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Abstract

We start with the task of discriminating finitely many multipartite quantum states using
LOCC protocols, with the goal to optimize the probability of correctly identifying the state.
We provide two different methods to show that finitely many measurement outcomes in ev-
ery step are sufficient for approaching the optimal probability of discrimination. In the first
method, each measurement of an optimal LOCC protocol, applied to a dloc-dim local system,
is replaced by one with at most 2d2

loc outcomes, without changing the probability of success. In
the second method, we decompose any LOCC protocol into a convex combination of a number
of “slim protocols” in which each measurement applied to a dloc-dim local system has at most
d2

loc outcomes. To maximize any convex functions in LOCC (including the probability of state
discrimination or fidelity of state transformation), an optimal protocol can be replaced by the
best slim protocol in the convex decomposition without using shared randomness. For either
method, the bound on the number of outcomes per measurement is independent of the global
dimension, the number of parties, the depth of the protocol, how deep the measurement is
located, and applies to LOCC protocols with infinite rounds, and the “measurement compres-
sion” can be done “top-down” – independent of later operations in the LOCC protocol. The sec-
ond method can be generalized to implement LOCC instruments with finitely many outcomes:
if the instrument has n coarse-grained final measurement outcomes, global input dimension D0

and global output dimension Di for i = 1, · · · , n conditioned on the i-th outcome, then one can
obtain the instrument as a convex combination of no more than R = ∑

n
i=1 D2

0D2
i − D2

0 + 1 slim
protocols; in other words, log2 R bits of shared randomess suffice.
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1 Introduction

For a multi-partite quantum system, the class of operations that can be implemented by compos-
ing local operations on each individual part and classical communication between the parts is
shorthanded LOCC. This class originates from the seminal work by Peres and Wootters [1] and its
importance has been manifest in many subsequent results, such as [2, 3]. One motivation for the
LOCC class is the operational difficulty of long range quantum communication. From a more fun-
damental perspective, LOCC is precisely the class of operations that can be implemented without
shared entanglement; therefore LOCC provides a natural framework to study quantum nonlocal-
ity and entanglement. Understanding the power and the limitation of LOCC operations is one
of the main goals of quantum information theory. In particular, we say that an information pro-
cessing task exhibits nonlocality when it can be accomplished using global operations but not by
LOCC operations. While the class of LOCC operations is well motivated, it does not have a suc-
cinct mathematical characterization, and the complexity grows rapidly with the number of rounds
of communication.

In this paper, we first consider the quantum state discrimination problem, in which a list of quan-
tum states is fixed in advance. A referee chooses a state from the list, prepares a copy, and dis-
tributes it to the discriminating party (or parties), whose goal is to identify which state has been
prepared by the referee. In some situations the prepared state can be identified without error.
Otherwise, one can relax the problem by assuming that the referee picks a state from the list ac-
cording to some pre-determined distribution known to the parties, and their goal is to maximize
the success probability (i.e., the probability of correctly identifying the state).

The quantum state discrimination problem provides a fruitful line of studies in our understand-
ing of LOCC and nonlocality. If restricting the players to LOCC operations strictly decreases
their probability of success, the problem exhibits nonlocality. A partial list of references on this
problem can be found in [4]-[33]. Because there is no succinct description of all possible LOCC
discrimination strategies, one widely used approach is to use a larger set of operations to study
the limitation on the distinguishability power of LOCC, for instance, separable operations (SEP)
or PPT-preserving operations [8, 9, 10, 23, 24, 27, 31, 32].

More recent studies have found useful structural and topological properties of LOCC [33]-[37]. In
[34, 35, 36], the set of LOCC operations is shown to be not closed. Explicit entanglement trans-
formation tasks are given in [34, 35, 36] that are provably not accomplished by any finite round
LOCC protocol but that can be approximated with arbitrary precision when the number of com-
munication rounds increases. Consequently, we cannot assume that an LOCC protocol has a finite
number of communication rounds, called the depth of the protocol. Even after restricting to fi-
nite depth protocols for the task, it is not clear apriori whether more and more outcomes in some
intermediate measurement in the protocol can approximate the ideal task better and better. The
total width of the protocol refers to the total number of measurement outcomes in the proto-
col. A related concept is the width per measurement, which is the number of outcomes for each
measurement. An LOCC protocol can be represented by a decision tree where vertices represent
operations, and edges represent measurement outcomes, thus the names depth and total width of
a protocol. (Note that the width per measurement is the degree of the root vertex, or the degree
minus 1 for other vertices.) Reference [36] shows that the set of all LOCC protocols with a constant
number of rounds of communication is compact, and provides an upper bound on the number of
measurement outcomes.
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In this paper, we focus on the width of LOCC protocols. In the more specialized context of mul-
tipartite quantum state discrimination, we show that LOCC protocols with finite width per mea-
surement are sufficient to achieve the optimal probability of success in quantum state discrimi-
nation under LOCC with two different methods. The second method extends to optimizing any
convex function, including the probability of state discrimination, and the fidelity of state trans-
formation. Both results apply to LOCC (as defined in Section 2.2 of [36]). Informally, this class
includes infinite round LOCC protocols that can be approximated better and better by adding
more and more rounds of communications (without changing the earlier steps). Each protocol in
this class can be represented by a tree that can be infinite. Each measurement is replaced by one
with few outcomes in a “top-down” manner – starting from the root (where the protocol begins),
we replace each measurement as we move down the tree (as the protocol progresses) in a way in-
dependent of how deep the protocol will be executed. The original task can be approximated better
and better by going deeper in the resulting single finite-width infinite-depth protocol.

Our first method converts every measurement in the protocol (possibly with infinitely many out-
comes) into one with no more than 2d2

loc outcomes where dloc is the dimension of the local system
being measured. If the protocol is finite with ℓ rounds of communication and d is the largest of the
local dimensions, the total width of the protocol is upper bounded by 2ℓd2ℓ. Our second method
converts every measurement into one with no more than d2

loc outcomes. If the protocol is finite
with ℓ rounds of communication and d is the largest of the local dimensions, the total width of the
protocol is upper bounded by d2ℓ.

Both methods are constructive, and rely on Caratheodory’s theorem. They are simpler than the
compression given by [36] for finite LOCC protocols, and our bounds are tighter (independent of
the global dimension and the number of parties, independent of how deep the protocol has run,
and has lower degree in the dimension). Most importantly, our compression is top-down.

The second method also implements any LOCC instrument with the aforementioned width per
measurement by using additional shared randomness. If the protocol has n coarse-grained fi-
nal measurement outcomes, global input dimension D0 and global output dimension Di for i =
1, · · · , n conditioned on the i-th outcome, then log2 R bits of shared randomess suffice where
R = ∑

n
i=1 D2

0D2
i − D2

0 + 1.

Towards the final stages of preparing this manuscript, we learnt of related results by Cohen
[38], who shows that any LOCC quantum operation E with potentially unbounded width can
be converted to one with finite width per round. The number of measurement outcomes per
round is upper bounded by min(κ2, κ2 + d2

loc − χ) where κ is the global Kraus rank of E and

χ = dim
(

span{K†
i Kj}κ

i,j=1

)

where Ki’s are the Kraus operators of E . Cohen’s method preserves

the quantum operations. In comparison, our methods for optimizing concave functions need not
preserve the quantum operations, but may have a tighter bound on the width per measurement
in some regime. (For example, to discriminate many states shared by a large number of parties,
each holding a small dimensional system, the Kraus rank scales as the number of states which
is much larger than the local dimension.) Our second method can be extended to preserve the
quantum operations by using finite amount of shared randomness. Our correspondence with Co-
hen had inspired improvements in aspects of our second method (including a discussion on the
shared randomness, and the application of state transformation). It remains unclear how closely
the approaches in these two papers are related, and whether the techniques can be combined to
obtain better results.
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In Section 2 we cover the mathematical background and define notations and concepts required
for the discussion. The main results are presented in Section 3.

2 Preliminaries

The term Hilbert space here refers to any finite dimensional semidefinite inner product space over
the complex numbers. Let X be an arbitrary Hilbert space. A pure quantum state of X is a normal-
ized vector |Ψ〉 ∈ X . A quantum mechanical system is associated with a Hilbert space and we refer
to both the system and the space with the same notation. A composite system is associated with
the tensor product of the Hilbert spaces associated with the parts.

The space of linear operators mapping X to Y is denoted by L(X ,Y), while L(X ) is the shorthand
for L(X ,X ). We use IX to denote the identity operator on X , and often omit the system label X .
The adjoint (or Hermitian transpose) of A ∈ L(X ,X ) is denoted by A†. The notation A ≥ 0
means that A is positive semidefinite, and more generally A ≥ B means that A − B is positive

semidefinite. The positive square root of A† A is denoted by |A| =
√

A† A.

A (general) quantum state is specified by its density operator ρ ∈ L(X ), which is a positive semi-
definite operator with trace one. The density operator of a pure state |ψ〉 is simply the projector
ψ := |ψ〉〈ψ|.

A quantum measurement M with input system X and output system Y is specified by a POVM
(A†

1 A1, A†
2 A2, · · · ) where each Ai ∈ L(X ,Y) and ∑i A†

i Ai = I. If the initial state being measured
is ρ,

M(ρ) = ∑
i

AiρA†
i ⊗ |i〉〈i|

where i is the measurement outcome, and AiρA†
i is the corresponding unnormalized postmeasure-

ment quantum state whose norm trAiρA†
i = A†

i Aiρ gives the probability of obtaining outcome i.
More generally, each Ai can take the input system X to an output system Yi, where the Yi’s may
not have the same dimension.

The most general quantum operation E with input system X and output system Y acts as E(ρ) =
∑i AiρA†

i , where ∑i A†
i Ai = I. An instrument with input system X acts as I(ρ) = ∑i Ii(ρ)⊗ |i〉〈i|

where each Ii is a completely positive map, and ∑i Ii is trace preserving. A measurement is a
fine-grained instrument in which all CP maps has Kraus rank 1.

Consider an ensemble of quantum states

S = {p1ρ1, · · · , pnρn} ⊂ L(X )

where ρk are normalized states and pk ≥ 0, ∑k pk ≤ 1. Then ∑k pk is called the probability of the
ensemble S. If ∑k pk = 1, the ensemble is called normalized.

Throughout this paper, we focus on multipartite quantum systems of the form,

X = X1 ⊗X2 ⊗ · · · ⊗ Xm.

LOCC, or local operations and classical communication, on this system X , is the set of operations
such that each party is restricted to performing quantum operations on their individual local sys-
tems and they may communicate classical information (w.l.o.g., measurement outcomes) to the
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other parties. Any LOCC operation can be decomposed into rounds; at each round, one party ap-
plies a quantum operation on his/her local system and broadcasts a classical message to all other
parties. An LOCC protocol can have infinitely many rounds of communication. See [36] for detail.

For any LOCC protocol P on X (potentially infinitely wide and with infinitely many rounds, but
one that can be approximated by adding rounds and can be represented by a tree), denote its ℓ-
round prefix by Pℓ. For any ensemble S = {p1ρ1, · · · , pnρn} ⊂ X , the probability of successful
discrimination by P can be defined as follows,

P(P , S) = lim
ℓ→∞

P(Pℓ, S),

where P(Pℓ, S) denotes the probability of successful discrimination of S by Pℓ. As Pℓ can poten-
tially have infinite width, P(Pℓ, S) is similarly defined as a limit.

In our second method, we use the following notation and terminology derived from [36]. Any
protocol in LOCC can be represented as a possibly infinite tree. The protocol starts at the root
and moves through the tree along edges, always further away from the root. Each vertex v is
associated with an instrument applied to a local system Hloc held by one party. We can write this
instrument as

Lv(ρ) = ∑
w:child of v

L(w,v)(ρ)⊗ |(w, v)〉〈(w, v)|,

where each outgoing edge (w, v) is associated with a CP map L(w,v) acting on Hloc, such that

∑w:child of v L(w,v) is trace-preserving. Each vertex v at depth ℓ can be reached by a unique path
from the root r, (r, v1), (v1, v2), · · · , (vℓ−1, v) and the vertex is associated with a “cumulative” CP
map

Nv := L(v,vℓ−1) ◦ · · · ◦ L(v2,v1) ◦ L(v1,r).

The LOCC protocol implements an LOCC instrument L which can be specified as follows. Con-
sider any function f :L → O from the set of leaves L of the tree, to a set of outcomes O. The
instrument L is implemented by running the protocol from the root until arriving at a leaf v and
then outputting f (v). For each o ∈ O, let Io = ∑v∈ f−1(o)Nv. The instrument implemented by the
LOCC protocol is given by I(ρ) = ∑o Io(ρ)⊗ |o〉〈o|. For a finite tree, ∑o Io is trace preserving. For
an infinite tree we have to make an extra assumption that for every input the protocol terminates
with probability 1.

We can fine-grain an LOCC protocol by breaking up CP maps associated with edges into Kraus-
rank-1 CP maps, enlarging the tree, and modifying the coarse-graining function f accordingly,
without changing the instrument implemented by the protocol. We call such a protocol fine-
grained.

3 Main Result

3.1 The first method and resulting bounds

Theorem 1. Suppose an ensemble of multipartite quantum states S = {p1ρ1, · · · , pnρn} ⊂ L(⊗m
j=1Xj)

with pk ≥ 0, ∑k pk = 1 can be distinguished by some LOCC protocol P with success probability t. Then
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there exists an LOCC protocol P ′ achieving the same success probability t but in which each measurement
requires at most 2d2

loc outcomes, where dloc is the dimension of the local system measured. If P has finitely
many rounds of communication ℓ, the total width can be bounded by 2ℓd2ℓ, where d is the maximum local
dimension.

We first discuss informally the intuition behind the constructive proof. We obtain the bound by
recursively “compress” an arbitrary measurement in the protocol while preserving the success
probability, depth of the protocol, and the induced post-measurement ensembles. The compres-
sion for a measurement is done in several steps:

1. Show that the measurement can be performed in two stages (as a composition of two mea-
surements).

2. Show that the first stage measurement can be modified to “equalize” the success probabil-
ity on the induced post-measurement ensemble for each measurement outcome. This step
preserves the success probability of the protocol.

3. A convexity argument shows that all but a finite number of measurement outcomes can be
dropped for the first stage while preserving the probability of success.

4. The modifications in steps 2-3 are compatible with the two stage implementation of the orig-
inal measurement. So, the second stage measurement is applied for each of the finitely many
outcomes in stage 1. This preserves the depth and success probability of the protocol. Fur-
thermore, all the subsequent steps in the original protocol are unaffected.

The following lemma will be needed for steps 1, 2, and 4 above.

Lemma 2. For any pair of matrices X, Y of the same width, there exists a matrix C of the same size as X
and a matrix D of the same size as Y such that

C
√

X†X + Y†Y = X,

D
√

X†X +Y†Y = Y,

C†C + D†D = I.

Proof of Lemma 2. If X†X +Y†Y is nonsingular, then the choices

C = X(X†X + Y†Y)−1/2,

D = Y(X†X + Y†Y)−1/2.

imply C†C + D†D = I. Otherwise, replace (X†X + Y†Y)−1/2 by its restriction on the support of
X†X + Y†Y in the above expressions of C and D, and add to the expression of C a projector onto
the null space of X†X + Y†Y.

Proof of Theorem 1. Without loss of generality, the LOCC protocol P has the following form.
In the first round, one of the parties (w.l.o.g., the first party) applies a measurement M with
POVM (A†

1 A1, A†
2 A2, · · · ), possibly with infinitely many outcomes. Then, the party broadcasts

the measurement outcome. In the second round, another party applies another local measurement
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that can depend on the first outcome, and broadcasts the second outcome. This goes on, either for
some finitely many rounds, say, ℓ, or indefinitely.

We construct P ′ from P as follows.

For simplicity, we focus on the compression method on the first measurement M. Every possible
measurement outcome i induces a post-measurement ensemble Si = {p1 Aiρ1 A†

i , · · · , pn Aiρn A†
i }.

Denote the probability of the ensemble Si by qi. We focus on the set of i’s for which qi > 0.
Conditioned on the outcome i, Si/qi is a normalized ensemble, with some probability of successful
discrimination ti (see Section 2). The ti’s are related to the total success probability by

t = ∑
i

qiti . (1)

We first show that M can be performed in two stages. and that the first stage can be modified to
some M′ to equalize the success probability for each outcome. Assume without loss of generality,

t1 ≥ t2 ≥ t3 ≥ · · · (2)

If ti = t for all i, we are done. So, suppose there exists some k such that t > tk, which also implies
t1 > t. There exists 0 < s such that

q1t1 + sqktk

q1 + sqk
= t . (3)

To see this, note that t = (1 − λ)t1 + λtk for some λ ∈ (0, 1). Then, it suffices for sqk

q1+sqk
= λ, which

holds if

s =
λq1

(1 − λ)qk
. (4)

We now consider the two cases s ≤ 1 and s > 1 separately.

If s ≤ 1, let B =
√

A†
1 A1 + sA†

k Ak. Consider the induced ensemble BS = {p1Bρ1B†, · · · , pnBρnB†}.

The probability of the ensemble BS is equal to q1 + sqk. We now show that BS/(q1 + sqk) has
success probability (q1t1 + sqktk)/(q1 + sqk), which equals to t. To see this:

Consider a modification to M by replacing A1 and Ak by B and
√

1 − sAk respectively.
Call the resulting measurement M̃. If BS/(q1 + sqk) has probability of success greater
than t, replacing M by M̃ in P outperforms P , contradicting its optimality. Con-
versely, consider the application to the ensemble BS a binary measurement N defined
by the POVM (C†C, D†D) where C, D are obtained as in Lemma 2 with X = A1 and
Y =

√
sAk. The lemma guarantees that N is a valid measurement on the postmeasure-

ment space of M̃. Using Lemma 2 to combine the effects due to M̃ and N , one can see
that the outcome of N corresponding to C†C induces the postmeasurement ensemble
S1 while the outcome corresponding to D†D induces the postmeasurement ensemble
sSk. Therefore, BS/(q1 + sqk) has success probability at least (q1t1 + sqktk)/(q1 + sqk)
which is equal to t (see (3)).

Observe that modifying M to M̃ replaces t1 by t, q1 by q1 + sqk, qk by (1 − s)qk, while tk is left
unchanged. Also, applying N after M̃ gives the original M.

If s > 1, (4) can be rewritten as 1
s = (1−λ)qk

λq1
. A similar argument holds (and we do not repeat it

here), with A1 and Ak interchanged. In this case, we replace Ak by B′ =
√

1
s A†

1 A1 + A†
k Ak and A1

by
√

1 − 1
s A1 to obtain M̃, and tk is replaced by t.
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In either case, modifying M into M̃ strictly increases the probability to have an induced postmea-
surement ensemble that has probability of success equal to t. We repeat this modification until
all postmeasurement ensembles have probability of success equal to t (a property we need later
when we reduce the number of outcomes). The resulting measurement is the desired first stage
measurement M′, say, with POVM (B†

1 B1, B†
2 B2, · · · ). Also, from the above discussion, for each

outcome of M′, there is a subsequent second stage binary measurement that completes M.

In the next step, we replace M′ by M′′ which has only d2
1 measurement outcomes, where d1 is the

dimension of the system measured (and held by the first party). For this we use Carathéodory’s
Theorem (which has a constructive proof):

Lemma 3 (Carathéodory’s Theorem [39]). Let H be a subset of R
n and conv(H) its convex hull. Then

any x ∈ conv(H) can be expressed as a convex combination of at most n + 1 elements of H.

To rewrite the sum ∑i B†
i Bi = I, note that ∑i ui

B†
i Bi

trB†
i Bi

= I
d1

, where ui =
trB†

i Bi

d1
form a distribution.

So, we can apply Carathéodory’s Theorem with H = { B†
i Bi

trB†
i Bi

}i which is a subset of all trace 1

d1 × d1 hermitian matrices with n = d2
1 − 1, and obtain I as a sum of at most d2

1 operators, each is a
positive multiple of some B†

i Bi. This new sum defines a new first stage measurement M′′, which
is similar to of M′, but now only d2

1 outcomes are possible. For each outcome of M′′, the induced
postmeasurement ensemble is the same as in M′ and has success probability t.

Finally, for each outcome of M′′, we apply the binary measurement that brings the postmeasure-
ment ensemble back to that of M. The total number of outcomes is at most 2d2

1. This completes
the compression of the first measurement M.

After the first round of communication, conditioned on each outcome, the parties now hold a new,
normalized, ensemble, and they try their best to discriminate it (with ℓ− 1 rounds of communi-
cation if P has ℓ rounds). A similar compression can now be applied to the next measurement.
Repeating the process, each measurement in the protocol has no more than 2d2

loc outcomes. If P
has ℓ rounds, the total number of outcomes is at most 2ℓd2ℓ, where d = max{d1, d2, · · · , dm} is the
maximum local dimension.

Note that without the constraint of being in an LOCC protocol, a measurement on a d-dimensional
system can be compressed to d2 outcomes. This bound 2d2 shows that to optimize state discrim-
ination in LOCC, about twice as many outcomes (or one additional bit of communication) are
sufficient. This is independent on the number of rounds (and finite or not), how deep the parties
have executed the protocol, the number of parties or the total dimension of the system, and not on
the number of states in S. In comparison, in [36] each measurement in round ℓ out of r has at most
nD4(r−ℓ+1) outcomes where n is the number of outcomes, after coarse-graining, at the end of the
protocol (which is |S| for state discrimination) and D is the global dimension. Most importantly,
this bound diverges when r diverges.

If we apply Carathéodory’s Theorem (Lemma 3) to the original POVM {A†
i Ai} to reduce the num-

ber of measurement outcomes, the probability of discrimination need not be preserved. We in-
troduce the first stage modification to equalize the probability of correct discrimination for each
outcome, and need to add a second stage measurement, thereby getting an additional factor of 2
in the bound 2d2

1. The next method improves the bound to d2
1. It is based on the limited number of

outcomes for extremal measurement and the limited size of the support of extremal distributions,
both of which are corollaries of Carathéodory’s Theorem.
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3.2 The second method and improved bounds

The second method implements any LOCC protocol with finite width per measurement and
shared randomness.

Theorem 4. Let P be a fine-grained LOCC protocol (see the end of Section 2) implementing an instrument
I . Then, P can be written as a convex combination P = ∑i λiP (i), where:

1. each P (i) is an LOCC protocol implementing some instrument L(i);

2. each P (i) has the same tree structure as P ;

3. each edge CP map L(i)
e is proportional to the corresponding edge CP map Le of P ;

4. Le = ∑i λiL(i)
e ;

5. for each i and each vertex v associated with a local operation on a dloc-dim system, at most d2
loc

outgoing edges of v have nonzero edge CP maps.

To prove the above, we first describe and prove a corollary of Carathéodory’s Theorem.

Corollary 5 (Improved Carathéodory’s Theorem). Let H = {vi} ⊂ R
n, v ∈ R

n. Consider the set of
probability distributions p on H with barycentre v, i.e.

P(H; v) :=

{

p p.d. s.t. v = ∑
i

pivi

}

.

This set is closed and convex. Its extreme points have support cardinality at most n + 1.

This corollary allows us to write any original probability distribution with barycentre v, which by
definition is an element of P(H; v), as a convex combination of such extremal distributions, each
of which has support at most n + 1.

Proof of Corollary 5. The convexity and closedness are clear. We prove the statement concerning
the support cardinality of the extremal points of P(H; v) via its contrapositive. Consider any given
q ∈ P(H; v) with support S of size |S| ≥ n + 2. This gives an expression of v = ∑i∈S qivi in which
all qi > 0. But this just says that v is in the convex hull of {vi : i ∈ S}, so, we can use Lemma 3 to
express v as a convex combination of at most n + 1 elements of S, v = ∑i∈S rivi with some ri = 0.
Consider the relation

v = ∑
i∈S

qivi = ∑
i∈S

rivi.

Since for all i ∈ S, qi > 0, there exists a t > 0 such that for all i ∈ S, qi − tri ≥ 0. This gives
q = tr + (1 − t)r′ for some other probability distribution r′, which by linearity is also an element
of P(H; v). But q 6= r since q has support strictly larger than that of r, therefore, q is not an extreme
point of P(H; v). Taking the contrapositive, extreme points of P(H; v) have support cardinality at
most n + 1.

A special case of the above corollary upper bounds the number of outcomes in extremal measure-
ments (by choosing the vi’s to be density matrices and v to be the maximally mixed state).
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Lemma 6 (Corollary 2.48 in [40]). For any extremal measurement on a Hilbert space X , there are at most
dim(X )2 nonzero POVM elements.

This lemma was used in [41]. Other sources for it include [42] and [43, Corollary 1].

Proof of Theorem 4. As before, it suffices to consider the first measurement on X1 made by the first
party. For any such measurement,

M(ρ) = ∑
i

Ai ρA†
i ⊗ |i〉〈i|,

we can always consider the canonical form,

M(ρ) = ∑
i

√

A†
i Aiρ

√

A†
i Ai ⊗ |i〉〈i|,

because there exists isometry Ui such that Ai = Ui

√

A†
i Ai and so the two measurements differ

only by a conditional isometry, which can be delayed to the next action round of this party. Thus,
we only need to consider the POVM of each local measurement.

We can decompose this POVM as a convex combination of POVMs of extremal measurements. By
Lemma 6 above, each extremal measurement has no more than d2

1 outcomes.

The same reasoning can be applied to subsequent measurements. For each vertex, the maps asso-
ciated with the outgoing edges may take the state to spaces of different dimensions. To perform
the induction through the tree, we need to make the additional observation that, for a fine-grained
protocol, the range of each edge map has dimension no bigger than the input dimension.

Theorem 7. Suppose an ensemble of multipartite quantum states S = {p1ρ1, · · · , pnρn} ⊂ L(⊗m
j=1Xj)

with pk ≥ 0, ∑k pk = 1 can be distinguished by some LOCC protocol P with success probability t. Then
there exists an LOCC protocol P ′ achieving the same success probability t but in which each measurement
requires at most d2

loc outcomes, where dloc is the dimension of the local system measured. If P has ℓ < ∞

many rounds of communication, the total width can be bounded by d2ℓ, where d is the maximum local
dimension.

Proof. Because the probability of success is linear in the decomposition in Theorem 4, the best slim
protocol has probability of success at least t (and at most t by the optimality of the original proto-
col). So, we can replace the original protocol by this slim protocol, in which each measurement on
a system with local dimension dloc has no more than d2

loc outcomes.

From the above proof, it is evident that Theorem 7 applies to the maximization of any function
that is linear, or more generally convex, in the LOCC instrument.

To implement P via slim protocols as given by the decomposition in Theorem 4, the parties need
to share randomness. The next theorem bounds the required amount of shared randomness when
the implemented instrument has finite input and output dimensions and finitely many classical
outcomes.
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Theorem 8. Let P be a fine-grained LOCC protocol (see the end of Section 2) implementing an instrument
I with n coarse-grained outcomes. Let D0 be the total input dimension, and Di be the total output dimension
of the CP map conditioned on the outcome being i for i = 1, · · · , n. Then, I = ∑

R
i=1 µiI (i), with each

I (i) an instrument implemented by a slim protocol P (i) satisfying all the conditions in Theorem 4, and
R ≤ ∑

n
i=1 D2

0D2
i − D2

0 + 1.

Proof. From Theorem 4, I = ∑i λiI (i) where the λi’s form a probability distribution. The affine
space of instruments with n coarse-grained outcomes and with the stated input and output dimen-
sions has dimension ∑

n
i=1 D2

0D2
i − D2

0 (since the CP map corresponding to the i-th outcome is rep-
resented by a hermitian Choi matrix specified by D2

0D2
i real parameters, and the trace-preserving

constraint removes D2
0 real degrees of freedom. Applying Carathéodory’s Theorem (Lemma 3),

we can rewrite I = ∑i µiI (i) where at most R = ∑
n
i=1 D2

0D2
i − D2

0 + 1 of the µi’s are nonzero. So,
log2 R shared bits of randomness are sufficient.

We note that for an LOCC protocol P represented by an infinite tree, Theorem 8 provides an exact
implementation of the corresponding LOCC instrument I as a finite mixture of slim LOCC pro-
tocols, each of which can be represented by a potentially infinite tree and each defines a bona fide
instrument, with probability 1. The ℓ-round prefix of this compressed infinite protocol converges
to P .
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John Watrous for helpful discussions. DL was supported by NSERC, CIFAR; AW was supported
by the Spanish MINECO (project FIS2016-86681-P) with the support of FEDER funds, and the
Generalitat de Catalunya (project 2017-SGR-1127); NY was supported by DE180100156.

References

[1] A. Peres and W. K. Wootters. Optimal detection of quantum information. Phys. Rev. Lett.,
66(9):1119-1122 (1991).
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