algorithm (MSSA) on CEC2011 real world problems, three multidimensional problems are selected

in this paper. The parameters setting of FM sound wave, Lennard-Jones potential problem and

Tersoff potential function minimization problem is listed in Table 11. For these applications, the

proposed algorithm performance is compared with BA, DA, DE, FA, FPA, GWO and SSA in terms

of best, worst,mean and standard deviation as shown in Table 12. For application of parameter

estimation for FM sound wave, the results are competitive in terms of worst and mean. The SSA

provides good result in terms of best value. However, MSSA is found to be best in terms of standard

deviation. For Lennard-Jones potential problem, to find atom structure which requires minimum

energy, the results are only comparable in terms of standard deviation where MSSA is found to be

the best. It is difficult to say, which one is the good algorithm from best, worst and mean values.

In third minimization problem of Tersoff potential function, it has similar results as in above second

application. The results are only comparable in terms of standard deviation where only MSSA is

able to attain global optima and found to be best algorithm as compared to other variants.

5.9. Analysis of Core Parameters of SSA, CSSA, SSAPSO and MSSA

Five core operations are used in SSA, CSSA, SSAPSO and MSSA and are given in Table 13.

These include population size, exploration operation, exploitation operation, controlling parameters

for adjusting the extent of exploration and exploitation, and the scaling factor, required to adjust

the step size of global exploration operation. The simple SSA consists of basic parametric settings
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for all these parameters and have no adaptive properties. Instead of that, in the proposed MSSA, all

of these parameters are adapted to make the algorithm self-resilient and remove the requirement of

user based modifications. Here a linearly decreasing adaptive population size has been used to reduce

the number of function evaluations in consecutive generations. The exploitation operation is also

changed and a new phase based on the combined advantages of CS and GWO has been incorporated

in the proposed version. It has already been known that the exploration operation of SSA is efficient

and hence no modification has been added in this phase. The controlling parameters used in SSA

are random numbers where as in present work, exponentially decreasing parametric adaptation has

been followed. Thus helping the algorithm to perform extensive exploration during the initial stages

and intensive exploitation towards the end. Apart from these parameters, the scaling factor plays

a significant role in the performance of the algorithm and helps in proper exploration operation.

MSSA employs seven new mutation operators and hence helps in overcoming the stagnation and

local optima problems. If we compare the proposed MSSA with respect to other in literature like

CSSA and SSAPSO, it can be said that these algorithms do not have adaptive properties and

hence for those algorithms user based adaptation is very much necessary. But in MSSA, because

of the presence of better adaptive strategy, end users can apply the algorithm directly without the

requirement of parametric adjustments.

Table 13: Core Operations in SSA, CSSA, SSAPSO and MSSA

Core Operations SSA CSSA SSAPSO MSSA

Population size Random number Random number Random number Linearly decreasing adaptive population
Basic exploitation search Basic Basic Based on either SSA or PSO Based on combined effect of cuckoo search & GWO
Global exploration Basic Basic Basic Basic
Controlling parameters Random number Chaotic sequence Random number Exponentially decreasing with respect to iterations
Scaling Factor Random number Random number Random number Mutation Operators

5.10. Summary of results

SSA as explained above is a new algorithm and has been found to provide viable solutions for

various problems. The algorithm though is competitive but is limited in scope and needs further in-

vestigation before application to various domains of research. In this section, the major modifications

proposed and the summary of extensive results is presented as:

• The concept of linearly decreasing population size, adaptive parameters and division of gener-

ation is added to the basic SSA to improve its working capability.

• Apart from the above added parameters, seven new mutation operators have been exploited to

the best of their potential and based on them seven new versions of SSA have been proposed.

• All the proposed versions have been tested on CEC 2005, CEC 2015 and some real world

optimization problems for performance evaluation and compared with respect to existing al-

gorithms.

• The experimental results are presented in the form of statistical and convergence profiles and

it has been found that MSSA is the best among all the proposed algorithms.

• Though MSSA is best among all the algorithms under test but it has been found that it still

suffers from poor convergence and more work is required to be done to improve this property.
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• As the algorithm is highly competitive and hence in future can be applied to various fields of

research including, workforce scheduling, unmanned aerial vehicles, medical imaging, protein

protein interaction, wireless communication and others.

6. Conclusion

This paper presents new enhancements to SSA to improve its performance. Four major modifica-

tions have been added in SSA to make it highly efficient with respect to other algorithms. Adaptive

parameters are added to enhance the basic parameter sets, division of iterations has been added to

gradually shift from exploration to exploitation phase, linearly decreasing population adaptation is

followed to reduce the total number of function evaluations and finally a new exploitation phase has

been added to improve the overall working properties of SSA. Apart from these modifications, the

concept of mutations has been exploited and based on that seven new mutated SSA algorithms have

been proposed. These include Cauchy mutation, Gaussian mutation, Lévy mutation, neighbourhood

based mutation, trigonometric mutation, mutation clock and diversity mutation. Among all these

proposed mutations, experimentally for variable population size and dimension size it was found that

MSSA is the best algorithm. Experimentally for CEC 2005, CEC 2015 and CEC 2011 benchmark

problems also, MSSA is found to be the best. Further statistical results and convergence profiles

prove the significance of MSSA over other algorithms.

As a future direction, all the proposed algorithms can be exploited and applied to problems from

various domains of research including antenna design, economic load dispatch problems, medical

imaging, image segmentation, signal processing, DNA sequencing, feature selection, clustering and

other problems. Extended versions of MSSA can be proposed by using various other mutation

strategies and adaptive properties. Dynamic switching parameters along with inertia weights can

be added to improve the overall performance of the algorithm. Further properties can be improved

by employing new equations instead of general equations of SSA. Apart from this, new parameter

settings can be initialized for analysing the adaptive properties of new SSA variants.
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