
1 
 

Spatial earthquake vulnerability assessment by using multi-criteria 1 

decision making and probabilistic neural network techniques in Odisha, 2 

India 3 

Ratiranjan Jena1, Biswajeet Pradhan1,2*, Ghassan Beydoun1, Abdullah Alamri3, Abdallah Shanableh4 4 

1Center for Advanced Modeling and Geospatial Information Systems, Faculty of Engineering and Information 5 

Technology, University of Technology Sydney, NSW 2007, Australia; Email. Ratiranjan.Jena@uts.edu.au; 6 

Biswajeet.Pradhan@uts.edu.au; Ghassan.Beydoun@uts.edu.au  7 
2Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 209, 8 

Neungdong-ro Gwangin-gu, Seoul 05006, Korea; Email. biswajeet24@gmail.com;  9 
3Department of Geology and Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi 10 

Arabia; amsamri @ksu.edu.sa; alamri.geo@gmail.com 11 
4Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, P. O. Box 12 

27272, Sharjah, United Arab Emirates; shanableh@sharjah.ac.ae  13 

 14 

*Email. Biswajeet.Pradhan@uts.edu.au and Bsiwajeet24@gmail.com (Corresponding author) 15 

 16 

Abstract 17 

In this study, the multi-criteria decision-making method was used to estimate the weights of 18 

several input factors such as slope, curvature, elevation, proximity to road, road density, 19 

proximity to land use, land use density, proximity to water bodies, river density, rail density, 20 

distance from rail, groundwater variation, lithology with amplification factors, peak ground 21 

acceleration (PGA) variation, and population density. An integrated analytic hierarchy process 22 

(AHP) and a probabilistic neural network (PNN) were applied for the Earthquake vulnerability 23 

assessment (EVA). The PNN model successfully explored the relationship between variables 24 

and weights obtained from the AHP approach. Validation results indicate that 92.5% accuracy 25 

was attained by the PNN model. According to the results, 24.26%, 15.26%, and 20.58% of the 26 

area fall under very-high, high, and moderate vulnerability category, respectively. The EVA 27 

map illustrates that high to very-high impact could be observed in coastal Odisha and few 28 

districts in the Mahanadi Graven.  29 
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1. Introduction 33 

Earthquake vulnerability assessment (EVA) has been a challenging subject (Peng 2015; Jena 34 

et al. 2020a). The evaluation of vulnerabilities of the physical, structural, geo-technical, and 35 

social components exposed to earthquake is ridden with problems. The main challenges in 36 

earthquake vulnerability estimation are (1) difficulties in identifying the suitable factors of 37 

vulnerability (Birkmann and Wisner 2006), (2) a lack of detailed and accurate data that can be 38 

implemented in feature selection for factor development (Thieken et al. 2008), and (3) the 39 

availability of data can only be found at highly aggregated levels (Notaro et al. 2014). 40 

Moreover, grouping of factors is challenging when establishing distinct categories. Some 41 

studies perceive geotechnical factors as part of structural vulnerability and vice versa (Yariyan 42 

et al. 2021). Challenges are also involved in incorporating temporal scales in vulnerability 43 

assessments of earthquakes (Baruah et al. 2020; Mohebbi et al. 2020).   44 

 45 

Globally, several earthquake vulnerability studies have been conducted (Clark et al. 1998; 46 

Panahi 2014; Bankoff et al. 2013). Peng (2015) estimated earthquake vulnerability by using 47 

several multi-criteria decision-making (MCDM) methods, such as VIseKriterijumska 48 

Optimizacija I Kompromisno Resenje, Elimination et Choice Translating Reality, preference 49 

ranking organization method for enrichment evaluation, Weighted Sum Method, and Grey 50 

Relational Analysis. The studies were conducted in key Chinese locations using 11 criteria 51 

derived from built-up area, population, residential buildings, and industrial infrastructure. The 52 

author found that TOPSIS is the most selected method because of its efficiency. Rezaie and 53 

Panahi (2015) studied earthquake vulnerability by using Analytic Hierarchy Process (AHP) 54 

and Geographical Information System (GIS). Chen et al. (2013) described in their research that 55 

social vulnerability affects people’s ability to handle pre- and post-disaster situations. Clark et 56 

al. (1998) described social vulnerability with respect to the range of destruction to specific 57 

communities, groups, or countries. Bankoff et al. (2013) emphasized that vulnerability is the 58 

key to estimate risk associated with the corresponding environment and societies. Vulnerability 59 

also deals with people, knowledge, and their perceptions (Bankoff et al. 2013). Therefore, 60 

vulnerability is a complex relationship embedded with processes within an environment. Wood 61 

et al. (2010) noted that social vulnerability is associated with individual, natural, and social 62 

changes that can expose lives to risk. 63 

Recently, Flanagan et al. (2011) proposed a method to estimate composite vulnerability by 64 

aggregating vulnerability factors. They understood that social vulnerability factors for storm 65 
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surges are associated with natural hazards like hurricanes. Collins et al. (2009) worked on 66 

environmental vulnerability in El Paso, Texas (USA) and Ciudad Juarez (Mexico). They 67 

adopted the method proposed by Cutter et al. (2003) to estimate the vulnerability index. 68 

Bjarnadottir et al. (2011) generated a social vulnerability index on the basis of coastal 69 

community for hurricane-prone areas in Florida. Wood et al. (2010) converted community 70 

relations to social vulnerability associated with Cascadia tsunamis in the United States, and 71 

estimated block-level social vulnerability. Zhang et al. (2017) developed a model for social 72 

vulnerability estimation to evaluate earthquake vulnerability in Sichuan Province, China. 73 

Elimination of unimportant factors and optimization of the proposed model was performed by 74 

using an attribute reduction method. Thiri (2017) conducted an analysis on vulnerability 75 

estimation in 30 municipalities that were affected by the Great East Japan Earthquake that 76 

occurred in 2011. Disaster impact on environmental migration was evaluated by conducting 77 

interrupted time series analysis.  78 

Several studies on earthquake vulnerability were carried out in India. One key research was 79 

conducted by the Indian Institute of Technology (Technical Document, IIT 2013). Sinha and 80 

Adarsh (1999) conducted a postulated vulnerability study for Mumbai City. Sinha and Goyal 81 

(2004) established a national policy for the earthquake vulnerability study for buildings in 82 

2003. Likewise, Nath (2016) conducted a vulnerability study for Kolkata City. Some studies 83 

were also carried out for the north-eastern region of India, such as Guwahati City (Pathak et al. 84 

2015) and Shillong City (Biswas et al. 2013).  85 

However, only a few studies on earthquake vulnerability have been conducted in the state of 86 

Odisha (Jena et al. 2020d). Most of the focus has been given to local site-effect estimation and 87 

hazard mapping (Gupta et al. 2014; Mohanty et al. 2009). However, no recorded studies have 88 

been conducted for earthquake vulnerability assessment using a combined approach of MCDM 89 

and machine learning (ML) techniques. No comprehensive, large-scale earthquake 90 

vulnerability study has been conducted in Odisha by using ML and GIS. The major research 91 

questions that were addressed in this study are; (1) is good accuracy in vulnerability mapping 92 

possible? If so, how methodical are the obtained results?; (2) what are the main factors in the 93 

current model that help achieve good accuracy?; and (3) is the proposed PNN model good 94 

enough for future regional scale studies on earthquakes? Existing seismic studies concentrate 95 

on earthquake hazard assessment and local-scale vulnerability assessment. By contrast, many 96 

assumptions have been made for existing studies without considering the vulnerability index 97 

estimation. However, in this research, we have not gone through any assumption but followed 98 
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the major factors that contribute to the vulnerability index. Previous works in Odisha were fully 99 

focused on probability and hazard assessment. However, in the current research, geological, 100 

geomorphological, structural, and social characteristics were integrated into GIS to generate an 101 

earthquake vulnerability map where implementation of the AHP and PNN technique provides 102 

a useful way to estimate vulnerability index. This work has three main objectives: (1) to 103 

estimate earthquake vulnerability by aggregating vulnerability factors with the addition of new 104 

factors by using MCDM; (2) to develop a PNN model to implement vulnerability prediction 105 

with good accuracy; and (3) to predict the site of spatial variation of vulnerable zones.  106 

2. Study area 107 

Odisha shares a coastline of 450 km with the Bay of Bengal (Figure 1a). It is located in Eastern 108 

India, which is famous for its history, culture, hot springs, and unique geography (Sarkar and 109 

Saha 1983). The state is located between the latitude and longitude of 20.9517° N and 85.0985° 110 

E, respectively. Bhubaneswar is Odisha’s economic capital and the “temple city” of India. The 111 

state extends over 155,707 km2 and has a population of 46 million. The GDP of Odisha in 112 

2019–2020) was US$75 billion (Sarkar and Saha 1983; Dhar et al. 2017).  113 

As stated in the seismic zonation map of India, Odisha falls under zones II and III (Narula et 114 

al. 2000). Although a considerable part of Odisha falls under zone III, much of the state is 115 

under zone III. Major cities that are encompassed by the Mahanadi Graben are Bhubaneswar, 116 

Cuttack, Talchir, Angul, Dhenkanal, Sambalpur, and Balasore (Figure 1c). Several moderate 117 

magnitude events have occurred in the Bonaigarh–Talchir area (Mw 5 and 4.8). In 1958 and 118 

1962, two earthquake events of 5.2 Mw occurred in Rengali Province (Figure 1a). Several 119 

moderate events of Mw 4.4, 4.1, and 4.3 were also recorded in January 1986, because of the 120 

north Odisha boundary fault (NOBF) movement (Mahalik, 1994). Four major stations were 121 

established by the Geological Survey of India (GSI) for the measurement of micro-earthquake 122 

close to the NOBF. Nevertheless, many hypocenters, which indicate neo-tectonics, were also 123 

observed in the active NOBF. 124 

This section presents the geological and tectonic settings in Odisha (Figure 1b). 125 

Approximately, 75% of the state is covered by Precambrian rocks. The rocks date back to 3,700 126 

million year (M.Y.) of geological history (Gupta 2012). Consequently, 25% of the total rock 127 

deposits, including unconsolidated rocks, are from the Post-Cambrian age.  128 

     129 

Figure 1. Around here. 130 
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Basement rocks are characterized by granites, gneisses, ultrabasic-basic rock types, 131 

khondalites, and charnockites (Gupta 2012). Studies have been conducted along the litho-132 

contact between the Eastern Ghats Mobile Belt (EGMB) and North Odisha Craton (NOC), 133 

which is divided by the Mahanadi Shear Zone (MSZ) in east-west direction (Mahalik 1994). 134 

Gondwana graben is the basin known for coal deposits that have risen due to the fault zone 135 

generated between the cratons. Owing to the typical characteristics of fault slices, interpretation 136 

of sedimentation, intrusion, and litho-contact is difficult. 137 

 138 

EGMB consists of granulite facies characterized by charnockites, khondalites, quartzites, 139 

gneiss, and garnet–biotite schists (Gupta 2012). The North Orissa craton is characterized by 140 

banded iron ore and supracrustal rocks of low-grade origin within granitic intrusion (Gupta 141 

2012). Geologists believe that EGMB rocks are older than BIF-bearing granites. Amphibolite 142 

facies are located in the southern part of the Singhbhum craton. Migmatites are metamorphic 143 

rocks that are found in EGMB (Mahalik, 1994). The E–W oriented Mahanadi graben is 144 

sandwiched between NOC and EGMB, thus forming a basin (Mahalik 1994). Further, it can be 145 

considered as a half-graben composed of several normal faults. Thus, EGMB is trending in the 146 

WNW–ESE direction parallel to NOBF that is present in between NOC and Mahanadi basin. 147 

Moreover, the reactivation of NOBF and MSZ is directed towards tectonic basin development 148 

and seismicity. 149 

 150 

3. Data  151 

Data for this study were collected from several sources. The open access catalog of earthquakes 152 

is obtained from national and international disaster management agencies. The sources are the 153 

United States Geological Survey (USGS), National Earthquake Information Center, and 154 

National Center for Seismology. Shape files, building information, and population data were 155 

collected to develop a geodatabase and to generate several layers for vulnerability assessment. 156 

The geological map was obtained from GSI and was used to prepare thematic layers. 157 

Geological data, including lithology, are the raw data used to derive vulnerability factors. For 158 

PGA estimation, this study chose the specific magnitudes ranging from 5.0 up to 7.5–8.5 which 159 

were experienced in and around Odisha using the ground motion equation developed by 160 

Campbell & Bozorgnia (2010). As most of the major earthquakes in Odisha falls within a 161 

distance ranging from 0–200 km, Campbell & Bozorgnia attenuation model best suits for the 162 

PGA estimation (Figure 3). The seismotectonic atlas and published papers were used as 163 
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genuine referrals for locating earthquake sources and high-intensity locations for vulnerability 164 

identification purposes. In the current study, a digital elevation model with a spatial resolution 165 

of 30 m was used due to the unavailability of high-resolution data to generate major factors 166 

such as slope, elevation, curvature, and hill shade (USGS 2018). To prepare the thematic layers, 167 

a world geodetic system (WGS 1984) was used. The other thematic maps were derived from 168 

transportation data, groundwater and river data, and land use and land cover. Most of the 169 

researches explored only one side of the factors that is the proximity, however ignoring the 170 

other appealing side impacts on the model output (Yariyan et al. 2021, Alizadeh et al., 171 

2018a,b). In “road density”, dense locations were always prioritised and determined with all 172 

road contributing equally to a particular area. This is important for the main road junctions that 173 

is more significant than a single road (Jena et al. 2020b). However, individual roads are 174 

prioritized in “proximity to road factor”.  This signifies the importance of all other factors 175 

derived from single data for vulnerability assessment (Table 1). The thematic layers were 176 

presented by using natural break classification technique (Figure 2). Table 1 lists down the raw 177 

data and the derived parameters implemented in the study.  178 

 179 

Table 1. Around here 180 

 181 

Figure 2. Around here 182 

 183 

Figure 3. Around here 184 

   185 

4. Methodology 186 

An integrated AHP–PNN model was developed where 17 selected factors were chosen to 187 

estimate vulnerability. First, MCDM technique was implemented to understand the priority of 188 

thematic layers and considered as an input for the PNN classification of vulnerability. Second, 189 

a PNN model was developed for the prediction classification purposes. To generate the PNN-190 

based earthquake vulnerability assessment, pre-processing, processing, and post-processing of 191 

data were conducted. Prediction of classification is the main task to generate vulnerable 192 

locations into points, and then post-processing was performed to generate maps. Finally, the 193 

GIS environment conversion of point-to-raster was conducted, thus generating the earthquake 194 

vulnerability map. Figure 4 presents the methodological flowchart. 195 

 196 
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Figure 4. Around here 197 

 198 

 199 

 200 

4.1. AHP approach implementation 201 

For the vulnerability assessment, 15 layers were selected on the basis of the literature (Jena et 202 

al. 2020a), and the AHP approach was implemented. The importance of thematic layers was 203 

presented with description in the data section (Table 1). Table 2 presents the pair-wise 204 

comparison and the relative importance of factors. Subsequently, normalization can be applied 205 

and the priority of all the layers can be estimated. 206 

𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴,                (1) 207 

 208 

where pair-wise comparison matrix can be considered A and the eigenvector is W. 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is the 209 

largest eigenvector as described in Eq (1). 𝑋𝑋 is the eigenvector of matrix 𝐴𝐴, which could be 210 

presented through the expression in Eq. (2). For vulnerability assessment, the weighted sum 211 

tool was implemented to generate the map. 212 

 213 

(𝐴𝐴 − 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴) ∗ 𝑋𝑋 = 0       (2) 214 

 215 

The consistency index (CI) can be presented by Eq. (3): 216 

 217 

  𝐶𝐶𝐶𝐶=(λmax−n)
n−1

                        (3) 218 

 219 

Here, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the validation parameter. To check the consistency in the pairwise comparison, 220 

CI was used. If the consistency ratio (CR) is < 0.1, then it can be considered for the priority 221 

estimation and mathematically it can be written as: 222 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶.          (4) 223 

 224 

To the end, vulnerability map was developed in GIS using the factor’s priority values derived 225 

by using AHP approach (Table 2).  226 

 227 
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Table 2. Around here. 228 

 229 

Table 3. Around here 230 

 231 

 232 

4.2. Probabilistic neural network architecture and implementation 233 

Specht (1990) first introduced the PNN model, which is established on the basis of Bayesian 234 

classifier technique that is most commonly implemented in solving pattern-recognition or 235 

classification problems (Figure 5). 236 

Pattern vector x is considered with m dimensions, which belongs to 𝐾𝐾1 or 𝐾𝐾2 categories. Let us 237 

consider the 𝐹𝐹1 (x) and 𝐹𝐹2 (x) as the probability density functions (pdf) in the classification 238 

purposes of 𝐾𝐾1 and 𝐾𝐾2, respectively. Based on the decision rule of Bayes, x comes under 𝐾𝐾1 if; 239 

                                                                𝐹𝐹1(𝑚𝑚)
𝐹𝐹2(𝑚𝑚) > 𝐿𝐿1

𝐿𝐿2

𝑃𝑃2
𝑃𝑃1

.                         (5) 240 

 241 

Conversely, x comes under 𝐾𝐾2 if; 242 

                                                                𝐹𝐹1(𝑚𝑚)
𝐹𝐹2(𝑚𝑚) < 𝐿𝐿1

𝐿𝐿2

𝑃𝑃2
𝑃𝑃1

.                         (6) 243 

 244 

Here, loss function is 𝐿𝐿1 linked with the vector misclassification that belongs to 𝐾𝐾1category. 245 

When 𝐿𝐿2 becomes the loss function, then it belongs to category 𝐾𝐾2. Similarly, 𝑃𝑃1 will be the 246 

prior probability when it belongs to category 𝐾𝐾1, and for category 𝐾𝐾2, 𝑃𝑃2 will be the prior 247 

probability of occurrence. In several circumstances, the prior probabilities and the loss 248 

functions can be regarded as equal. Parzen window is a nonparametric estimation technique 249 

used in PNN to design class-dependent pdfs for each category on the basis of Bayes’ theorem 250 

(Parzen 1962). Parzen window and Bayes’ theorem have been implemented in a wide field of 251 

engineering applications, and they are featured in a number of statistical textbooks (Parzen 252 

1962). 253 

 254 

If xj is the jth pattern in 𝐾𝐾1 category, then the Parzen estimate will be: 255 

 256 

                                𝐹𝐹1(𝑥𝑥) = 1
(2𝜋𝜋)𝑚𝑚 2� 𝜎𝜎𝑚𝑚𝑛𝑛

∑ 𝑒𝑒𝑥𝑥𝑒𝑒 �− �𝑚𝑚−𝑚𝑚𝑗𝑗�
𝑇𝑇𝑚𝑚−𝑚𝑚𝑗𝑗

2𝜎𝜎2
�𝑛𝑛

𝑗𝑗=1 .             (7) 257 
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 258 

Here, n is the number of training patterns, m is the number of input space dimension, pattern 259 

number as j, and 𝜎𝜎 is the “smoothing parameter.” Smoothing parameter 𝜎𝜎 can be determined 260 

experimentally. However, the choice of 𝜎𝜎 is not sensitive to its value variation (Specht 1990). 261 

 262 

Figure 5. Around here 263 

4.3. Model execution 264 

 265 

The PNN architecture consists of four layers to implement the Bayesian network, as presented 266 

in Figure 5. The structure of PNN consists of four layers, namely, input, a pattern, a summation, 267 

and an output layer. A simple PNN is made of two categories, three independent variables, and 268 

five training cases (Meisel 1972). The first input layer primarily portrays m input 269 

variables(𝑥𝑥1, 𝑥𝑥2, … ,𝑥𝑥𝑚𝑚). The input neurons simply spread all the variables of x to the neurons 270 

of the next layer known as the pattern layer. The fully connected pattern layer to the input layer 271 

allows one neuron for each pattern during the training purposes. In this layer, the neurons’ 272 

weight values are set equal to the divergent training patterns. A dot product was performed by 273 

j as the neuron of pattern layer on the input pattern vector x, where the weight vector is wj, 274 

which can be presented as Zj = xwj. A nonlinear function performance exp �(𝑍𝑍𝑗𝑗 − 1)/𝜎𝜎2� is 275 

then conducted before outputting the summation neuron. Here, the value of x and wj are 276 

normalized; therefore, performing dot product is equivalent to this operation: 277 

 278 

                                                       𝑒𝑒𝑥𝑥𝑒𝑒 �− �𝑤𝑤𝑗𝑗−𝑚𝑚�
𝑇𝑇𝑤𝑤𝑗𝑗−𝑚𝑚

2𝜎𝜎2
�.                   (8) 279 

This is because, 280 

                                                        𝑒𝑒𝑥𝑥𝑒𝑒 �− �𝑚𝑚−𝑤𝑤𝑗𝑗�
𝑇𝑇𝑚𝑚−𝑤𝑤𝑗𝑗

2𝜎𝜎2
�.                  (9) 281 

 282 

Then, it can be rewritten as: 283 

 284 

                                                    𝑒𝑒𝑥𝑥𝑒𝑒 �−
2𝑚𝑚𝑇𝑇𝑤𝑤𝑗𝑗−𝑚𝑚𝑇𝑇𝑚𝑚−𝑤𝑤𝑗𝑗

𝑇𝑇𝑤𝑤𝑗𝑗

2𝜎𝜎2
�.                (10) 285 

 286 
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Hence, nonlinear operation exp �(𝑍𝑍𝑗𝑗 − 1)/𝜎𝜎2� is in the similar form as per the exponent 287 

function in Eq. (10). The exponential term in Eq. (10) can be computed for neurons in the 288 

pattern layer. 289 

 290 

Each category has one summation-layer neuron. The neurons of the summation layer execute 291 

the exponential term in Eq. (10). The weights are fixed to the summation layer; therefore, the 292 

summation layer can easily add on the outputs that originated from the pattern layer. The 293 

outputs generated from the pattern layer come to the summation layer, which then can be 294 

classified by looking at the categories based on the selected training pattern. Binary output 295 

values can be resulted by the PNN model in the output-layer neurons. This model indicates a 296 

best classification option for each pattern in the data. 297 

 298 

This regards to generate the best smoothing parameter for a set of vectors x through the training 299 

of the PNN as 𝜎𝜎, which makes the best use of the classification accuracy of an independent set 300 

of test vectors. The PNN model in this study was implemented to train and test the network 301 

reliability to classify the occurrence or non-occurrence of earthquake vulnerability accurately. 302 

This study treats the earthquake vulnerability problem as a classification problem whereby two 303 

categories of 𝐾𝐾1 or 𝐾𝐾2 need to be defined by a multivariate vector pattern 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚). 304 

Here, the components of vector x denote major thematic layers as factors to estimate 305 

vulnerability. Consequently, category 𝐾𝐾1shows a case where vulnerability occurred and 𝐾𝐾2 as 306 

a case of non-vulnerable locations. The training and testing set were considered that could 307 

predict the two categories and validate the performance of PNN. Figure 4 presents the overall 308 

flow chart of the study. 309 

 310 

ROC curve 311 

The receiver operating characteristic curve (ROC) is a graphical representation of the model 312 

performance, which has been plotted for binary classification. The false positive rate is shown 313 

in the x-axis, whereas the y-axis denotes the true positive rate. 314 

                          𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝐶𝐶𝑅𝑅𝑃𝑃𝑒𝑒 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑚𝑚𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃)                        (11)       315 

𝐹𝐹𝑅𝑅𝑙𝑙𝑃𝑃𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝐶𝐶𝑅𝑅𝑃𝑃𝑒𝑒 = 𝐹𝐹𝑚𝑚𝐹𝐹𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃
(𝐹𝐹𝑚𝑚𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃)              (12)  (12) 316 

 317 

5. Results  318 
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A map of earthquake vulnerability was derived using several data of exposure and vulnerability 319 

factors based on AHP approach (Figure 6a). The consistency ratio achieved by using the AHP 320 

approach is 0.08, where 136 comparisons were performed. During the AHP priority scoring of 321 

factors, the principal eigenvalue of 19.06 was originated, whereas the eigenvector solution is 322 

seven iterations. However, the delta value achieved in this study is 1.0E-8 by using AHP 323 

approach. The CR displayed that the criteria scoring was assessed accurately. Several major 324 

factors including population density, peak ground acceleration, land use density and lithology 325 

with amplification factors ranked 1 to 4 with their approximate weights of 21.9%, 16.0%, 326 

12.2% and 11.3%, respectively (Table 3). Other criteria were ranked medium to low. We 327 

evaluated 17 major factors for the purpose of vulnerability estimation, thus leading to an 328 

acceptable CR. Many criteria were considered as input thematic layers to assess the earthquake 329 

vulnerability of land use/cover and population density/km2 of Odisha (Figure 2). At the end of 330 

the AHP analysis, a vulnerability map was developed and classified into five classes by using 331 

the natural break classification technique (Jena et al. 2020) (Figure 6b). The generated map 332 

denotes that 60.1% of the total area has very-high to moderate vulnerability, whereas 39.9% of 333 

the state has low to very-low areas vulnerability.  334 

 335 

Figure 6. Around here 336 

Very-high and high vulnerable zones based on AHP are covered by approximately 20.79% 337 

(32,287 km2) and 19.99% (31,030 km2) of the state, respectively. However, 23.79% (36,930 338 

km2), 14.72% (22,850 km2), and 20.69% (32,130 km2) are considered moderate, very-low, and 339 

low vulnerable areas, respectively, as shown in the Figure 6b. This map was taken as a target 340 

for the PNN prediction. 341 

A prediction of vulnerable locations was organized by using the PNN model that predicts 342 

vulnerable areas (1) and non-vulnerable areas (0). This model predicted 494 data points 343 

successfully out of 534 events due to illogical values (negative or overestimated values) 344 

acquired from some pixels in the obtained layers of factors. In total, 11 positive cases and 29 345 

negative cases were missed during the PNN prediction. The PNN model predicted a total area 346 

of 48,900 km2 as the vulnerable location in Odisha with an accuracy of 92.5%. According to 347 

the PNN classification result, 24.26% (37,665 km2), 15.26% (23,696 km2), 20.58% (31,950 348 

km2), 22.52% (34,967 km2) and 17.36% (26,949 km2) are considered very-high, high, 349 

moderate, low, and very-low vulnerable locations. Training (70%) and testing (30%) were 350 
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performed for 534 points, out of which 270 were vulnerable and 264 were non-vulnerable 351 

locations. The PNN model achieved 95.9% sensitivity and 89% specificity. The fitted ROC 352 

area (0.98) and empiric ROC area (0.96) were achieved in the PNN prediction (Table 4). Figure 353 

7 shows the predicted vulnerability map. ROC was plotted to show the accuracy (Figure 8). All 354 

unpredicted vulnerable and non-vulnerable points displayed no discernible pattern. 355 

Table 4. Around here 356 

Earthquake vulnerability is very-high in the eastern coastal parts, northwestern parts, and 357 

central locations of Mahanadi graben, as presented in Figure 7. Moreover, the several moderate 358 

magnitude earthquakes of 5.3 Mw have occurred in the northwestern part of Odisha. The 359 

earthquakes are most probably due to the active zone of NOBF fault. Most sections of the very-360 

high vulnerable areas are covered in districts centered within the Mahanadi graben, which 361 

experienced high ground shaking. According to previously published articles, NOBF has the 362 

capacity to strike large events that makes the location more vulnerable. NOBF is associated 363 

with high vulnerable areas in Southern and Northwestern Odisha. Some parts in central and 364 

northern Odisha were characterized by medium vulnerability, whereas the western part and 365 

some scattered areas in central Odisha were characterized by low vulnerability. Several districts 366 

have very-high (0.85–1) to high (0.65–0.85) vulnerability. These districts are mostly located in 367 

Western and coastal Odisha, including Sundargarh, Jharsuguda, Sambalpur, Bargarh, 368 

Subarnapur, Balangir, Nuapada, Kalahandi, Nabarangpur, Cuttack, Kendrapada, Ganjam, 369 

Jagatsinghpur, Khordha and Puri. Many other districts fall under the moderate to very-low 370 

categories. Furthermore, the map shows that approximately 61,361 km2 of Odisha falls in the 371 

very high-to-high category (Table 5). 372 

 373 

Table 5. Around here 374 

Figure 7. Around here. 375 

Figure 8. Around here 376 

6. Discussion 377 

The study examines the implementation of PNN and MCDM for vulnerability estimation on a 378 

regional scale. In this study, natural break was implemented to derive the scale of vulnerability, 379 

which is important to properly translate the significance of vulnerability (Jena et al. 2020). The 380 

https://www.mdpi.com/2076-3417/10/15/5355/htm#fig_body_display_applsci-10-05355-f008
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AHP approach and PNN models were used as assessment techniques, which produced an 381 

acceptable vulnerability result. The FPF and TPF values were achieved with a CI of 95% (Table 382 

6). 383 

Table 6. Around here. 384 

The NOBF trends east-west with a 250 km of strike length, whereas a 2–5 km of width range 385 

can be found. The NOBF is irregular and characterized by inter-linkage of rocks that make 386 

Northern Odisha non-uniform with complex geo-structures. Hahn et al. (2009) stated that the 387 

evaluation of vulnerability index could boost communities’ engagement in vulnerable 388 

locations. Brooks (2003) described that community labelling is not suitable because 389 

vulnerability varies naturally with location and communities. The current study applied 390 

MCDM and PNN models, and the performance of the approach produced a good quality map 391 

that represents earthquake vulnerability in five classes. According to the outcome of this 392 

research, the state government should make the plan by considering key techniques throughout 393 

the period of disasters to minimize losses.  394 

Major locations near and inside the Mahanadi River Valley are close to earthquake sources and 395 

fall under poorly consolidated sediment deposits. High to severe impact could be experienced 396 

in several districts such as Nayagarh, Khordha, Puri, Jagatsingpur, Kendrapada, Cuttack, 397 

Bhadrakh, Dhenkanal, Anugul, Sundargarh, Jharsuguda and Sambalpur because of both inland 398 

and offshore seismicity. The authors assume that a few locations are characterized by old 399 

buildings and constructed by using traditional methods, whereas some modern constructions 400 

that do not meet standards make buildings vulnerable to earthquakes (Figure 1c). This 401 

vulnerability assessment is necessary as the state was hit by many moderate magnitude events 402 

in the last decade. 403 

The importance of major factors and data limitations could help achieve the developed 404 

vulnerability map that has an important role in future risk mapping. The context of 405 

demographic analysis is vital in pre- and post-earthquake studies (Jena et al. 2020a). Therefore, 406 

social and structural characteristics are directly interlinked with damage, death, and relief 407 

facilities. Nonetheless, only a few works have been performed on the earthquake hazard 408 

assessment in Odisha. This study is a preliminary research for vulnerability assessment in 409 

Odisha. However, geotechnical and social attributes such as lithology with amplification factor, 410 

PGA variation and population density have more influence on the vulnerability assessment 411 

throughout a period. In Odisha, strong ground motion is particularly controlled by geotechnical 412 
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specifications, which is the complex combination of frequency, duration, magnitude, distance 413 

from hypocenter, lithology, slope, distance from fault, and curvature. Thus, assessment of PGA 414 

is vital in infrastructure development, and it could minimize the vulnerability of damages 415 

(Panahi et al. 2014). If the foundation of structures fall over unstable steep slope, this condition 416 

could cause earthquakes, landslides, and liquefaction in loose lithotypes (Sarvar et al. 2011). 417 

Fan et al., (2019) conducted research on earthquake induced landslides that modify the 418 

landscapes. Their study suggest pathways towards an integrated research on the seismology 419 

with secondary effects on the Earth's surface. They have demonstrated the necessity for the 420 

joint consideration of earthquake-induced landslides into the co-seismic hazard and risk 421 

assessment. Karpouza et al., (2021) presented a study regarding an approach that is useful for 422 

the simultaneous hazard zonation mapping based on the earthquake-induced secondary effects. 423 

Their methodology applied an initial separate modeling process for the hazard estimation due 424 

to seismically induced soil liquefaction and landslides. Then, a subsequent stacking of the 425 

results into a single hazard map was conducted using an integrated assessment technique for 426 

exposed areas to earthquake-induced and seismic shaking phenomena. The detail integrated 427 

analysis could help in improving the earthquake vulnerability assessment. 428 

A disabled male is less vulnerable than a disabled female, because the principal vulnerability 429 

lies in the weaknesses of people concentrating on their capabilities. Therefore, this assumption 430 

or ignorance could affect the results of vulnerability seriously (Jena et al. 2020b). Figure 431 

7 presents the predicted vulnerable locations in the study area. Nevertheless, the analysis 432 

indicates that vulnerability increases with the increase in land use. In Figure 7, the predicted 433 

vulnerability shows that the model of PNN has a high capacity to predict locations precisely. 434 

As of now, very few casualties experienced due to earthquakes in Odisha still more fatalities 435 

and injuries could be experienced in future if the magnitude of more than Mw 5.5 experienced 436 

in the districts falling under Mahanadi graben (Jena et al. 2020d). Therefore, the principal 437 

center of attention must be on high to very-high vulnerable zones that could lead to high 438 

fatalities in coming future. The intensity is high with more poor building structure and in a 439 

greater number, which are located in the central and coastal parts of Odisha specifically in 440 

Cuttack, Khordha and Jagatsinghpur districts. Furthermore, the central region, coastal and 441 

north-western parts are highly vulnerable and have the capacity to mitigate and recover. This 442 

study was performed at a regional scale, but microzonation is necessary for each property. To 443 

the end, understanding the situations of earthquake vulnerabilities would help in mitigating 444 

future disasters. Vulnerability is complex to assess; therefore, a detailed indicator including 445 
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building characteristics, geological factors, education level, and disability associated with 446 

persons are required. The proposed approach is useful for decision makers during the future 447 

risk assessment and has good variances in mapping the earthquake vulnerability. Table 7 448 

presents the prediction values of 0 and 1. 449 

Table 7. Around here. 450 

7. Conclusions 451 

We developed a PNN model for vulnerability prediction by using the MCDM results and 452 

ultimately produced an earthquake vulnerability map. This is a new approach to predict 453 

vulnerability as there is no earthquake vulnerability study have been conducted in Odisha. The 454 

conclusions that can be drawn from this research could be helpful for local residents and 455 

disaster management agencies. First, by using the AHP approach, vulnerability assessment was 456 

conducted using several input factors that include land use and population density. According 457 

to the AHP assessment in Odisha, 19.99% of the area fall under high, where 20.79% of the area 458 

comes under very-high vulnerability. Based on the PNN outcome, 15.26% and 24.26% of the 459 

area fall under high and very-high vulnerability category, respectively. Moreover, moderate 460 

vulnerable locations cover approximately 20.58% of area. Old buildings and poor ground 461 

conditions are seen along the northwest, central, and eastern coastal regions of the state. The 462 

EVA map illustrates earthquake vulnerability that could impact high to very-high for the 463 

districts such as Ganjam, Nayagarh, Khordha, Puri, Jagatsingpur, Kendrapada, Cuttack, 464 

Bhadrakh, Baleswar, Dhenkanal, Anugul, Sundargarh, Jharsuguda and Sambalpur. The EVA 465 

map validation was conducted successfully and PNN was implemented to predict the 466 

vulnerable locations keeping the AHP based map as the target. The study is limited to pre-467 

earthquake vulnerability assessment. The criteria, which have not been considered in the 468 

current research, include soil liquefaction, building categories and seismic resonance. These 469 

aforementioned data were not included due to lack of data.   470 
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