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It aims to improve the degree of visualization of building data, ensure the ability of intelligent detection, and effectively solve the
problems encountered in building data processing. Convolutional neural network and augmented reality technology are adopted,
and a building visualization model based on convolutional neural network and augmented reality is proposed. The performance of
the proposed algorithm is further confirmed by performance verification on public datasets. It is found that the building target
detection model based on convolutional neural network and augmented reality has obvious advantages in algorithm complexity
and recognition accuracy. It is 25 percent more accurate than the latest model. The model can make full use of mobile computing
resources, avoid network delay and dependence, and guarantee the real-time requirement of data processing. Moreover, the model
can also well realize the augmented reality navigation and interaction effect of buildings in outdoor scenes. To sum up, this study

provides a research idea for the identification, data processing, and intelligent detection of urban buildings.

1. Introduction

With the rapid economic and social progression, the
number of urban populations is increasing, and various
urban management problems have become prominent.
Compared with the original urban management methods,
the current urban construction needs are far from meeting
people’s needs [1]. With the support of scientific and
technological progression, information technology has led
urban management into a new world. As a result, China’s
urban infrastructure and urban appearance have under-
gone earth-shaking changes. In particular, the construction
of digital cities has become the core of urban progression
[2]. The focus of digital city construction is the collection
and processing of data in urban facilities, enterprises,
shops, and buildings. As the most extensive and common
artificial features in urban areas, buildings play an im-
portant role in the construction of digital cities [3]. The
most common building image detection is based on remote

sensing image recognition. From the traditional remote
sensing image to the current high-resolution remote
sensing image, the geometric structure of the image fea-
tures is more obvious, the position layout is clearer, and the
information of texture and size is more accurate [4].
However, the recognition algorithm for building images is
unable to extract effective information from the images due
to technical limitations, which leads to incomplete data
collected for digital city construction and delays in urban
governance and layout decisions [5]. Secondly, as many
images cannot effectively correspond to the real city
construction, their data processing and detection ability are
weak, which further hinders the progression of digital city
construction [6]. Therefore, to ensure the degree of
building data visualization, improve the ability of intelli-
gent detection, and effectively solve the problems en-
countered in building data processing, it is necessary to
construct and optimize the existing process of building data
processing and intelligent detection.
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Convolutional neural network (CNN) is a neural net-
work designed and developed based on the neurons of the
human body that can effectively extract features from im-
ages. This kind of neural network has been applied in many
scenarios. The algorithm has the characteristics of fast
processing speed and high processing efficiency, so it has
been recognized by experts in the field of image recognition
[7]. In the building image data processing, due to the lack of
effective feature extraction algorithms, the data processing
capacity is limited. CNN can just effectively solve this
problem, so this method is feasible in building recognition
[8]. Secondly, augmented reality (AR) combines computer-
generated data such as images, text, and information
through specific means to integrate the scene in reality,
realizing the interaction between users and data, improving
the information carrying capacity of the real world, and
enriching the user experience [9]. Augmented reality
technology can integrate multimedia or graphic data such as
pictures, text, and three-dimensional graphics generated in
computers and other equipment into the real-world scene
through specific technical means. It allows users to observe
and interact with it, thereby further expanding the scope and
content of reality that users can perceive, which improves the
information carrying capacity of the real world and enriches
the user experience. Since mobile augmented reality is not
limited to a fixed location when used, it expands the range of
users’ activities and has high flexibility and scalability.
Therefore, applications in outdoor large-scale scenes such as
urban environments are becoming more abundant. Typical
application scenes include navigation, wayfinding, travel
guides, and outdoor entertainment. Mobile augmented re-
ality browsers such as Wikitude developed by Wikitude in
the United States and Layar developed by SPRXmobile in the
Netherlands are representative products for mobile aug-
mented reality applications in outdoor scenes. Such type of
application calculates the attitude information of the mobile
phone and combines sensors and satellite positioning to
derive the buildings that the user is currently paying at-
tention to. It can also superimpose the corresponding in-
formation on the mobile phone screen to achieve the display
effect of augmented reality [10]. In summary, mobile aug-
mented reality is widely used in many industries. Its flexi-
bility and universal support for mobile computing devices
such as smart phones enable it to allow more users to
participate. Due to the broad application prospects of mobile
augmented reality, the research on mobile augmented reality
methods, especially mobile augmented reality for outdoor
large-scale scenes, has very practical significance.

In this study, large-scale high-resolution remote sensing
images freely available on Google Earth are used. Deep
learning technology is used to identify the building area in
the image, and image processing technology is used to
extract the building outline from the identified building area.
Then, a set of lightweight target detection model SqueezeNet
SSD is designed for mobile. The model is based on the deep
learning model SSD, combined with the SqueezeNet light-
weight convolutional neural classification network to reduce
network complexity and increase operating speed. More-
over, deep transfer learning strategy is adopted to train the
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model to realize intelligent general detection of buildings.
The main innovations are as follows. First, effective inte-
gration of CNN algorithm and AR is implemented to ensure
the accuracy and interactivity of model recognition. Second,
the proposed model avoids the need for traditional algo-
rithms to establish image feature matching libraries and the
limitations of only identifying specific buildings and im-
proves versatility. Third, the lightweight of the model is
realized so that it can run on the mobile terminal, reduce
network dependence, and ensure flexibility and real time.
This work includes five parts. The first part is the in-
troduction, which puts forward the importance of research
on building identification and detection and determines the
main research ideas. The second part is a literature review.
Through the analysis of the research status of CNN in the
field of building recognition and the research status of AR in
the field of building recognition, the existing problems in the
current research are clarified, and the appropriate research
ideas are determined. The third part introduces the research
methods, proposes a building target detection model based
on CNN and AR, and explains the details, parameters, and
datasets of specific modeling. The fourth part discusses the
research results, analyzes the examples of the proposed
model, draws out the performance and advantages of the
model, and compares the proposed model with other al-
gorithms. The fifth part gives conclusions, including actual
contributions, limitations, and future prospects.

2. Related Work

2.1. CNN in Building Recognition. Many scholars have re-
ported on the adoption of CNN in building recognition.
Xiao et al. proposed a globally supervised low-rank ex-
pansion method and a CNN model with adaptive weight
reduction technology to solve the problems of low speed and
small storage in building recognition. It was found that the
proposed algorithm can surpass the current best neural
network. Compared with the latest CNN model, this method
was about 30 times faster and the cost-effectiveness in-
creased by 10 times [11]. Yan et al. proposed the graph
convolution neural network (GCNN) architecture to analyze
the spatial vector data of the graph structure and found that
GCNN produced satisfactory results in terms of identifying
regular and irregular patterns. Compared with the method,
there was a significant improvement [12]. Wang et al
proposed an effective method based on deep CNN to solve
the problem of low efficiency and poor accuracy of tradi-
tional algorithm recognition and adopted a new DenseNet
for building recognition. It was found that the new network
not only maintained the main performance advantages of
DenseNet, but also effectively reduced memory consump-
tion. In addition, the algorithm model improved the
background noise and character adhesion to 99.9% [13]. Wei
et al. proposed a multistream CNN framework to improve
the accuracy of recognition by learning the correlation
between a single building and the map. It was revealed that
the proposed multistream CNN framework was superior to
the latest method based on sSEMG [14]. Yao et al. found that
the learning ability of the model was greatly improved by
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using CNN combined with a deep belief network. Regardless
of whether it was a dynamic image or a static image, the
accuracy of the model was improved [15].

2.2. AR in Building Detection. There are few researches on
the adoption of AR in building inspection, mainly because
this method requires a high cost, and there is still no well-
established method for it. Zhou et al. used AR in the con-
struction of building tunnels, by which on-site quality in-
spectors can retrieve virtual quality control benchmark
models that can be established according to quality stan-
dards and can automatically evaluate structural safety by
measuring the difference between the baseline model and the
actual facility view [16]. Mylonas et al. built a university
Internet of Things through reality augmentation algorithms.
The model can effectively improve the teaching efficiency of
teachers and the teaching effect of students. In addition, the
method was applied to other teaching and got favorable
results [17]. Chen et al. combined building information
model and AR to facilitate the inspection and maintenance
of building features through this model, thereby overcoming
the limitations of paper documents on these tasks [18]. The
combination of information and real objects through AR
effectively promotes the presentation of information in an
instant, visual, and convenient way. Garcia-Pereira et al.
proposed an AR tool designed to assist inspectors, perform
collaborative inspections, and obtain annotations of mul-
tiple types and geographic locations. The final result also
confirmed that the model can well perform assessment of the
quantitative and qualitative performance of the building in
the real environment [19]. Liu et al. fully integrated ARAR in
building information modeling (BIM) and proposed a
BIM+AR construction method. It was found that this model
can effectively solve the problems of assembly errors and low
communication efficiency [20].

2.3. Summary of Research Issues. In view of the above re-
search, it is found that many scholars have made effective
improvements to its algorithm performance in the existing
CNN building recognition, and they have also obtained good
experimental results. However, the actual adoption system
for unconstrained real urban scenes does not yet exist; in
particular when dealing with building areas with a large
dynamic range, intricate textures, and large occlusion areas,
the extraction accuracy is significantly reduced. Therefore,
freely provided large-scale high-resolution remote sensing
images are utilized, CNN is applied to identify the building
area in the image, and image processing technology is
employed to extract the building outline from the identified
building area. In AR building detection, since the satellite
positioning accuracy is easily affected by external conditions,
inertial sensors usually have certain errors, which limit their
scope and flexibility and have a certain impact on the user
experience. Therefore, AR is optimized to a certain extent,
and the visualization and intelligent detection capabilities of
building data are enhanced through the fusion of the two
algorithms.

3. Research Methodology

3.1. Building Data Visualization Model. Based on the above
research issues, the following system is designed, as pre-
sented in Figure 1. The prototype system is composed of
four parts: a vision detection and tracking module, a
posture positioning and geometric calculation module, a
building information database, and an AR display and
interaction module. Visual inspection and tracking module
is responsible for processing the image data passed by the
camera and detecting buildings from it. Then, the detected
buildings are followed up for rapid parallel tracking. CNN
model is utilized to detect buildings in the current picture,
and a detection-tracking error recovery mechanism is
established. Posture positioning and geometric calculation
module is mainly responsible for providing users with the
positioning coordinates of the current position and the
posture data of the mobile phone sensor. It also calculates
geometric information such as distance and azimuth based
on the attitude and positioning data. Building information
database provides relevant information corresponding to
the building, including building data and customizing
building information data. In the building information, the
latitude and longitude coordinates can participate in the
calculation of distance and azimuth. Other types of attri-
bute information are used to generate virtual objects to
provide support for the virtual and real fusion. AR display
and interaction module is mainly used to construct the
camera coordinate system and process the coordinate
conversion between the screen coordinate system and the
camera coordinate system. In addition, the building in-
formation is made into virtual objects in real time and
rendered in the designated position in the camera coor-
dinate system frustum, to realize the real-time interaction
between the user and the system.

First, the system preprocesses each frame of image data
captured by the camera through the visual inspection and
tracking module, which is converted into an image of the
specified size and format and input into the trained
SqueezeNet single shot MultiBox detector (SSD) target
detection model (Figure 2). Then, for each item in the target
detection result, a target tracker is created, and the same
frame of image and the target’s detection frame result are
used to perform the initialization operation, so that the
parallel tracking of all target detection results is realized.
Then, the user’s current latitude and longitude coordinates
and mobile phone posture data are determined with the aid
of posture positioning and geometric calculation modules.
Through the target matching method based on the azimuth
relationship, the screening of building targets and the precise
matching of target detection results and building infor-
mation are realized combined with the building longitude
and latitude coordinate information in the building infor-
mation database. The virtual objects are made based on the
data in the building information database. AR display and
interaction module are adopted to instantly render the
virtual objects, realize hybrid virtual and real registration
and provide interactive support, and provide users with AR
navigation and interaction for buildings.
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The SSD target real-time detection model is a multiscale
prediction (Multiscale) network, as shown in Figure 3 below.
The model predicts from different feature maps and then
merges the prediction results together. SSD is compared
with YOLO, and it is found that YOLO is of a single scale. In
terms of frame generation, SSD is also in place in one step,
and the frame is generated and tested at the same time.
Therefore, real-time detection of pictures is realized. There
are a total of six scales, and frame generation and prediction
are performed on each scale. Finally, nonmaximum sup-
pression (NMS) is used to filter and get the result. The main
difference from YOLO lies in the multiscale, backbone part,
full convolution, and that the prediction part is also con-
volution (YOLO’s prediction part is a fully connected layer).
Compared with YOLO, SSD uses CNN to directly perform
detection instead of performing detection after the fully
connected layer like YOLO does. Using convolution to
detect directly is just one of the differences between SSD and

YOLO, and there are two other important changes. One is
that SSD extracts feature maps of different scales for de-
tection. Large-scale feature maps can be used to detect small
objects, and small-scale feature maps can be used to detect
large objects. The second is that SSD uses a priori boxes
(prior boxes, default boxes, called anchors in Faster R-CNN)
of different scales and aspect ratios. The disadvantage of the
YOLO algorithm is that it is difficult for it to detect small
targets and the positioning is not accurate, but these im-
portant improvements enable SSD to overcome these
shortcomings to a certain extent. SSD takes VGGI16 as the
basic model and then adds a new convolutional layer based
on VGG16 to obtain more feature maps for detection.

3.2. CNN for Data Feature Extraction. Since the SSD model
has the characteristics of fast running speed and high de-
tection accuracy, it is selected as the algorithm used in
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building target detection. To solve the problem of excessive
model calculation and excessive weight volume, the model is
deployed on the server side, and the real-time operation of
the model algorithm is realized through the high-perfor-
mance processor on the server side. The image obtained by
the mobile device is compressed and uploaded to the server
to be handed over to the model for target detection through
an established instant connection between the server and the
mobile. Then, the target detection results obtained are
transmitted back to the mobile terminal device [21]. First,
the VGG-16 basic classification network with the largest
amount of calculation in the SSD model is replaced with the
SqueezeNet network with the classification layer removed.
SqueezeNet is a relatively small deep CNN, which reduces
the number of parameters of the network to one-fifth of that
of AlexNet while ensuring that it has the classification ac-
curacy of the AlexNet network. The network structure of
SqueezeNet convolutional neural classification network is
shown in Figure 4. The network first uses a common con-
volutional layer to perform convolution operations on the
input image, Input, to extract features. Then, it employs the
ordinary convolutional layer to calculate again and performs
global average pooling on the final feature map.

The structure of the SqueezeNet SSD target detection
model combined with the SqueezeNet structure is shown in
Figure 5. This structure uses the SqueezeNet network with
the classification layer removed instead of the VGG-16
network as the basic classification network of the model, and
the subsequent additional layers are modified accordingly to
match it. The number of convolution filters in the inner
convolution layer is halved, and the global average pooling
layer is connected after the Ex3_2 layer.

3.3. AR Intelligent Detection. The camera coordinate system
space is established based on OpenGL ES 2.0, and the scene
renderer is constructed. The frustum and visible area are
set, and the production and registration of virtual objects
are implemented, so as to realize the virtual and real fusion
display of AR. OpenGL ES is a powerful and convenient
low-level 3D graphics library designed for mobile devices.
The first step of AR display is converting the building

detection frame on the screen coordinate system to the
corresponding position of the target plane of the frustum of
the camera coordinate system. The calculation of the dis-
tance between the target plane and the camera involves the
calculation of the latitude and longitude distance and the
azimuth angle. The longitude and latitude coordinates of
the building are acquired from the building information
database, and the posture estimation and positioning
module are used to obtain the positioning coordinates and
posture data of the device. Then, it combines the AMa-
pUtils.calculateLineDistance method of AutoNavi SDK to
calculate the geometric distance [22]. After the coordinate
conversion is finished, virtual objects need to be generated
based on the data in the building information database.
Each building is approximated by a cylinder object with a
height and diameter similar to it under the current viewing
angle, along with several floating information window
infowinObject and a floating coordinate window coor-
dObject. These classes all implement a method for resetting
parameters and position information, for modifying the
vertex coordinates of their own graphics according to the
latest building detection frame coordinates, etc., and im-
plement a draw method for drawing. The GL10 object with
relevant drawing parameters is configured for drawing.
Finally, in the onDrawFrame method of the renderer class
inherited from GLSurfaceView.Renderer, all virtual objects
are traversed and drawn one by one at the designated
position in the frustum, so as to be superimposed and
displayed on the real picture of the mobile phone camera to
realize virtual and real fusion [23].

3.4. Data Source and Performance Analysis

3.4.1. Development and Hardware Environment. The pro-
totype system is developed for the Android platform, and the
Ubuntu Desktop 16.04 LTS 64 bit system is used to im-
plement the development process. The development tool
used is Android Studio 3.2, and the development language is
Java. Given the system compatibility, the Android SDK
version used is LOLLIPOP (Android 5.0, API 21). The
database uses SQLite 3.7.11, and the graphics library uses
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Open GL ES v2.0. The computer vision algorithm library
uses OpenCV 3.1.0, and the algorithm support in Open-
CV_Contrib is imported. The SqueezeNet SSD target de-
tection model is built based on the MXNet deep learning
framework. CUDA 9.0 is taken as the GPU parallel com-
puting architecture, and CUDNN 7.0 is used to achieve
GPU-based neural network computing acceleration. The
weights of the basic classification network of SqueezeNet use
ImageNet-based pretraining weights. The model is written in
Python language and completed deep transfer learning
training on a computer equipped with GPU. The CPU of the
computer used for system development and model training
is Intel® Core™ i7-6700K CPU @ 4.00GHzx8 (8 GB
memory), and the GPU is NVIDIA GeForce GTX 1060
(6 GB video memory). The CPU configuration of the mobile
phone equipped with the prototype system is Qualcomm
Snapdragon 821 (6 GB RAM). The camera uses Bublcam,
which is a relatively small panoramic camera. With a
software package, Bublcam is designed for mainstream
consumers who want to buy an easy-to-operate virtual re-
ality video device.

3.4.2. Dataset. In the experiment, the Massachusetts re-
mote sensing dataset provided by Mnih is used, abbre-
viated as Mass.Buildings. The dataset contains 151 remote
sensing images of the Boston area. Each image has a
resolution of 1500 x 1500 and corresponds to 2.25 square
kilometers. The entire dataset covers about 340 square
kilometers. The entire dataset is split into a training set
containing 137 images, a test set of 10 images, and a
verification set of 4 images. Since the training image is very
large, directly using it for training will cause memory
overflow. To train this network, a sliding window with a
size of 256 * 256 and a step size of 64 is used to cut out a

series of image blocks from each visible light remote
sensing image. Some areas of the image in this dataset are
empty, so it is necessary to determine the ratio of pixels
with pixel values (255, 255, 255) in the cropped image
block to this image pixel when sliding window cropping is
used. If this ratio exceeds 0.02, the image block will be
discarded. The labeled binary image block at the same
position of the artificially labeled image is cut out in the
operation of remote sensing images. After cropping, a
training set with 75,938 image blocks and a validation set
with 2500 image blocks in total are obtained. To compare
with previous methods, 10 images with a resolution of
1500 x 1500 are used as the test set. What needs to be
explained here is that the cropped visible light remote
sensing image block does not make any linear changes in
the pixel value; that is, it is still expressed in RGB format.
The gray value range of each channel is 0-255. The gray
value range is changed to 0-1 for artificially labeled images;
that is, the pixels belonging to the building are marked as I,
and the pixels not belonging to the thousand are marked as
0. This marking method is the most commonly used
method in the field of semantic segmentation. If the label
requires to be visualized, the reader only needs to multiply
the image by 255 to solve the classification problem of
thousands of N categories. Each tag value can be read in
turn, and N single-channel binarized images can be used
for visualization. To speed up the data reading speed, the
training set and the verification set composed of the
cropped image blocks are written into the LMDB library
through the data stream. Two points need to be paid at-
tention to when the database is constructed. First, the
number of a pair of corresponding remote sensing images
and artificial label images should be the same. Second, a
randomization function should be used to scramble the
image blocks that are cropped in order.
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3.4.3. Performance Verification. To verify the actual per-
formance of the lightweight target detection model pro-
posed, a common method of evaluating the target detection
model is adopted. The training set of PASCAL VOC2007 and
VOC2012 target detection dataset [24] are utilized to train
the model. The detection accuracy of the model is tested
through the test set of the PASCAL 2007 dataset, which is
compared with the indicators of other models to evaluate the
performance of the model. The model performance is de-
termined regarding the accuracy and recall rate, and the
average accuracy rate is used to analyze the target detection
effect to verify the generalization ability of the model. The
trained model needs to be run in the PASCAL VOC2007 test
dataset, and the specific calculations are as follows:

TP

precision = P TD (1)
TP

I=— 2

recall = 7= (2)

In equations (1) and (2), FP stands for false positive
samples, FN stands for false negative samples, and TP stands
for real samples. The samples are collected by judging the
intersection over union (IOU) between the detection frame
generated by the target detection model and the real frame.
The IOU threshold is given, and all detection frames whose
IOU with the real frame are greater than 0.5 are adopted as
samples [25]. The calculation of IOU is as follows:

10U = Boxdetection n BOXGroundtruth (3)

BOXdetection U BOXGround truth

In equation (3), BOXge(ection 1S the detection frame range,
and BoXg,ound truth 1S the real frame range. For this curve, the
highest accuracy value is selected in each recall interval to get
a series of accuracy values. The average precision (AP) is
obtained by averaging these accuracy values. The specific
calculation is as follows:

AP = Jl p(r)dr. (4)
0

In equation (4), p(r) is the average of precision. The
image recognition detection speed is mainly used to reflect
the performance of the system detection, and its calculation
equation is as follows:

D
W=_. 5
T (5)
In equation (5), D is the pixel distance, T is the system
running time, and W is the system detection speed.

4. Result Analysis

4.1. Algorithm Performance Comparison. Figures 6(a) and
6(b) illustrate the loss curve and the detection accuracy of the
model proposed after training on different datasets, re-
spectively. As the number of training rounds increases, the
accuracy of the training phase and the accuracy of the
verification phase of the model continue to improve, while

the loss value of the training phase and the loss value of the
verification phase of the model continue to decrease. The
accuracy and loss values basically converge after 800 rounds.
After the training phase is over, the weight parameter file
volume of the obtained model is significantly smaller than
the weight parameter file volume of the original model. Its
compact structure and volume occupancy make it more
suitable for embedded or mobile devices.

Figure 7(a) is the AP of the model in the target detection
category from Aeroplane to Dining table, and Figure 7(b)
shows the AP of the model in the Dog to TV monitor target
detection category. The various AP values calculated by the
model on the PASCAL VOC 2007 target detection test set
are basically stable, and the model’s mAP value is 53.7%,
which means that the model has high detection accuracy for
different target detection categories.

The latest research algorithm [26-28] is compared with
the algorithm proposed in Figure 8. Figure 7(a) shows the
accuracy of different models on different datasets, and
Figure 7(b) shows the recall of different models on different
datasets. Figure 7(c) shows the generated file sizes of dif-
ferent models, and Figure 7(d) shows the number of frames
per second processed by different models on different
processors. Compared with other models, the proposed
SqueezeNet SSD model has obvious advantages in accuracy.
It is because the lightweight structure takes a smaller size
image as input, and the performance of the basic classifi-
cation network used is weak. Moreover, the number of
multiscale feature maps selected is less than that of the
original model. However, the recall rate has obvious ad-
vantages when the dataset is 250. Compared with the model
FPGA in latest research, the performance of the proposed
one is increased by 25%. The proposed model generates the
smallest proportion in the size of the file generation, only
17.8 Mb, which is about 5 times the speed of the original SSD
model. Under different GPU and CPU conditions, the al-
gorithm model shows a high processing speed.

In Figure 9, to verify the performance of the HF-FCN
algorithm, it is compared with two methods that use the
same dataset and use deep learning. The performance of the
different methods is very similar, but they are far lower than
our method. Under the same accuracy (0.7), the proposed
method always has a higher recall rate of 95%. To make the
measurement standard more stringent, the relaxation
threshold p is set to 0. It is found that the proposed model
also has the same trend. This method is obviously better than
these four methods. Based on this, it is concluded that the
method proposed in this study is relatively more suitable for
recognizing building areas in complex scenes.

4.2. Building Outline Estimation. In Figure 10, ten different
building types are estimated, where Figure 10(a) is the time-
consuming result of a small-sized building, and Figure 10(b)
is the time-consuming result of a large-sized building. When
there are many large-size buildings, the time consumption
increases greatly, reaching 10 seconds. For remote sensing
images with a large proportion of small buildings, the es-
timation time of the outline of small buildings increases
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FIGURE 9: Performance analysis of different models under different parameters.

dramatically, and the total time reaches 7.6 seconds. For
image has fewer small-sized buildings and few large-sized
buildings, the overall time is only about 4 seconds.

4.3. Building Data Visualization. Figure 11 is a screenshot of
the results of the detection and tracking of some buildings.
SqueezeNet SSD model running on the mobile terminal can
accurately detect various types of buildings and has a high
confidence. When multiple buildings appear on the screen,
the model can also detect them separately and performs
parallel tracking.

Figure 12 is the placement and virtual-real registration
effect of the cylinderObject in the system in the frustum.

Aided by the relevant coordinate conversion of the detection
frame coordinates, the height and width of the cylindrical
object in the camera coordinate system are close to the real
building target. Its approximation is utilized to replace the
building target model, and relatively accurate virtual and real
registration with the real scene is realized.

4.4. Evaluation of Detection Results. In Figure 13, the time-
consuming process of different detection procedures is
analyzed, and it is found that the target detection task takes
the longest time due to its relatively large amount of cal-
culation. However, since the system uses the target tracking
algorithm, the target detection task has little effect on real-
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FiGure 10: Building outline estimation results.

FIGURE 11: Screenshots of the results of detection and tracking of some buildings.

time performance. The operating speed of the system reaches
11 FPS. The system proposed has good real-time perfor-
mance compared with the traditional image recognition and
detection speed of 500 FPS.

Figure 14 is the statistical results of the detection and
matching accuracy of some buildings. Figure 14(a) is the
main high-rise buildings, and Figure 14(b) is the main
residential buildings. It is found that the detection

confidence of most buildings is basically maintained above
0.80. In addition, the confidence level of some buildings even
reaches about 0.95, proving that the target detection model
can achieve better detection results for most buildings. In
general, the system can accurately detect buildings and can
perform building information matching, with an average
detection confidence of 0.896 and an average matching
accuracy of 96.92%, which basically meets the requirements.
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FIGURE 12: Placement of the cylindrical object in the frustum and the virtual-real registration effect.

600 -
520

500

=

E 400 -

=1

S

£,

gaoo-

=]

]

(]

Q

£ 200 -

[_4

100 -

50
20 10 ) 10
O_ T T T
S T T -
= 2 ¢ T & 3
o g, S © © =
(=% E g >
F

FIGURE 13: Statistical results of average time-consuming system tasks.

11



12

Scaling
1.000

0.9774
0.9549
0.9323
0.9098
0.8872

Matching accuracy

0.8646

0.8421

1 b 0.8195
2 4 6

Different building types
(@

Complexity

Scaling

4 1.000

0.9563
0.9125

w

0.8688

N

. 0.6500

8 10 12
Different building types

(®)

0.8250
0.7813

Matching accuracy
(38}

0.7375

0.6938
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5. Conclusions

In this study, a mobile-oriented intelligent building detec-
tion model is designed first, and a mobile augmented reality
hybrid registration method for outdoor large-scale scenes is
realized based on this. Then, a complete contour estimation
system is further designed based on the prediction results of
the network. Given the shape characteristics of buildings of
different sizes in the actual scene, all the identified building
areas are divided into large-size buildings and small-size
buildings according to the area. Finally, a set of post-
processing and contour estimation algorithms for these two
sizes of buildings are designed. In addition, a series of ex-
periments are implemented on the test set of the public
dataset to verify that the designed scheme not only has good
structural features, but also has low algorithm complexity. It
effectively avoids the limitations of traditional image feature
matching methods. Moreover, the model is designed for
mobile terminals, making full use of mobile computing
resources, effectively reducing the dependence on the net-
work, and avoiding network delays.

Although a suitable algorithm model is constructed,
there are still many shortcomings. First, the detection of
buildings mainly relies on visual algorithms, and it is difficult
to achieve the best performance in scenes with severe visual
conditions (such as evening, night, and other poor lighting
conditions). Given the performance of the mobile terminal,
the design size of the input image of the SqueezeNet SSD
model is reduced to 224 * 224 * 3. When the distance of the
building is too far, it may happen that the image is too small
in the picture, resulting in missed detection. In the matching
algorithm based on the idea of rotation angle, the VRA
rotation angle in principle cannot represent the direction of
the longitude and latitude coordinates of the center of the
building, and it is just an approximation. Therefore, there
must be a certain error between its numerical value and the
GRA rotation angle, and the numerical value has a certain
degree of fluctuation. Although this method can achieve

accurate matching of building information in most cases, it
may happen that the rotation angle matching fails in some
complicated situations (such as multiple buildings being
collinear or overlapping in shooting angles).
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