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Developing a forecasting model for cholera incidence

in Dhaka megacity through time series climate data

Salima Sultana Daisy, A. K. M. Saiful Islam, Ali Shafqat Akanda,

Abu Syed Golam Faruque, Nuhu Amin and Peter Kjær Mackie Jensen
ABSTRACT
Cholera, an acute diarrheal disease spread by lack of hygiene and contaminated water, is a

major public health risk in many countries. As cholera is triggered by environmental conditions

influenced by climatic variables, establishing a correlation between cholera incidence and climatic

variables would provide an opportunity to develop a cholera forecasting model. Considering the

auto-regressive nature and the seasonal behavioral patterns of cholera, a seasonal-auto-regressive-

integrated-moving-average (SARIMA) model was used for time-series analysis during 2000–2013.

As both rainfall (r¼ 0.43) and maximum temperature (r¼ 0.56) have the strongest influence on the

occurrence of cholera incidence, single-variable (SVMs) and multi-variable SARIMA models (MVMs)

were developed, compared and tested for evaluating their relationship with cholera incidence. A low

relationship was found with relative humidity (r¼ 0.28), ENSO (r¼ 0.21) and SOI (r¼�0.23). Using

SVM for a 1 �C increase in maximum temperature at one-month lead time showed a 7% increase of

cholera incidence (p< 0.001). However, MVM (AIC¼ 15, BIC¼ 36) showed better performance than

SVM (AIC¼ 21, BIC¼ 39). An MVM using rainfall and monthly mean daily maximum temperature with

a one-month lead time showed a better fit (RMSE¼ 14.7, MAE¼ 11) than the MVM with no lead time

(RMSE¼ 16.2, MAE¼ 13.2) in forecasting. This result will assist in predicting cholera risks and better

preparedness for public health management in the future.
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INTRODUCTION
Cholera is an infection of the small intestine; marked by pro-

fuse, watery, secretory diarrhea with or without vomiting;

caused by the bacterium Vibrio cholerae. This can result

in acute dehydration and, without treatment, it can even

cause death within a few hours (McElroy & Townsend

). Cholera bacteria transmission occurs via the fecal-

oral route primarily by drinking water or eating food that
has been contaminated. Worldwide, about 1.3 billion

people are at risk of cholera in endemic countries; an esti-

mated burden of 2.9 million (uncertainty range: 1.3–4.0

million) cases; and 95,000 (uncertainty range: 21,000–

143,000) deaths per year in endemic countries as of 2015

(Ali et al. ). After seven pandemics (spread over a

continent) in the last 200 years, cholera remains endemic

(�1% mortality rate) in many developing countries in Asia,

Africa and Latin America. The seventh cholera pandemic

began in Indonesia in 1961, but the disease has reemerged

as a global killer since the 1990s (Kotar & Gessler ).
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Recently, the mortality rate for epidemic cholera (>3% mor-

tality rate) was recorded as high as 6.4% in 2010 in Haiti,

6% in 2000 in Madagascar, 4.3% in 2008–2009 in Zimbabwe,

4% in 2006–2007 in Angola, 3.8% in 2010 in Nigeria, and

3.3% in 2006–2007 in Sudan (Enserink ).

A thorough review on the relationship between cholera

incidence and the climatic variables by using different stat-

istical methods in different locations of the world has been

summarized in Table 1. In the review, climatic variables

rainfall, maximum temperature, minimum temperature, rela-

tive humidity, El Niño southern oscillation (ENSO) and

southern oscillation index (SOI) were found statistically sig-

nificant relationship with cholera incidence in different

countries of the world. In Africa, rainfall, temperature and

seas surface temperature (SST) play significant roles on

cholera outbreaks, e.g. in Ghana, rainfall and SOI (De

Magny et al. ); in Nigeria, mean temperature, rainfall

and relative humidity (Leckebusch & Abdussalam );

in Senegal, rainfall (de Magny et al. ); in Zambia,

maximum temperature and rainfall (Luque Fernández

et al. ); in Zanzibar, minimum temperature and rainfall

(Reyburn et al. ); and in southeastern Africa (Uganda,

Keya, Rwanda, Burundi, Tanzania, Malawi, Zambia, and

Mozambique) (Jutla et al. ; Mendelsohn & Dawson

; Trærup et al. ), mean temperature and SST

(Paz ). In America (Haiti) rainfall plays a vital role

(Eisenberg et al. ; Righetto et al. ). In South Amer-

ica, sea surface temperature and ambient temperature have

an effect on cholera outbreaks e.g., in Peru (Checkley

et al. ; Colwell ). In Asia, rainfall, temperature

(mean, minimum and maximum), relative humidity, SST,

sea surface height, and river discharge influence increasing

cholera outbreaks, e.g. in India (Rajendran et al. ;

Sebastian et al. ) and in Bangladesh (Bouma & Pascual

; Pascual et al. ; Akanda et al. ; Islam et al.

; Hashizume et al. ). Moreover, social risk factors,

e.g. poverty, sanitation conditions, and untreated drinking

water, play important roles in the transmission and outbreak

of cholera (Ali et al. a, b; Charles & Ryan ;

Reiner et al. ).

Cholera outbreak is observed in two seasons in

Bangladesh, namely, pre-monsoon (March–May) and post-

monsoon (September–November) season (Lipp et al. ;

Akanda et al. ). Generally, cholera outbreaks show
om https://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
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dual peaks annually in some parts of Bangladesh (e.g. in

Dhaka and Matlab), while single seasonal peaks in other

parts (e.g. pre-monsoon peak in Mathbaria in the southwest

coast and post-monsoon peak in Chhatak in the northeast

flood-prone area) (Akanda et al. ; Akanda et al. ;

Alam et al. ; Bertuzzo et al. ). Pre-monsoon cholera

outbreak in coastal areas of Bangladesh and the capital

region of Dhaka is associated with salinity intrusion

caused by low flow situations in regional rivers, a surrogate

for dry season water scarcity that provides an optimum

environment for growth and increased abundance of

V. cholerae pathogens (Louis et al. ; Vital et al. );

while post-monsoon outbreaks in Dhaka and other inland

regions have shown strong links to water abundance

in flood-prone areas causing seasonal floods all over

Bangladesh (Akanda et al. ; Jutla et al. ). Moreover,

the pre-monsoon triggering cause of cholera outbreak

includes scarcity of seasonal safe drinking water due to

many drinking water sources going dry because of seasonal

declination of the groundwater table all over Bangladesh;

while in Dhaka city, this water scarcity is due to over-exploi-

tation of groundwater and low river water availability for

surface water treatment plants. In laboratory tests, it has

been shown that salinity and temperature are important

factors for influencing the growth of V. cholerae (Batabyal

et al. ), and V. cholerae can survive more when aided

by copepods (Huq et al. ). On the other hand, monsoon

floods inundating large inland areas with stagnant water and

rain-flushed nutrients provide a growth environment for

pathogens (Islam et al. ). With the recession of seasonal

flood water, available water-borne pathogens including

cholera in combination with scarcity of safe drinking

water when many drinking water sources are contaminated

with flood water cause a second ‘post-monsoon’ outbreak

(Akanda et al. , ). Some environmental indicators

such as water temperature and water depth in some water

bodies in Bangladesh showed a significant lagged corre-

lation with cholera outbreaks (Huq et al. ). Moreover,

climate variability, for example extreme dry conditions and

high temperature leading to droughts, or heavy rainfall lead-

ing to floods that occurred caused by ENSO, may lead to

enhance cholera outbreaks in the future (Field et al. ).

Recently Martinez et al. () evaluated the effect of climate

covariate ENSO on cholera incidence in Dhaka using two



Table 1 | Studies of relations of cholera incidences and climatic variables with different statistical methods

Variables Type of statistical analysis Location; time, reference Findings

Rainfall; Southern
Oscillation Index
(SOI)

Cross-correlation analysis Africa – Ghana; 1975–1995
(De Magny et al. )

Strong statistical association between cholera
outbreak and climatic variables under scrutiny

Mean temperature;
rainfall; relative
humidity

Generalized Additive
Modeling (GAM) and
Multiple Linear
Regression (MLR)

Africa – Nigeria; 1990–2011
(Leckebusch &
Abdussalam )

Climatic variables, most especially temperature
and rainfall, play an important role in
explaining the cholera dynamics

Rainfall Cross-correlation analysis Africa – Senegal; May 10–
December 31, 2005
(de Magny et al. )

The influence on cholera transmission of the
intense rainfall over a densely populated and
crowded region was detectable for both Dakar
and Thiès, Senegal

Maximum temperature;
rainfall

Poisson autoregressive
model

Africa – Lusaka, Zambia;
2003–2006 (Luque
Fernández et al. )

1 �C rise in temperature 6 weeks before the onset
of the outbreak explained 5.2% of the increase
in the cholera cases and a 50 mm increase in
rainfall 3 weeks before explained an increase of
2.5%

Minimum temperature;
rainfall;

SARIMA model Africa – Zanzibar; 2002–
2008 (Reyburn et al. )

1 �C rise in temperature at four months lag
resulted in a 2-fold increase of cholera cases,
and an increase of 200 mm of rainfall at two
months lag resulted in a 1.6-fold increase of
cholera cases

Mean temperature; SST Poisson regression model Africa – Southeastern Africa;
1971–2006 (Paz )

Annual mean temperature and SST had
significant impact on cholera incidence during
the studied period

Rainfall Multivariate Poisson America – Haiti; October
2010 – December 2011
(Righetto et al. )

A clear correlation between rainfall events and
cholera outbreaks

Rainfall Quantitative analysis using
a combination of
statistical and dynamic
models

America – Haiti; 2010
(Eisenberg et al. )

Increased rainfall was significantly correlated
with increased cholera incidence 4–7 days later

Maximum temperature;
rainfall; relative
humidity

SARIMA model Asia – Vellore, India;
2000–2010
(Sebastian et al. )

50% decrease of cholera cases from 2000–2004 to
2005–2010. During 2000–2004, there was a
positive significant association between rainfall
and cholera cases (r¼ 0.51, p< 0.001) and this
was not observed in 2005–2010

Mean temperature;
relative humidity;
rainfall

SARIMA and GLM Asia – Kolkata, India; 1996–
2008 (Rajendran et al. )

Cholera was associated higher RH (>80%) with
29 �C temperature with intermittent average
(10 cm) rainfall

Rainfall; mean
temperature

Poisson regression model Asia – Dhaka, Bangladesh;
1996–2002 (Hashizume
et al. )

Weekly cholera cases increased and decreased by
14 and 24% respectively for 45± 10-mm of
rainfall over 0–8 and 0–16 weeks lag

ENSO (El Niño/
Southern Oscillation)

Scale-dependent correlation
(SDC) analysis, Singular
spectrum analysis (SSA)

Asia – Bangladesh; 1980–
2001 (Rodó et al. )

A strong and consistent association between
cholera levels and ENSO is apparent in the last
two decades

Minimum temperature;
maximum
temperature; rainfall
and SST

SARIMA model Asia – Matlab, Bangladesh;
1988–2001 (Ali et al. )

6% increase in cholera incidence with a
minimum temperature increase of 1 �C
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models (mechanistic temporal model and statistical spatio-

temporal model).

Considering all the studies relevant to Bangladesh

and other countries as summarized above, the following

research questions are yet to be addressed for the densely

populated megacity Dhaka: (1) which climatic variable,

single- or multi-variable can predict cholera incidence

better? (2) how to develop a cholera forecast model based

on this correlation? and (3) is there any location-dependent

correlation between cholera incidence and climatic vari-

ables, or not? Hence, this study is aimed at addressing the

above research questions for better predicting cholera inci-

dence; so that preparedness and emergency response plans

can be taken into consideration in a more comprehensive

way than at present. For doing so, a regression model seaso-

nal autoregressive integrated moving average (SARIMA)

was found suitable for this study which refers a relevant

method for time series analysis due to its forecasting

capability and better information on time-related changes

(Helfenstein ).
DATA AND METHODS

Study area and related data

Dhaka cholera incidence data has been used for this study

because: (i) Dhaka is at high risk of endemic cholera

because of the high population density as well as seasonal

flooding and proximity to the Bay of Bengal; (ii) Dhaka

exhibited a dual peak of cholera incidence annually like

Matlab, for which a similar study was conducted by

Ali et al. () where a single variable SARIMA model

with minimum temperature and SST was found to be

triggering cholera outbreaks (Table 1) and rainfall did not

influence cholera; and (iii) long-time series (2000–2013)

continuous cholera incidence data is available from the

International Centre for Diarrheal Disease Research,

Bangladesh (icddr,b), which receives most cholera patients

in and around Dhaka megacity (Figure 1).

Three-hourly local meteorological data of Dhaka

station, such as rainfall, maximum temperature, minimum

temperature and relative humidity, by the Bangladesh

Meteorological Department (BMD) was summarized as
om https://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
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monthly data for the last 14 years from January 1, 2000 to

December 31, 2013. The weather station is located at

latitude 23�460N, longitude 90�230E. There was no missing

data during the study period. In Dhaka district there are

two meteorological stations by BMD, one at Tejgaon

which is at the center of Dhaka city and another at Dhaka

international airport located in the northern part of

Dhaka. The Tejgaon station’s data is used in this study as

this is more reliable than the airport station’s data

as suggested by BMD. Satellite-derived ENSO (source:

www.cpc.ncep.noaa.gov/data/indices/sstoi.indices) and

SOI (source: www.cpc.ncep.noaa.gov/data/indices/soi) at

the index Niño 3.4 were also used in this study (Niño 3.4

(5N–5S, 170 W–120 W) anomalies may be thought of as

representing the average equatorial sea surface temperatures

(SSTs) across the Pacific from about the dateline to the

South American coast. The Niño 3.4 index typically uses a

five-month running mean, and El Niño or La Niña events

are defined when the Niño 3.4 SSTs exceed ±0.4 �C for

a period of six months or more. For more information

please refer to https://climatedataguide.ucar.edu/climate-

data/nino-sst-indices-nino-12-3-34-4-oni-and-tni).

Dhaka is a densely-populated megacity with a popu-

lation of 14.2 million in 2011; the 2001 population was 9.7

million, therefore the decadal growth rate was 46% (BBS

). Dhaka has a tropical wet and dry climate which

has a distinct monsoonal season with an annual average

temperature of 26.1 �C and rainfall of 2,149 mm based on

the last 30 years of data (WB ). During January 2000

to December 2013, the mean (± SD) monthly rainfall,

maximum temperature, minimum temperature, and relative

humidity of 164 (±177) mm, 30.7 (±3.3) �C, 22.1 (±4.5) �C,

and 82 (±6.4)%, respectively indicate that Dhaka generally

has warm and humid weather.

Laboratory-confirmed cholera patients’ data of the

icddr,b were used for the same period of January 2000 to

December 2013. icddr,b is commonly known as the

‘cholera hospital’, where the most severely affected cholera

patients in and around Dhaka megacity come for treat-

ment. Therefore, the cholera patients received at icddr,b

are assumed to be representative of all the cholera patients

in Dhaka megacity. During this period, out of all diarrheal

patients recorded in icddr,b, 19% were identified as cholera

patients (5,939 out of 30,984). Of all the cholera patients,

http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
http://www.cpc.ncep.noaa.gov/data/indices/soi
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni


Figure 1 | (a) Location map of Bangladesh; (b) Location map of Dhaka; (c) Mean cholera incidence for 2000–2013 in and around Dhaka, admitted at icddr,b; (d) standard deviation of cholera

incidence; (e) mean value with (plus) one standard deviation of cholera incidence; and (f) mean value without (minus) one standard deviation of cholera incidence.
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Figure 2 | Time series plot of percentage (%) of cholera cases obtained from total patients visiting in icddr,b, Dhaka, ENSO, average monthly maximum temperature (�C), minimum

temperature (�C), total rainfall (mm), relative humidity (%),and SOI during 2000–2013.
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55% were less than five years of age, while 39% were

greater than 15 years and the rest (6%) were between 5

and 15 years. A greater number of cholera patients was

male (56%), while the rest (44%) were female. The average

monthly cholera patients recorded in icddr,b and related

climatic variables during 2000–2013 depicted the well-

known bimodal distribution (Figure 2) pattern over an

annual cycle: one occurred in the months of March–May

(pre-monsoon) and the other in the months of Septem-

ber–November (post-monsoon). The pre-monsoon peak

was higher than the post-monsoon peak during the studied

period.
om https://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
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Evolution to SARIMA modelling

The overall flow chart of how SARIMA models were devel-

oped is shown in Figure 3. First, to investigate the delayed

effects on cholera incidence, climate variables were tem-

porally lagged by 0, 1, 2 and 3 months by cross correlation

analysis. When one or more lagged associations of climatic

variables with cholera incidence were found, it was then

identified to be useful for SARIMA modeling. The Box–

Jenkins modelling approach (Box et al. ) was used to

carry out the time series analysis because Box and Jenkins

first introduced the autoregressive integrated moving



Figure 3 | Flow chart of evolution of SARIMA modeling.
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average (ARIMA) model in 1976 and this has now become

the most popular method for time series forecasting. The

mean-range plot (the range is plotted against the means

for each seasonal period) of untransformed and logarithm

or square root transformed series was carried out to stabilize

the variance of cholera incidence as the logarithm trans-

formation is required, when the mean-range plot shows

a random scatter about a straight line (Helfenstein ).

Seasonal patterns of a time series can be examined by

box-plot or autocorrelation plot. As cholera incidence

showed the seasonality, a seasonal-auto-regressive-

integrated-moving-average (SARIMA) model was used as a

time series analysis tool by fitting to time series data,

either to better understand the data or to predict future

points in the series (forecasting) when the data shows a sea-

sonality. SARIMA can estimate the effects of climatic

variables on cholera incidence which makes the appropriate

model for forecasting cholera transmission as its integrated

functions controlling seasonal variation, autocorrelation

and long-term trends (Zhang et al. ; Lal et al. ).

The SARIMA model is formed by including an additional

seasonal term in the ARIMA model and is written as

SARIMA (p,d,q)(P,D,Q)m. In this model, m denotes the
s://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
number of periods per season, and p the autoregressive

(AR) order, d the differencing order or integration term (I)

and q the moving average (MA) order for non-seasonal

parts of the model. P, D and Q denote the seasonal parts

of AR, differencing by integration (I), and MA, respectively.

The non-seasonal (p,d,q) and seasonal (P,D,Q) order of the

model was determined by: (i) the differencing order deter-

mined by checking stationarity (that is, its mean, variance

and autocorrelation should be approximately constant

through time) from unit root test; (ii) the order of autoregres-

sive by partial autocorrelation function (PACF); and (iii) the

order of moving average by autocorrelation function (ACF).

Goodness of fit

Akaike Information Criterion (AIC) (Akaike ) and Baye-

sian Information Criterion (BIC) (Schwarz ) were used

to assist in evaluating the goodness-of-fit by penalizing the

model parameters. The lower the AIC and BIC (Equations

(1) and (2)) indicates a better model. Goodness of fit was

also examined using both ACF and PACF (Dickey &

Fuller ) of the residuals of the model and checking the

Portmanteau test (Box & Pierce ; Ljung & Box )
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for white noise in residuals and a scatter plot of residuals

versus predicted values:

AIC ¼ �2 � ln (maximumlikelihood)þ 2κ (1)

BIC ¼ ln (n)κ � 2 � ln (maximum likelihood) (2)

where κ is the number of independently adjusted parameters

within the model and n is the total number of observations.

Model forecasting

The cholera incidence data was divided into two: the data of

2000–2011 was used for the model parameter estimation,

and the data of 2012 and 2013 for model forecasting. Root

mean squared error (RMSE), mean absolute percentage

error (MAPE) and mean absolute error (MAE) were used

to verify the forecasting ability of the models (Shcherbakov

et al. ). Lower value of RMSE, MAPE and MAE

(Equations (3)–(5)) indicate a better fit of the data:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

months¼1

[(observed� forcasted)2=number of months]

vuut (3)

MAPE¼ 100
number of months

Xn
months¼1

j(observed� forcasted)=observedj

(4)

MAE¼
Xn

months¼1

j(observed� forcasted)j=number of months (5)
Limitations

There are a few limitations of this study. For example, the

cholera incidence of icddr,b data is assumed to be represen-

tative of the entire spatial extent of Dhaka megacity. This is

due to the fact that detailed lab-tested cholera incidence

data is only available at icddr,b, where cholera cases are

diagnosed by the laboratory testing of stool. icddr,b receives

most of the cholera patients for Dhaka and surrounding

areas as it is renowned as the only cholera hospital in

Dhaka, where a special response program is taken every

year during the endemic outbreaks. The cholera data avail-

ability of only 14 years (January 2000–December 2013)

may also be considered as a limitation.
om https://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
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RESULTS AND DISCUSSION

Results of evolution of models

By plotting the mean-range for each seasonal period

(12 months), the logarithmic transformation was necessary

to stabilize the variance of cholera incidence (Figure 4).

All statistical analyses were performed on the logarithmi-

cally transformed cholera incidence. The seasonal pattern

is quite evident in the box-plot (Figure 5) of the cholera

incidence, where the incidence in April and May

showed the pre-monsoon peak and in September and

October the post-monsoon peak. The autocorrelation

plot (Figure 6) showed the highest peak (0.54) at lag

12 which indicates annual seasonality. On the basis of

the Augmented Dickey–Fuller (Fuller ) unit root test

(test statistic¼ –6.77, whereas 0.01¼ –3.49, 0.05¼ –2.89,

0.1¼ –2.58), the monthly cholera incidence was stationary,

i.e. the differencing order for non-seasonal and seasonal

(d, D) is zero. Finally, after checking the ACF and PACF

plots, the SARIMA (1,0,0) (1,0,1)12 was the best fitted

model based on the lowest AIC and BIC values. The

plots of the ACF and PACF of the residuals of the chosen

model showed no significant temporal correlation between

residuals at different lags, and the scatter plot of the

predicted values against the residuals showed no apparent

pattern (Figure 7). Portmanteau Q statistics was 31.04

(p¼ 0.84), i.e. the regression model is quite acceptable.

Table 2 shows the cross-correlation of climatic variables

with log-transformed monthly cholera incidence at 0, 1, 2,

and 3 months’ lag which provides the information on

selecting the variables for detailed modelling with

SARIMA. The results showed positive and high association

with rainfall (r¼ 0.43 at 0-month lag), maximum tempera-

ture (r¼ 0.61 at 1-month lag) and minimum temperature

(r¼ 0.56 at 0-month lag), while relative humidity (r� 0.28),

ENSO (r� 0.21) and SOI (r� –0.06) showed low association

with cholera incidence. Then, SARIMA models were run

with all the variables individually as single variable

SARIMA models (SVMs) as mentioned in Table 3 with lag

of 0, 1, 2 and 3 months to check if any high association

(low AIC and BIC values) can be made not depending

on the cross-correlation values only, however, no high

association was found for the latter three variables (relative



Figure 4 | Mean-range plot of cholera incidence for (a) non-transformed data, (b) square-root transformation data, (c) log-transformed data.

Figure 5 | Box-plot of log-transformed cholera incidence recorded in icddr,b, Dhaka, 2000–2013.
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humidity, ENSO and SOI) in Table 3. The relation of

cholera incidence with maximum (AIC¼ 47, BIC¼ 66) and

minimum temperature (AIC¼ 46, BIC¼ 65) showed better

at the temporal lag 1 month and with rainfall (AIC¼ 52,

BIC¼ 71) at the temporal lag 0 than other periods.

The single variable (SVM) SARIMA models (Table 3)

show that an increase of the previous month (lag 1) 1 �C
s://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
maximum temperature resulted in an increase of 7% cholera

incidence (p< 0.001; AIC¼ 47, BIC¼ 66). At the temporal

lag 0, an increase of 100 mm in rainfall resulted in a 4%

increase of cholera incidence (p¼ 0.04; AIC¼ 52, BIC¼ 71)

and an increase of 1 �C in minimum monthly temperature at

1-month lag resulted in a 5% increase of cholera incidence

(p< 0.001; AIC¼ 46, BIC¼ 65). However, the multi-variable



Figure 6 | Autocorrelation function and partial autocorrelation plots with 5% significant limits of cholera incidence in Dhaka, 2000–2013.

Figure 7 | ACF and PACF plots of the residuals at different lags and scatter plot of residuals against predicted values of the SARIMA model.

Table 2 | Cross-correlation analysis of climatic variables (Pearson’s correlation coeffi-

cient) and log-transformed cholera incidence in Dhaka with a lag 0–3 months

Lag (month) 0 1 2 3

Rainfall 0.43 0.38 0.24 0.07

Minimum temperature 0.56 0.53 0.23 –0.12

Maximum temperature 0.56 0.61 0.31 –0.10

Relative humidity 0.28 –0.06 –0.25 –0.25

ENSO 0.21 0.16 0.09 0.03

SOI –0.23 –0.17 –0.12 –0.06
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SARIMA model (MVM) has been found better than the

SVM in terms of error measurement of AIC and BIC as

shown in Tables 3 and 4.

The data of monthly SST and minimum temperature

showed the best result in studies by Ali et al. () and

monthly rainfall and minimum temperature by Reyburn

et al. (); however, in this study, the combination of
om https://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
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rainfall and maximum temperature (Table 4) fitted the best

result. Therefore, finally, four combinations of MVMs A,

B, C and D were fitted as listed in Table 5. The models

with climatic variables were run with different time lags to

check the effect of climatic variables on cholera incidence

at lags of 0, 1, 2, and 3 months. Based on AIC and BIC

(during 2000–2011), model B showed better fit (AIC¼ 15,

BIC¼ 36) than the other three models (Table 6). This

means that the interaction of rainfall (p< 0.05) and maxi-

mum temperature (p< 0.001) at 1-month lag yielded a

significant association with cholera.
Evaluation of model forecast

The performance of models is shown in Figure 8 where the

first 12-year period (1 January 2000–31 December 2011) was

the model developing stage, while the later 2-years (1 Janu-

ary 2012–31 December 2013) was the model forecasting



Table 4 | Results of multi-variable SARIMA models (MVMs) for 0-month lag

Climatic variables p-value AIC BIC

Rainfall, and maximum
temperature

0.008 (rainfall), <0.001
(maximum temperature)

42 64

Rainfall, and minimum
temperature

0.063 (rainfall), 0.001
(minimum temperature)

44 66

Minimum temperature,
and maximum
temperature

0.088 (minimum
temperature), 0.412
(maximum temperature)

49 70

Rainfall, minimum
temperature, and
maximum temperature

0.023 (rainfall), 0.542
(minimum temperature),
0.069 (maximum
temperature)

44 69

Table 3 | Results of single variable SARIMA models (SVMs) for the period 2000–2013

Climatic variables Lag (month) p-value AIC BIC

Rainfall 0 0.04 52 71
1 0.07 53 72
2 0.787 58 77
3 0.094 56 75

Maximum temperature 0 0.002 51 69
1 <0.001 47 66
2 0.074 55 74
3 0.342 57 76

Minimum temperature 0 <0.001 47 66
1 <0.001 46 65
2 0.751 58 77
3 0.901 58 77

Relative humidity 0 0.361 57 76
1 0.940 58 77
2 0.259 56 75
3 0.495 56 76

ENSO 0 0.214 57 76
1 0.183 56 75
2 0.260 57 76
3 0.918 58 77

SOI 0 0.089 54 73
1 0.388 58 77
2 0.441 58 77
3 0.929 58 77

Table 5 | Four combinations of multi-variable SARIMA models used in forecasting

Model
name Variables used in model

A Cholera incidence with 0-month lagged rainfall and
maximum temperature

B Cholera incidence with 1-month lagged rainfall and
maximum temperature

C Cholera incidence with 2-month lagged rainfall and
maximum temperature

D Cholera incidence with 3-month lagged rainfall and
maximum temperature
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stage. Model B (1-month lag with rainfall and maximum

temperature) fitted better between the simulated and

observed cholera incidence than the other models (A, C

and D) (Figure 8). The error measurements also indicated

that model B (RMSE¼ 14.7, MAE¼ 11) showed more

improved fitting compared to other models (Table 7).
s://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
DISCUSSION

The results of this study illustrate that there is distinct sea-

sonality (Figure 5) observed in V. cholera signatures

throughout the world. Among various climatic variables,

there is a significant association of rainfall and temperature

(Table 2) with cholera incidence. These results are

consistent with other studies (e.g. Colwell () in Dhaka,

Bangladesh; Reyburn et al. () in Zanzibar, Tanzania).

Although a very low positive effect of relative humidity

(r¼ 0.28) was found at the current month (lag 0) and nega-

tive values at lags of 1, 2 and 3 months (Table 2), no

significant effect of humidity could be found by time series

analysis with the SARIMA model (Table 3). This result

(effect of humidity on cholera transmission) is also consist-

ent with other studies, e.g. Islam et al. () in Matlab.

The probability of cholera incidence is high with high

rainfall in Nha Trang, Vietnam and in Matlab, Bangladesh

as documented by Emch et al. (); however, in Dhaka,

Bangladesh, Hashizume et al. () summarized that the

risk of cholera may increase with both high and low rainfall.

Although Hashizume et al. () did not provide a quanti-

tative analysis, they described a hypothetical pathway of

increasing cholera cases due to high rainfall causing flood-

ing conditions in Dhaka which may cause exposure to

water contaminated with V. cholerae. However, flooding

does not only depend on high rainfall but also the upstream

river discharge as most areas of Bangladesh lie at the down-

stream of three large rivers in South Asia: the Ganges,

Brahmaputra and Meghna. Low rainfall may also increase

the incidence of cholera as hypothesized by Hashizume

et al. () where they argued that due to low rainfall
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there may be water scarcity to a certain proportion of people

of Dhaka city who rely on surface water for washing and

bathing; therefore, the likelihood of multiple uses in water

bodies may increase.

Temperature and increase of cholera incidence has a

robust relationship, which is well documented in many

studies (Lobitz et al. ; Speelmon et al. ; Sack

et al. ; Huq et al. ). This relationship may be

due to the multiplication of V. cholerae, which directly

influences the abundance and toxicity of V. cholerae in

aquatic environments (Hashizume et al. ); alternatively,

high temperature may also have an indirect influence on pH

levels or nutrients as an effect of increased growth of aquatic

plants (Lipp et al. ), and it has already been documented

in many studies (e.g. Lobitz et al. () and Ali et al. ())

that the increase of sea surface temperature in the Bay of

Bengal causes plankton bloom, which is a favorable con-

dition for multiplication of V. cholerae.

The combined effect of rainfall and minimum tempera-

ture on cholera showed significant results at 1-month lag

in Zanzibar, Tanzania, while the individual effect of

200 mm rainfall resulted in a 1.6% increase of cholera at

2-month lag and a 1 �C increase of minimum temperature

at 4-month lag resulted in a 2% increase of cholera (Reyburn

et al. ). In Matlab, Bangladesh, no combined effect was

shown by Ali et al. (), however, an individually signifi-

cant relationship was found with an increase of the

minimum temperature of 1 �C at 0-month lag with a 6%

increase of cholera. For Dhaka (this study), the correlation

of cholera with maximum temperature (at 0 and 1-month

lag), minimum temperature (0 and 1-month lag) and rainfall

(0-month lag) individually showed better results (based on

AIC and BIC in Table 3) than other climatic variables, i.e.

relative humidity, ENSO and SOI. The model run with com-

bined effect of rainfall and maximum temperature (Table 4)

showed better results (low AIC and BIC) than individual

effects of climatic variables (Table 3), that means, the per-

formance of a multi-variable model (MVM) showed better

results than a single variable model (SVM) which answers

research question 1. This study also illustrates that previous

month’s rainfall and maximum temperature showed a better

fit in forecasting (Table 7); that means cholera incidence can

be forecasted one month earlier which answers research

question 2. However, the rainfall and maximum



Figure 8 | SARIMA model of forecasting of cholera incidence in Dhaka, Bangladesh.

Table 7 | Forecasting accuracy of SARIMA models for cholera

Error measurement Model A Model B Model C Model D

RMSE 16.2 14.7 16.7 17.2

MAPE 1.22 1.04 1.13 1.18

MAE 13.2 11 13.2 13.4

n 24 24 24 24

RMSE: root mean squared error; MAPE: mean absolute percentage error; MAE: mean

absolute error; n: number of observation.
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temperature data should be measured accurately for obtain-

ing an accurate forecasting of cholera outbreaks.

In Zanzibar, Tanzania and Matlab, Bangladesh, mini-

mum temperature is a factor for cholera forecasting with

both SVM and MVM. However, in Dhaka (this study), the

combined effect of (i) rainfall and minimum temperature;

or (ii) maximum and minimum temperature was found

insignificant in MVMs (Table 4) while SVM with minimum

temperature showed significant but higher AIC and BIC

(Table 3) than MVMs, meaning that the effect of different

climatic variables on cholera incidence is site or location

specific, which answers research question 3. Therefore, for

any specific area, individual cholera forecasting models

should be developed and tested for better preparedness.

Martinez et al. () developed a forecast model for

Dhaka considering the influence of ENSO, however, the

influence of ENSO on rainfall pattern is yet to be established

over the Indian sub-continent region (Krishnamurthy &
s://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
Goswami ; Chowdhury ; Ihara et al. ; Izumo

et al. ) while the rainfall affects positively on the cholera

incidence in Dhaka (Hashizume et al. ). In this study,

the cross-correlation with influence of ENSO has also

been evaluated, however, low Pearson’s correlation coeffi-

cient values (0.03–0.21, Table 2) were found in lags 0–3

months during the selection of climatic variables for fore-

casting cholera incidence, therefore, it was not selected for

further analysis. Moreover, the model of this study is time

series based forecasting using the SARIMA model, which

is able to forecast every year (ENSO or non-ENSO years)

with different lead time in months. Also, the model of this

study is able to forecast cholera incidence of fall of 2012

that could not be fitted well by Martinez et al. ().

Climate change is likely to increase the frequency and

intensity of drought as well as extreme rainfall leading

to flood events in the future (IPCC ). Even if global

warming is kept to 1.5 �C, the mountains of the Hindu

Kush Himalaya region (upstream area of major rivers of

Bangladesh) will likely be at least 0.3 �C higher (Wester

et al. ). Fahad et al. () found that at the end of this

century the mean temperature increase over Bangladesh

will vary from 3.2 to 5.8 �C where spatially southwest and

south central parts of Bangladesh will experience a greater

temperature rise than other parts. Such large warming

from 3.2 to 5.8 �C could trigger a multitude of biophysical

and socio-economic impacts such as increased glacial

melting which may affect the annual water budget, i.e. less
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predictive water availability during pre-monsoon and

increasing frequency and severity of floods, therefore, the

endemic cholera outbreaks both at pre- and post-monsoon

may increase largely. Mohammed et al. () showed that

due to climate change high-end scenario (RCP8.5), the

average timing of both floods and hydrological droughts is

projected to shift earlier compared to the present hydrologi-

cal regime, i.e. early onset of both flood and drought,

therefore this time change may also adversely affect the

dual peak cholera outbreaks annually that may prolong

the cholera outbreaks.
CONCLUSIONS

This study is aimed at the developing and testing of a cholera

forecasting model by establishing a relation between cholera

incidence and climatic variables for Dhaka megacity in

Bangladesh. The seasonal-auto-regressive-integrated-moving-

average (SARIMA) model was found suitable as a forecasting

cholera model because of its auto-regressive nature and sea-

sonal behavior pattern. The SARIMA models showed a

strong relation between cholera incidence and climatic vari-

ables in Dhaka, Bangladesh individually (rainfall, maximum

temperature and minimum temperature) and also combined

(rainfall and maximum temperature). For example, individ-

ual effect by single variable model showed that for a 1 �C

monthly maximum temperature increase, cholera incidence

increases by 7% (p< 0.001) at 1-month lag. That means the

cholera incidence can be forecasted 1-month earlier with

the temperature data, which is very promising for prepared-

ness. However, the multi-variable model (Model B) with

1-month lag among all combinations of climatic variables

and lags showed the best result with the lowest errors of

AIC and BIC. This study also revealed that the relationship

between cholera incidence and climatic variables varies

with locations and climatic variables. Therefore, a fore-

casted cholera model is location-specific where climatic

variables also vary with locations. Hence, one should ana-

lyze the location-specific climatic variables for forecasting

cholera incidence.

The results of this study would be very important for a

climatologist, an epidemiologist or a public health pro-

fessional, who works with cholera incidence to develop
om https://iwaponline.com/jwh/article-pdf/18/2/207/677396/jwh0180207.pdf
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preparedness and response plans. For a climatologist, it is

important because climate change impact on cholera inci-

dence may be predicted from this study as climatologists

predict an increase of 1.4–5.8 �C in mean temperature over

the next 100 years (Houghton et al. ). An epidemiologist

would be helped by the new insights on environmental and

climatic linkages of cholera outbreaks. A health professional

may prepare for potential coping and adaptation strategies

for potential climate change related health risks in

Bangladesh. This study also contributes towards the devel-

opment of a climate-based early warning system for

cholera (Akanda et al. ).
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