
Research Article
Improving Accuracy of River Flow Forecasting Using LSSVR
with Gravitational Search Algorithm

Rana Muhammad Adnan,1 Xiaohui Yuan,1 Ozgur Kisi,2 and Rabia Anam3

1School of Hydropower and Information Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
2Center for Interdisciplinary Research, International Black Sea University, Tbilisi, Georgia
3Faculty of Agricultural Engineering & Technology, Department of Farm Machinery & Power, University of Agriculture,
Faisalabad, Pakistan

Correspondence should be addressed to Xiaohui Yuan; yxh71@hust.edu.cn

Received 1 December 2016; Revised 15 December 2016; Accepted 18 December 2016; Published 19 January 2017

Academic Editor: James Cleverly

Copyright © 2017 Rana Muhammad Adnan et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

River flow prediction is essential in many applications of water resources planning and management. In this paper, the accuracy
of multivariate adaptive regression splines (MARS), model 5 regression tree (M5RT), and conventional multiple linear regression
(CMLR) is compared with a hybrid least square support vector regression-gravitational search algorithm (HLGSA) in predicting
monthly river flows. In the first part of the study, all three regression methods were compared with each other in predicting river
flows of each basin. It was found that the HLGSA method performed better than the MARS, M5RT, and CMLR in river flow
prediction.The effect of log transformation on prediction accuracy of the regressionmethods was also examined in the second part
of the study. Log transformation of the river flow data significantly increased the prediction accuracy of all regression methods. It
was also found that log HLGSA (LHLSGA) performed better than the other regression methods. In the third part of the study, the
accuracy of the LHLGSA and HLGSAmethods was examined in river flow estimation using nearby river flow data. On the basis of
results of all applications, it was found that LHLGSA and HLGSA could be successfully used in prediction and estimation of river
flow.

1. Introduction

River flow forecasting plays a vital role in planning of water
projects, irrigation systems, hydropower system, and opti-
mized utilization of water resources [1]. Due to continuous
increase of population growth, industrial uses, and irriga-
tion needs, the river flow forecasting has received great
attentions of researchers for operational river management
[2]. Forecasting of river flow provides alerts of approaching
floods and also assists in controlling the outflows of reservoir
during low flows days of river. Floods affect countless lives,
infrastructure, and property and cause limitless damagemore
than any other natural disaster. Due to no assessment of flood
magnitude, a flood resulted in a loss of thousand lives and
damage of agriculture land of million dollars in Pakistan
in 2010 [3]. It is not possible to provide complete safety
from flood, but high amounts of money and many lives

can be saved by providing accurate flood predictions, flood
magnitude, and flood duration [4]. The importance of water
measurement compelled researchers to apply various types of
forecasting methods to estimate and forecast river flows.

From the last three decades of the previous century,
the statistical methods were applied successfully in the field
of hydrology including the river flow forecasting. Statisti-
cal methods try to find inherent relationships within the
actual data. The autoregressive integrated moving average
(ARIMA) and seasonal autoregressive integrated moving
average (SARIMA) methods are the most popular in the
statistical methods category and have been extensively used
to model different variables in the field of hydrology [5–15].
Ahlert and Mehta [5] and Kurunç et al. [7] used ARIMA
statistical models for modeling river flows data. Ahmad et al.
[6] andMirzavand andGhazavi [8] appliedARIMA statistical
methods to analyse water quality and groundwater data,
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respectively. Otok and Suhartono [11], Rabenja et al. [13], and
Valipour [14] forecasted runoff data in Indonesia and USA,
respectively, by applying SARIMAmodel and compared with
ARIMA. Psilovikos and Elhag [12] and Yang et al. [15] applied
ARIMA models successfully in modeling different processes
of evaporation data. Mishra and Desai [9] and Modarres [10]
used SARIMA method efficiently for drought forecasting in
India and Iran, respectively. In the previous two decades, the
artificial neural networks (ANN) have been replaced with the
statistical methods in solving different problems due to their
flexible nature and capturing the nonlinearity in the data.
In the literature, many researchers compared the ANN with
statistical methods in solving many problems of hydrology
and reported that ANN outperformed the statistical methods
[16–21]. Huang et al. [18] used the ANN method to forecast
the river flows of Apalachicola River, USA, using the previous
rainfall and river flow data. They compared the quarterly
and yearly river flow forecasts results with the ARIMA
method’s results and found that the ANN performed better
than the ARIMA method in prediction of river flow. The
detailed discussion of all ANN applications in comparison
with statistical methods to forecast different variables in
hydrology is not possible in this paper. However, ANN also
have some major weakness, that is, overfitting, falling into
local minimum, slowing convergence speed, and requiring
large number of training data. Thus, in the last decade, the
support vector regression (SVR) took priority over ANN due
to its parallel distributed processing, self-learning features,
avoiding the overfitting problems, and providing globally
optimal solutions [22–28]. Ahmad et al. [22] applied SVR
model to forecast runoff of Bakhtiyari Basin, Iran, and results
explored that SVR showed better accuracy than the ANN
methods for daily runoff forecasting especially in case of
prediction of higher values of river flows. However, SVM
faces computationally difficulties in determining optimal
solution due to use of quadratic programmingwith nonlinear
equation. This procedure is time consuming.

Recently least square support vector regression (LSSVR),
the improved version of SVR, received much attention in
the field of prediction methods due to use of linear squares
principle for the loss function instead of the quadratic
programming in the SVR method and fast computational
speed [29–38]. Shabri and Suhartono [37] and Kisi [34]
applied LSSVR successfully to forecast river flows. Shabri
and Suhartono [37] compared the prediction accuracy of
LSSVRwithANNandmultivariate linear regressionmethods
whereas Kisi [34] compared it with adaptive neurofuzzy
embedded fuzzy 𝑐-means clustering (ANFIS-FCM) method
and they both found that LSSVR performed better than the
other methods. Kisi [33] and Goyal et al. [30] forecasted
the reference evapotranspiration and pan evaporation by
using LSSVR method. Kisi [33] compared its results with
feed forward ANN whereas Goyal et al. [30] compared
it with ANN and ANFIS methods and they found that
LSSVR performed better than the other methods. Okkan and
Serbes [36] and Bhagwat and Maity [29] successfully used
LSSVR method to forecast runoff data by using the previous
meteorological and river flows data. Kisi [32] estimated the
suspended sediment by using the river flow data through

LSSVR method and reported that the LSSVR gave better
estimates in comparison with ANN and sediment rating
curve (SRC) methods. Hwang et al. [31] predicted the daily
water demand of the Seoul City, Korea, and dailymean inflow
of Cheng-ju Dam by using LSSVR model. He compared the
predicted results of LSSVR with the conventional multiple
linear regression (CMLR) and back propagation neural net-
work methods in both cases and found that LSSVR showed
superiority in prediction accuracies. Wu et al. [38] andMellit
et al. [35] applied LSSVR method to predict the different
meteorological variables and found that LSSVR performed
better than ANN method. Motivated by these successful
applications of the LSSVR, the LSSVR method was selected
as a forecasting method in this research. LSSVR method
has parameters which play a vital role in determining the
prediction accuracy of the method. Determining suitable
value of these parameters will produce better river flow
prediction results. Still, there is no specific way to determine
optimal parameters for LSSVR method in the literature of
river flow forecasting. Thus, the novelty of this study is
to generate a hybrid LSSVR-gravitational search algorithm
(HLGSA) river flow forecastingmethod. In this study, GSA is
used to find the optimal values of LSSVR method to increase
the prediction accuracy of the method. GSA was preferred in
this study over other heuristic algorithms such as simulated
annealing algorithm, genetic algorithm, memetic algorithm,
differential evolution, and particle swarm optimization due
to their premature convergence, parameter sensitivity, and
consuming too much time to obtain global optimal solution.
Instead of these heuristic algorithms, GSA improves the
global search ability and optimization speed by using the
principle of gravity and motion. To the best knowledge of
the authors, there is not any published work in the literature
that predicts the river flow using hybrid LSSVR-gravitational
search algorithm (HLGSA) method. Recently, researchers
preferred hybrid methods for solving different problems in
the field of hydrology.

In addition to the HLGSA method, multivariate adaptive
regression splines (MARS) is another popular regression
method used to model the complex nonlinear relationships
among the variables. MARS is a nonparametric regression
method and it has been applied extensively nowadays in the
field of hydrology to predict different variables [39–45]. To
determine the benefits of using MARS over other conven-
tional regression methods, MARS method was compared
with CMLR and model 5 regression tree (M5RT) methods
in this study. Cross validation (CV) technique was used to
better see the prediction accuracy of all appliedmethods. Log
transform function was also utilized in this study to see its
effect on the prediction accuracy of these methods.

2. Hybrid LSSVR-Gravitation Search
Algorithm (HLGSA) Method for River Flow
Prediction

2.1. LSSVR. LSSVR introduced by Suykens and Vandewalle
[46] is a modification version of SVR and has advantage on
SVR due to reduction in complexity of optimization process
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Figure 1: LSSVR structure for river flow forecasting.

by using linear equation instead of quadratic equations [47].
Figure 1 demonstrates the process of LSSVR algorithm. By
using time series inputs 𝑥𝑖 (lagged river flows) and output𝑦𝑖 (predicted river flow), the function of nonlinear LSSVR is
given as

𝑦 (𝑥) = ⟨𝜔𝑇, 𝜑 (𝑥)⟩ + 𝑏, (1)

where ⟨⋅, ⋅⟩ represents dot product, 𝜑(𝑥) is a nonlinear
function that employs regression, and 𝜔 and 𝑏 are the weight
vector and bias term, respectively [48]. The cost function (𝐶)
of LSSVR can be minimized as

Min 𝐶 = 12𝜔𝑇𝜔 + 𝛾2
𝑛∑
𝑖=1

𝑒𝑖2 (2)

Subject to 𝑦𝑖 = ⟨𝜔, 𝜑 (𝑥)⟩ + 𝑏 + 𝑒𝑖
(𝑖 = 1, 2, . . . , 𝑛) , (3)

where 𝛾, 𝑒𝑖 represent the regularization constant and the
training error for 𝑥𝑖, respectively.

To solve (2), the Lagrange function is used to find the
solutions of 𝜔 and 𝑒.The Lagrange function can be calculated
as [49]

𝐿LSSVR = 𝐶 − 𝑁∑
𝑖=1

𝛼𝑖 {⟨𝜔, 𝜑 (𝑥)⟩ + 𝑏 + 𝑒𝑖 − 𝑦𝑖} , (4)

where 𝛼𝑖 ∈ 𝑅 is the Lagrange multipliers.
The solution of above equation can be achieved by

determining the partial differential of Lagrange function
and applying the kernel function (KF) to satisfy Mercer’s
condition. To solve regression problems, there aremany types
of KF including polynomial, radial basis, Gaussian, sigmoid,
Mexican hat,Meyer, andMorlet.TheKF type plays a vital role
in constructing high accurate LSSVR model [50]. This study
used the radial basis KF (RBKF) due to its effectiveness for

the nonlinear regression problems [51]. The performance of
the RBKF with other KFs is shown in Section 7. RBKF can be
expressed as

𝐾(𝑥𝑖, 𝑥𝑗) = exp(−󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩2𝜎2 ) . (5)

After selecting the RBKF for the LSSVR method, finding
proper values for penalty factor parameter that is 𝛾 and RBKF
parameter that is 𝜎2 is necessary. There is no specific way
to obtain the optimal values of parameters. Due to these
reasons, GSA is adopted in the study to calculate the suitable
parameter values.

2.2. Gravitational Search Algorithm (GSA). GSA is one of
the effective optimization algorithms compared with other
evolutionary algorithms. It is based on the law of gravity and
motion and first proposed by Rashedi et al. [52]. In GSA, each
agent has four parameters: position, velocity, inertial mass,
and gravitational mass.The location of the agent corresponds
to a solution of the problem whereas its gravitational and
inertia masses are obtained utilizing a fitness function [53].
The location of particle can be expressed as

𝑋𝑖 = (𝑥1𝑖 , . . . , 𝑥𝑘𝑖 , . . . , 𝑥𝑠𝑖) 𝑖 = 1, 2, . . . , 𝑛𝑝, (6)

where 𝑥𝑘𝑖 represents the location of the 𝑖th agent in the
kth dimension. The mass of each agent is computed after
calculating the fitness of current population as [52, 54]

𝑚𝑖 (𝑡) = fit𝑖 (𝑡) − worst (𝑡)
best (𝑡) − worst (𝑡) ,

𝑀𝑖 (𝑡) = 𝑚𝑖 (𝑡)∑𝑁𝑗=1𝑚𝑗 (𝑡) ,
(7)

where fit𝑖(𝑡) and 𝑀𝑖(𝑡) represent the fitness value and mass
of the 𝑖th agent at time 𝑡, respectively, whereas best(𝑡) and
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worst(𝑡) represent the minimum fitness value and maximum
fitness value, respectively.

To calculate the gravitational acceleration of the agent 𝑖,
firstly the force exerted by heavy agents on this agent should
be computed as

𝐹𝑘𝑖𝑗 (𝑡) = 𝐺𝑐 (𝑡) 𝑀𝑖 (𝑡) ⋅ 𝑀𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) , 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩2 + 𝜀 ⋅ (𝑥
𝑘
𝑖 (𝑡) − 𝑥𝑘𝑗 (𝑡)) , (8)

where𝑀𝑖(𝑡) and𝑀𝑗(𝑡) are the passive and active gravitational
mass, respectively, corresponding to agents 𝑖 and 𝑗 at the𝑡 generation, 𝐺𝑐(𝑡) and 𝜀 are the gravitational and small
constant, 𝑥𝑘𝑖 (𝑡) and 𝑥𝑘𝑗 (𝑡) indicate position of kth dimension
of agents 𝑖 and 𝑗 at the 𝑡 generation, and ‖𝑥𝑖(𝑡), 𝑥𝑗(𝑡)‖ is
Euclidean distance between agents 𝑖 and 𝑗.

The total gravitational acceleration of the 𝑖th agent can be
calculated using the law of motion as follows:

𝑎𝑘𝑖 (𝑡) = ∑𝑁𝑗=1, 𝑗 ̸=𝑖 rand ⋅ 𝐹𝑘𝑖𝑗 (𝑡)𝑀𝑖 (𝑡) , (9)

where 𝑎𝑘𝑖 (𝑡) represents the gravitational acceleration of the
agent 𝑖 in the kth dimension and rand indicates a random
variable with uniform distribution in the interval [0, 1]. With
the help of (9), the total gravitational force exerted on the
agent 𝑖 in the kth dimension can be calculated as

𝐹𝑘𝑖 (𝑡) = 𝑀𝑖 (𝑡) × 𝑎𝑘𝑖 (𝑡) = 𝑁∑
𝑗=1, 𝑗 ̸=𝑖

rand ⋅ 𝐹𝑘𝑖𝑗 (𝑡) . (10)

Then the speed and location of the agent are updated as
follows:

V𝑘𝑖 (𝑡 + 1) = rand ⋅ V𝑘𝑖 (𝑡) + 𝑎𝑘𝑖 (𝑡) ,
𝑥𝑘𝑖 (𝑡 + 1) = 𝑥𝑘𝑖 (𝑡) + V𝑘𝑖 (𝑡 + 1) . (11)

It is clearly seen from the brief description of the GSA
that it utilizes the gravitational force as the direct form to
communicate the agents’ cooperation. The heavy agents in
GSA are processed, infer good solutions, and move more
gradually than lighter ones, which guarantee the algorithm’s
exploitation step. In other words, the GSA searches for the
ideal solution by appropriately calibrating the inertia and
gravitational masses of agents where every agent provides a
solution. As time progresses, the heaviest agent will exhibit
an ideal solution in the search space [55].

2.3. HLGSA (Hybrid LSSVR-GSA). The process of construct-
ing the river flow prediction model HLGSA by using the
hybrid of LSSVR and GSA methods is described in this
section and shown in Figure 2. The process is as follows:

(i) Firstly, divide all river flow data sets into training and
test parts.

(ii) Select the RBF kernel function and initial parameters
for the HLGSA method to build the initial LSSVR
model. The initial value of the parameters is set as

follows: the range of penalty factor 𝛾 is 0.1 to 2000,
the range of RBF parameter 𝜎2 is 0.001 to 20, number
of iterations is 15, the number of particles can be set up
to 40, and constant alpha is found to be better in range
of 16 to 20, whereas initial gravitational constant𝐺0 is
found to be better in range from 105 to 115.

(iii) Compute the particle fitness value of each agent. In
this paper, RFRMSE is selected as the fitness function.
The fitness function for this method can be defined as

fitness function = RFRMSE

= √ 1𝑁RF

𝑁RF∑
𝑡=1

(RF𝑜 − RF𝑓)2. (12)

(iv) Choose the best parameters combination through
GSA to obtain the optimal values of the LSSVR
parameters.

(v) If it does not meet the stopping criterion, then utilize
the new combination of parameters to reconstruct the
LSSVR. Compute the fitness until it suits the stopping
criterion.

(vi) The ideal parameter values are achieved to build the
optimal LSSVRmodel for forecasting river flow. Now,
the testing values are used for the optimal LSSVR
model to get river flow prediction results.

3. Regression Methods

In this study, the performance accuracy of a hybrid nonlinear
optimized regressionmethod (HLGSA) was compared with a
nonlinear, nonparametric regressionmethod (MARS), with a
piecewise linear regression method (M5RT), and with a con-
ventional linear regression method (CMLR) in forecasting
monthly river flow.

3.1. Multivariate Adaptive Regression Splines. MARS is a
flexible method which finds relationships that are nearly
additive or involve interactions with fewer parameters. The
general MARS method is introduced by Friedman [56] and
is expressed by the following equation:

RF𝑓 = 𝑎0 + 𝑀∑
𝑚=1

𝑎𝑚 𝐾∏
𝑘=1

𝑏𝑘𝑚 (𝑥(𝑘,𝑚)) , (13)

where RF𝑓 is the forecasted river flow by the MARS that
is dependent variable, 𝑎0 is a constant, 𝑎𝑚 are the model
coefficients calibrated to provide the best fit to the used data,𝑀 is the quantity of basis functions (BFs), 𝑘 is the “splits”
quantity that generates the mth BFs, and 𝑏𝑘𝑚 gets values of
1 or −1 and represents the (right/left) sense of the associated
step function. 𝑥(𝑘,𝑚) is the independent variable’s label [57].

Two-step MARS provides optimal MARS model. MARS
develops a huge number of BFs chosen to overfit the data
at first step, where variables are permitted to enter—as
continuous, categorical, or ordinal—the formal system by
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Figure 2: Flow chart of HLGSA model for river flow forecasting.

which variable ranges are characterized, and they can interact
with each other or be restricted to enter only as additive
components. In the second step, BFs are erased in the order
of minimum effect utilizing the generalized cross validation
criterion (GCV). A measure of variable significance can then
be evaluated by watching the decrement in the computed
GCV when a parameter is excluded from the model. This
procedure proceeds until the rest of the BFs all satisfy the
predecided necessities. The GCV can be computed as [58]:

GCV (𝑀) = (1/𝑛)∑𝑛𝑖=1 (RF𝑜 − RF𝑓)2(1 − (𝐶 (𝑀) /𝑛))2 , (14)

where RF𝑜 and RF𝑓 are the actual and predicted river flow
values and 𝐶(𝑀) is a complexity penalty function.

After building the MARS model, the relative importance
of a variable in terms of its contribution to the fit of themodel
can be estimated. MARS is capable of tracking very complex
data structures, so selected in this study for modeling river
flow time series.

3.2. Model 5 Regression Regression Tree (M5RT). In decision
tree (DT), each branch node indicates a choice between a
number of alternatives and a decision is made in every leaf
node [59]. Regression trees (RT) are applied to solve those
forecasting problems having numeric response variable.They
are different from the DT only in that they involve a numeric
value rather than a class label combined with the leaves [60].
The M5RT method combines the features of DT and RT
methods because the construction of the M5RT is similar to
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the DT but, instead of the class labels, it has linear regression
functions at the leaves. The M5RT is a piecewise linear
method that was introduced by Quinlan [61] and has many
successful applications in the field of water resources [41, 62–
68] that compelled the authors to use M5RT method in this
paper for river flow prediction.

The division criteria for the M5RT method are based on
reducing the standard deviation of the class values that reach
a node as an error measure and computing the estimated
reduction in this error as a consequence of testing each
attribute at that node. The standard deviation reduction
(SDR) is computed by

SDR = sd (𝑇) −∑ 󵄨󵄨󵄨󵄨𝑇𝑖󵄨󵄨󵄨󵄨|𝑇| sd (𝑇𝑖) , (15)

where 𝑇 stands for set of samples that enters the node, 𝑇𝑖
indicates the subset of samples that have the 𝑖th output of the
potential set, and sd is the standard deviation [69].

3.3. Conventional Multiple Linear Regression (CMLR). The
multiple linear regressionmethods forecast values of a depen-
dent variable 𝑌 based on independent variables (𝑋1, 𝑋2,. . . , 𝑋𝑛). Two main advantages of the CMLR are that it has
simple structure and it is included in lots of statistical pack-
ages [70]. In this study, after determining the independent
lagged river flow values for dependent river flows of both
basins, the CMLR can be constructed as follows:

RF(𝑡𝑛) = 𝑏𝑜 + 𝑏1RF(𝑡𝑛−1) + 𝑏2RF(𝑡𝑛−2) + ⋅ ⋅ ⋅ + 𝑏𝑛RF(𝑡𝑛), (16)

where RF(𝑡𝑛) is the dependent variable, 𝑏𝑜 − −𝑏𝑛 are the
equation parameters for the linear relation, and RF(𝑡𝑛−1),
RF(𝑡𝑛) are the independent lagged river flow value used to
forecast river flow. However, CMLRs have some disadvan-
tages in predicting nonlinear situations because of their linear
structure [71].

4. Study Sites and Data Preprocessing

The study used the river flows data from two catchments,
Astore and Shyok, on the Upper Indus Basin of Pakistan.
Figure 3 shows the location map of the catchments. The geo-
graphical location of Astore Basin is approximately between
longitudes 74∘, 24󸀠 and 75∘, 14󸀠E and between latitudes 34∘,
45󸀠 and 35∘, 38󸀠N. The river covers a catchment area of
about 3750 km2. Water and power development authority
(WAPDA), Pakistan, has one flow gauging station, that is,
Doyian in this area for flow record under Surface Water
Hydrology Project (SWHP). The elevation of this gauging
station is 1583 masl and its geographical location in the
basin is 35∘, 33󸀠N latitude and 74∘, 42󸀠E longitude. The Shyok
Basin covers drainage area of 68,458 km2 with average basin
elevation of 4940m. WAPDA also installed one flow gauging
station hydrometric station in this area for flow record at Yogo
with an elevation of 2469m and its geographical location in
the catchment is 35∘, 11󸀠N latitude and 76∘, 06󸀠E longitude.
The recorded monthly data of river flows of both catchments
were collected through WAPDA for the duration of 1975–
2006 and the total time span of this duration is 384 months.

Discharge gauging stations

Stream lines

Upper Indus catchment

Sub-catchments boundary

N

32∘N

33∘N

34∘N

35∘N

36∘N

37∘N

74∘N 75∘N 77∘N 78∘N 80∘N 81∘N

Figure 3: The location map of the Astore and Shyok catchments.

According to the WAPDA, the mean annual river flow 32 yr
(1975–2006) flow record is 142m3/s for Astore catchment
whereas, for Shyok catchment, it is 457m3/s.

In this research, cross validation (CV) technique was
applied to better see the prediction accuracy of the applied
methods. In CV technique, the whole data is divided into 𝑛
equal data sets (DS), then the 𝑛−1DS is used to train, and the
other one DS is used to test the accuracy of the method. This
process is repeated 𝑛 times till every DS of the data is used
to test the applied method. This CV technique is preferred
over 𝑘-fold cross validation techniques due to usage of every
data set for testing and 𝑛 > 𝑘 which makes it closer to the
real world problem [69, 72]. Similarly, in this research, the
whole river flowdatawas divided into four equalDS. In all the
applications, the three DS were used to train and remaining
one DS was adopted to test the method. This procedure was
repeated four times till every DS of data was used to test
the method. The monthly river flow time series statistics
of Astore and Shyok catchments are reported in Table 1.
Here, the DS1, DS2, DS3, and DS4 represent four equal data
sets of whole data for CV analysis whereas RFmean, RFsd,
RFsc, RFmin, and RFmax represent mean, standard deviation,
skewness coefficient, minimum, and maximum river flows,
respectively. The recorded monthly river flows data show
similarly high positive skewed distribution for Astore and
Shyok catchments (RFsc = 1.51 and 1.88). However, the range
of the flow data of Shyok Basin (36.7–2080.7m3/s) is much
higher than that of the Astore Basin (19.3–654.9m3/s). The
lagged values of river flows show low persistence (e.g., Lag
1 = 0.735, Lag 2 = 0.266, and Lag 3 = −0.152). However, the
lagged values of Astore Basin give a little better persistence
than those of the Shyok Basin.

5. Input Combination Selection and
Performance Evaluation Criteria

Input combinations (IC) selection is an important step in
model development and it plays a key role in increasing the
accuracy of the model. To see the correlation effect of the
lagged values, the autocorrelation function is generally used
to determine the number of affective lagged input values.
For river flow forecasting, previous lagged river flows values
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Figure 4: Autocorrelation function of river flow series of (a) Astore catchment and (b) Shyok catchment.

Table 1: The monthly statistical parameters of river flow data for Astore and Shyok catchments.

Station Data set RFmin RFmax RFmean RFSD RFSC Lag 1 Lag 2 Lag 3

Astore

DS1 (1999–2006) 26.7 612.3 138.2 137.1 1.40 0.735 0.266 −0.156
DS2 (1991–1998) 26.4 654.9 155.3 162.2 1.51 0.728 0.229 −0.178
DS3 (1983–1990) 19.3 558.8 137.9 149.1 1.31 0.724 0.234 −0.185
DS4 (1975–1982) 20.1 447.3 119.7 123.1 1.21 0.727 0.237 −0.202

Shyok

DS1 (1999–2006) 36.9 1855.2 406.9 527.6 1.50 0.669 0.119 −0.238
DS2 (1991–1998) 39.0 1995.6 361.1 492.1 1.71 0.665 0.109 −0.242
DS3 (1983–1990) 37.4 1954.8 327.6 437.0 1.72 0.660 0.118 −0.237
DS4 (1975–1982) 36.7 2080.7 345.6 492.5 1.88 0.615 0.065 −0.233

are generally taken as IC in many researches of river flow
forecasting [37, 73, 74]. In this research, the effect of lagged
river flows values of both catchments was examined through
autocorrelation function and was reported in Figure 4.
According to the analysis, the following three ICwere selected
as inputs on the basis of most significant lagged river flows
values for both basins, that is, IC1 = RF𝑡−1, RF𝑡−2; IC2 =
RF𝑡−1, RF𝑡−2, RF𝑡−11; and IC3 = RF𝑡−1, RF𝑡−2, RF𝑡−11, RF𝑡−12.

In this paper, two error indices were selected to evaluate
the performance of the models in prediction of monthly
river flows including the root mean square error (RFRMSE)
and mean absolute error (RFMAE). The similarity between
the observed value and the forecasted value of river flow
is measured by using the determination coefficient (RFDC)
index. These three indexes have been extensively applied in
many problems of water resources for evaluating the model
performance [19, 26, 75]. All the performance evaluation
indexes can be calculated as

RFRMSE = √ 1𝑁RF

𝑁RF∑
𝑡=1

(RF𝑜 − RF𝑓)2,

RFMAE = 1𝑁RF

𝑁RF∑
𝑡=1

󵄨󵄨󵄨󵄨󵄨RF𝑜 − RF𝑜
󵄨󵄨󵄨󵄨󵄨 ,

RFDC = [[[[
∑𝑁RF𝑡=1 (RF𝑜 − RF𝑜) (RF𝑓 − RF𝑓)

√∑𝑁RF𝑡=1 (RF𝑜 − RF𝑜)2 (RF𝑓 − RF𝑓)2
]]]]

2

,
(17)

where𝑁RF is the total size of observations of river flow time
series, RF𝑜 is observed river flow, RF𝑓 is forecasted river flow,
RF𝑜 is average of river flows, and RF𝑓 is average forecasted
river flow.

6. River Flow Prediction Using Soft
Computing Methods

In the first part of the paper, the performance of the proposed
method hybrid LSSVR-GSA (HLGSA) was compared with
other regression methods in predicting monthly river flows
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Table 2: Comparison of HLGSA, MARS, M5RT, and CMLR methods: Astore catchment.

Indexes Cross validation data sets Input combinations Methods
HLGSA MARS M5RT CMLR

RFRMSE

DS1
IC1 56.80 57.75 71.96 83.44
IC2 44.80 53.48 56.66 59.75
IC3 51.01 55.28 80.52 55.66

DS2
IC1 72.58 73.83 83.09 97.06
IC2 65.42 67.06 68.28 69.44
IC3 66.97 68.07 101.99 68.08

DS3
IC1 58.27 65.16 66.36 91.31
IC2 47.38 51.59 59.57 69.20
IC3 47.61 56.20 67.22 65.93

DS4
IC1 46.93 57.75 61.29 74.79
IC2 40.09 43.46 57.26 61.40
IC3 42.57 48.14 59.20 58.08

RFMAE

DS1
IC1 34.32 38.34 42.05 51.91
IC2 27.03 32.30 33.45 26.36
IC3 31.67 33.75 46.80 25.05

DS2
IC1 44.24 49.12 52.21 57.67
IC2 37.86 37.96 39.12 42.11
IC3 38.27 38.92 53.77 40.25

DS3
IC1 33.80 35.79 40.08 52.33
IC2 27.14 29.23 32.47 34.33
IC3 28.81 30.84 42.56 31.06

DS4
IC1 32.20 37.19 38.46 46.80
IC2 25.05 28.36 29.83 39.48
IC3 26.36 30.22 33.74 32.70

RFDC

DS1
IC1 0.831 0.822 0.732 0.693
IC2 0.889 0.851 0.835 0.815
IC3 0.852 0.849 0.745 0.837

DS2
IC1 0.826 0.820 0.729 0.685
IC2 0.850 0.846 0.822 0.811
IC3 0.848 0.834 0.630 0.824

DS3
IC1 0.849 0.830 0.773 0.694
IC2 0.901 0.880 0.851 0.831
IC3 0.898 0.861 0.810 0.844

DS4
IC1 0.892 0.882 0.813 0.699
IC2 0.916 0.900 0.888 0.853
IC3 0.906 0.893 0.874 0.882

of the Astore and Shyok catchments, separately by using the
three input combinations comprising antecedent river flows.
CV technique was used for each applied method by dividing
river flows data into four equal DS. Test statistics of HLGSA,
MARS, M5RT, and CMLRmethods for the Astore catchment
in the test duration is compared in Table 2. It is clear from
the table that all four applied methods provide different
prediction results for different DS and input combinations.
In case of input combinations, IC1 comprising the two
consecutive previous months’ river flow values provides the
worst prediction results for the HLGSA, MARS, and CMLR
methods. IC2 comprising the two consecutive antecedent
months’ river flow values including antecedent eleventh

month’s flow value gives the best prediction results for the
HLGSA, MARS, andM5RTmethods whereas, for the CMLR
method, IC3 comprising the two consecutive antecedent
months’ river flow values and antecedent eleventh and twelfth
months’ river flow value provides better performance than
the other two input combinations. In the case of data sets, it is
clear from the table that DS2 gives the worst forecasts results
for all the regressions models including proposed HLGSA
method. The reason of this is the maximum river flow value
of Astore Basin’s test set; DS2 (RFmax = 654.9m3/s) is higher
than the corresponding extreme value of the training DS
value (see Table 1). This indicates that all trained methods
encounter problems in constructing extrapolation in higher
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Figure 5: Overall errors of forecasted river flow using all normal models for Astore catchment.

value of DS2. The higher values of RFsd and RFsc parameters
for the DS2 data set in comparison with other data sets can
also be another reason for the worst results. It is evident that
all methods provide good forecasts for the DS4 under all
input combination scenarios. The best model structures for
HLGSA, MARS, andM5RTmethods were found for the DS4
and IC2. However, in case of CMLR method, the best model
structure was found for the DS4 and IC3. The best RFRMSE
(40.09m3/s) for the HLGSA is better as compared to MARS,
M5RT, and CMLR methods (43.46, 57.26, and 58.08m3/s),
respectively. This is also true for RFMAE values where the
best RFMAE for the HLGSA is 25.05m3/s compared toMARS,
M5RT, and CMLR methods (28.36, 29.83, and 32.70m3/s),
respectively. Table 2 clearly shows that the HLGSA method
provides better prediction results than the other regression
methods under all data sets and input combinations scenar-
ios. MARS is ranked as the second best and performs better
than the M5RT and CMLR whereas M5RT performs better
than the CMLR under all data sets. In case of IC3, however,
CMLRgives better forecasts than theM5RT for all data sets by
having lower values of error indexes (RFRMSE andRFMAE) and
higher value of correlation index (RFDC).The best prediction
results of HLGSA,MARS, andM5RT for IC2 indicate that the
river flow of the two preceding months and eleventh month
highly affects the current month river flow. The results of
IC3 justify this statement by adding the river flow data of
twelfthmonth that negatively affect themethod performance.
However, the CMLR showed positive dependence on the
input combinations by showing the best prediction results for
IC3.

For the sake of simplicity, the performance accuracy of all
methods was evaluated by comparing the overall mean errors
representing the mean error of all data sets and input com-
binations. Figures 5(a)-5(b) show the overall average errors
statistics of all methods. Mean errors statistics of RFRMSE and
RFMAE clearly indicate that the HLGSA method performs
better by having relatively less value of error indexes than the
othermethods in prediction ofAstore catchment’s river flows.
M5RT and CMLR give almost same mean errors statistics
and provide the worst accuracy prediction in comparison to
HLGSA andMARS due to having higher values of both errors

indexes. This indicates the nonlinearity of the investigated
phenomenon because both M5RT and CMLR have linear
structures. HLGSA decreases the overall mean RFRMSE of the
MARS, M5RT, and CMLR by 8.22%, 23.15%, and 24.49%,
respectively.The observed and forecastedmonthly river flows
of Astore Basin by all the methods using their best model
structures are reported in Figures 6(a)–6(d). The figure
clearly explores that theHLGSAmethod is in goodfitwith the
original river flows data in comparison to the other methods.
The HLGSA gives higher value of correlation index (RFDC)
than the other methods. From Figure 6, it can be clearly seen
that the RFDC value of the HLGSA method is 0.916, which
is higher than RFDC of MARS, M5RT, and CMLR methods
(which are 0.900, 0.888, and 0.882).

Table 3 reports the results of three performance eval-
uation statistical indexes for the HLGSA, MARS, M5RT,
and CMLR methods in forecasting river flows of the Shyok
catchment. In case of input combinations, here also IC1 gives
the worst forecast results compared to the IC1 and IC3.
However, in contrast to Astore application, here IC3 shows
better accuracy than the IC2 for all the applied methods. In
the case of data sets, it is evident from the table that DS4 gives
the worst prediction results for all the methods. Similar to
Astore Basin, here also the maximum river flow value of the
Shyok Basin’s test set, DS4 (RFmax = 2080.7m3/s), is higher
than that of the training value (see Table 1). Another reason
of this may be the fact that the DS2 has low correlations
with the preceding river flow input data in comparison to the
other data sets. It is obvious from the table that all methods
give good prediction results for the DS3 among all input
combination scenarios.The best model structures for all four
appliedmethods in case of Shyok catchment are found for the
DS3 and IC3. Similar to the Astore Basin, here also Table 3
clearly explores that the HLGSA method outperforms the
other methods from RFRMSE, RFMAE, and RFDC viewpoints
for all data sets and input combination scenarios. Here, also
the MARS gives better accuracy than the M5RT and CMLR
methods for all data sets and input combinations. However
in contrast to Astore Basin, here M5RT provides better
prediction results than the CMLR method. The best RFRMSE
for the proposed method is better as 109.20m3/s compared



10 Advances in Meteorology

5004003002001000

500

400

300

200

100

0

Observed (m3/s)

H
LG

SA
 fo

re
ca

ste
d 

(m
3
/s

)

y = 1.1658x + 6.1123

R2 = 0.9172

(a)

500

400

300

200

100

0

5004003002001000

Observed (m3/s)

M
A

RS
 fo

re
ca

ste
d 

(m
3
/s

)

y = 1.1436x − 5.4553

R2 = 0.9001

(b)

5004003002001000

500

400

300

200

100

0

Observed (m3/s)

M
5

RT
 fo

re
ca

ste
d 

(m
3
/s

)

y = 1.2176x − 2.7969

R2 = 0.8882

(c)

5004003002001000

500

400

300

200

100

0

Observed (m3/s)

CM
LR

 fo
re

ca
ste

d 
(m

3
/s

)

y = 0.9444x + 7.8067

R2 = 0.8817

(d)

Figure 6: The observed and forecasted river flow by the HLGSA, MARS, M5RT, and CMLR models using DS4 data set: Astore catchment.
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Figure 7: Overall errors of forecasted river flow using all normal models for Shyok catchment.

to MARS, M5RT, and CMLR methods (128.38, 141.13, and
151.21m3/s), respectively. This is also true for RFMAE values
where the best RFMAE for the proposed method is 55.75m3/s
compared toMARS,M5RT, andCMLRmethods (69.52, 77.27,
and 86.70m3/s), respectively.

Figures 7(a)-7(b) compare the overall average errors
statistics of all methods in prediction river flows of Shyok
Basin. Similar to Astore, here the figure clearly shows that
RFRMSE and RFMAE indexes of the HLGSA method give
lower values in comparison to the MARS, M5RT, and CMLR
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Figure 8: The observed and forecasted river flow by the HLGSA, MARS, M5RT, and CMLR models using DS3 data set: Shyok catchment.

methods and report that the HLGSA performs better than
the other methods. However, in contrast to Astore, here the
MARS andM5RT give almost same accuracy results whereas
CMLR provides the worst performance in comparison to the
other methods due to having higher values of both error
indexes. In case of Shyok catchment, HLGSA decreases the
overall mean RFRMSE of the MARS, M5RT, and CMLR by
11.48%, 19.55%, and 36.19%, respectively. The scatterplots of
the original and predictedmonthly river flows of Shyok Basin
by all the methods using their best model structures are
reported in Figures 8(a)–8(d). The figure clearly shows the
superior accuracy of the HLGSA method over the MARS,
M5RT, and CMLRmethods. It is evident from the figure that
the HLGSAmethod has a good fit to the observed river flows
data in comparison to the othermethods by having the higher
value of RFDC. From Figure 8, it can be clearly seen that the
RFDC value of the HLGSA method is 0.947, which is higher
than RFDC of MARS, M5RT, and CMLR methods (which are
0.917, 0.891, and 0.876).

Selection of the proper kernel function (KF) is very
important in obtaining highly accurate HLGSA method. The

accuracy of the HLGSA method produced by different types
of KF is different. In this research, the RBKF was utilized
for determining the prediction results of river flows of both
basins. However, the KF has many other types, and mostly
common KF types are polynomial KF, sigmoid KF, Gaussian
KF, Morlet KF, Mexican hat KF, and Meyer KF. To evaluate
the performance of the applied KF in this study, six different
kernel functionswere compared in prediction of river flows of
both catchments by using the best HLGSA model structures
and were reported in Table 4. Table 4 clearly proves the
superiority of the RBKF over the other kernel functions due
to having smaller values of both errors indexes (RFRMSE =40.09, RFMAE = 25.05 for Astore and RFRMSE = 109.20,
RFMAE = 55.75 for Shyok) and higher value of RFDC (RFDC =0.916 for Astore andRFDC = 0.947 for Shyok) for both basins.
7. Effect of Log Transform on the Prediction

Accuracy of the Soft Computing Methods

In this section of the paper, the effect of log transform on the
prediction accuracy of the applied methods was investigated
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Table 3: Comparison of the HLGSA, MARS, M5RT, and CMLR methods: Shyok catchment.

Indexes Cross validation data sets Input combinations Methods
HLGSA MARS M5RT CMLR

RFRMSE

DS1
IC1 168.82 181.90 208.64 352.90
IC2 145.96 156.39 171.05 209.44
IC3 123.69 152.65 155.46 173.55

DS2
IC1 176.70 214.12 251.98 328.46
IC2 151.87 178.95 209.81 224.69
IC3 135.67 176.82 177.60 182.70

DS3
IC1 163.33 178.43 200.20 300.36
IC2 138.85 149.03 149.96 201.21
IC3 109.20 128.38 141.13 151.21

DS4
IC1 209.95 232.83 264.04 371.26
IC2 185.74 193.75 218.38 257.42
IC3 170.68 181.39 189.40 195.10

RFMAE

DS1
IC1 102.17 110.63 109.72 220.14
IC2 78.63 92.31 107.78 135.56
IC3 67.52 87.96 100.71 94.33

DS2
IC1 106.96 128.49 113.52 187.27
IC2 81.68 94.76 100.12 121.25
IC3 87.98 93.26 93.68 96.48

DS3
IC1 90.56 105.66 105.78 181.46
IC2 66.59 74.29 97.34 116.65
IC3 55.75 69.52 77.27 86.70

DS4
IC1 120.19 132.56 137.95 224.07
IC2 104.50 107.79 112.15 147.17
IC3 88.99 102.18 103.53 105.04

RFDC

DS1
IC1 0.861 0.840 0.810 0.597
IC2 0.904 0.878 0.841 0.786
IC3 0.909 0.895 0.888 0.864

DS2
IC1 0.872 0.816 0.757 0.616
IC2 0.886 0.869 0.851 0.794
IC3 0.905 0.879 0.865 0.846

DS3
IC1 0.920 0.859 0.816 0.621
IC2 0.929 0.890 0.876 0.841
IC3 0.947 0.917 0.891 0.876

DS4
IC1 0.811 0.781 0.719 0.524
IC2 0.858 0.867 0.802 0.726
IC3 0.920 0.879 0.861 0.820

Table 4: Comparison of HLGSA performance for different kernel functions using best data set of Astore and Shyok catchments.

Catchment Performance indexes Kernel functions
RBF Polynomial Sigmoid Gaussian Morlet Mexican hat Mayer

Astore
RFRMSE 40.09 70.55 67.12 66.88 66.51 65.57 57.90
RFMAE 25.05 42.25 41.48 39.55 39.53 39.38 34.27
RFDC 0.916 0.878 0.892 0.889 0.887 0.901 0.903

Shyok
RFRMSE 109.20 156.53 155.45 138.47 137.72 137.95 144.92
RFMAE 55.75 83.72 82.40 72.52 70.93 76.30 83.21
RFDC 0.947 0.873 0.875 0.901 0.901 0.908 0.903
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Table 5: Comparison of the LHLGSA, LMARS, LM5RT, and LCMLR methods: Astore catchment.

Indexes Cross validation data sets Input combinations Methods
LHLGSA LMARS LM5RT LCMLR

RFRMSE

DS1
IC1 54.73 62.76 70.22 123.24
IC2 43.31 50.88 69.52 65.05
IC3 52.54 54.65 71.86 60.76

DS2
IC1 72.25 78.42 80.68 135.75
IC2 56.78 59.43 74.33 65.48
IC3 58.11 64.52 83.89 68.60

DS3
IC1 56.65 72.06 64.28 129.02
IC2 45.75 48.49 57.39 61.24
IC3 48.69 53.97 64.91 54.83

DS4
IC1 43.36 59.96 61.91 96.04
IC2 35.33 38.56 46.18 40.11
IC3 36.72 38.78 51.49 39.02

RFMAE

DS1
IC1 33.28 43.89 40.52 60.16
IC2 26.91 27.05 38.73 31.79
IC3 28.51 29.98 40.32 30.29

DS2
IC1 42.04 54.60 47.71 66.67
IC2 29.12 30.29 41.03 32.68
IC3 30.62 36.75 45.64 31.15

DS3
IC1 32.83 38.91 34.88 60.72
IC2 27.27 26.81 28.27 27.54
IC3 29.37 28.06 32.86 27.07

DS4
IC1 20.29 39.92 34.89 52.10
IC2 13.08 20.88 24.80 21.42
IC3 17.58 21.06 27.02 21.08

RFDC

DS1
IC1 0.842 0.806 0.741 0.714
IC2 0.894 0.877 0.789 0.824
IC3 0.882 0.859 0.763 0.846

DS2
IC1 0.822 0.785 0.760 0.695
IC2 0.882 0.876 0.775 0.820
IC3 0.866 0.845 0.729 0.836

DS3
IC1 0.856 0.798 0.815 0.736
IC2 0.905 0.890 0.817 0.836
IC3 0.896 0.893 0.779 0.855

DS4
IC1 0.894 0.854 0.843 0.746
IC2 0.921 0.906 0.899 0.896
IC3 0.914 0.896 0.888 0.901

by applying log transform on the time series data of both
basins before applying these methods. Here also the CV
technique was applied and log transform data was divided
into four equal data sets. Table 5 reports the test results of
the LHLGSA, LMARS, LM5RT, and LCMLRmethods for the
Astore Basin. Here, also the IC2 generally provides the best
forecast of LHLGSA, LMARS, and LM5RTmethods whereas
IC3 generally gives better results for the LCMLR method.
However, IC3 generally provides worse results for LM5RT
method in comparison to the IC1 and IC2. LCMLR gives
better performance than the LM5RT method in case of IC2
and IC3 scenarios due to having lower values of RFRMSE and
RFMAE and higher values of RFDC. Similar to previous Astore

application, here also the DS2 gives the worst results whereas
DS4 performs the best among all data sets. The reason of
the worst results of DS2 was already mentioned before. In
case of Astore Basin, the best RFRMSE, RFMAE, and RFDC
values (35.33m3/s, 13.08m3/s, and 0.921) of the LHLGSA are
better than those of the HLGSA (40.09m3/s, 25.05m3/s, and
0.916), respectively. This is also true for the LMARS, LM5RT,
and LCMLR methods where the best RFRMSE, RFMAE, and
RFDC values of the LMARS, LM5RT, and LCMLR methods,
respectively, are 38.78m3/s, 20.88m3/s, and 0.906, 46.18m3/s,
24.80m3/s, and 0.899, and 39.02m3/s, 21.08m3/s, and 0.901,
which are better in comparison to those of theMARS, M5RT,
and CMLR methods (43.46m3/s, 28.36m3/s, and 0.900,
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Figure 9: Overall errors of forecasted river flow using all log models for Astore catchment.

57.26m3/s, 29.83m3/s, and 0.888, and 58.08m3/s, 32.70m3/s,
and 0.888, resp.).

Themean errors statistics of all logmodels is illustrated in
Figures 9(a)-9(b).Thefigure clearly explores the performance
dominancy of LHLGSA over the other corresponding meth-
ods. According to Table 5, LCMLR generally performs better
than LM5RT method in mostly cases of input combinations.
However, on the mean errors values basis, the LCMLR
performs worse than the LM5RT method due to inaccurate
forecast results of IC1 (DS1LCMLR = 123.24 > DS1LM5RT =70.22, DS2LCMLR = 135.75 > DS2LM5RT = 80.68, DS3LCMLR =129.02 > DS3LM5RT = 64.28, DS4LCMLR = 96.04 >
DS4LM5RT = 61.91 according to RFRMSE viewpoint) which
affects the mean errors values. Figures 10(a)–10(d) illustrate
the observed and forecasted river flows of the Astore Basin
by using the log transformmethods. The figure clearly shows
that the LHLGSAmethod is in good fit with the original data.
According to comparison of scatter plots of log and normal
methods (Figures 6 and 10), it is evident that the log methods
have better fitswith the original data in comparison to normal
methods. On the basis of fit line equation, the logmethods are
closer to the exact line than the normal methods (see 𝑎0 and𝑎1 coefficients in Figures 6 and 10). LHLGSA decreases the
overall mean RFRMSE of the LMARS, LM5RT, and LCMLR by
11.46%, 24.16%, and 35.65%, respectively.

Test statistics of the LHLGSA, LMARS, LM5RT, and
LCMLRmethods for the Shyok Basin are reported in Table 6.
Here, in contrast to previous Shyok application, IC2 gives
better forecast results for the LHLGSA and M5RT methods
whereas IC3 performs better for the LMARS and LCMLR
methods. However, IC3 performs slightly better for the
LM5RT, whereas IC2 performs better for the LMARS in
the case of DS3 data set. Similar to the previous Shyok
application, here also DS3 performs the best whereas DS4
performs worst among all data sets. To check the best log
method among all log methods, the mean errors indexes
(RFRMSE and RFMAE) of all log models are plotted in Figures
11(a)-11(b) in the form of bar graphs. The bar graphs of mean
error indexes clearly show that the LHLGSA performs better
than the other log methods due to having lower values of
error indexes. Scatter plots of the observed and predicted
river flows of Shyok catchment for all log methods by using

their best model structures are shown in Figures 12(a)–12(d).
The figure clearly shows that the LHLGSA method gives less
scatter estimates with a higher value of RFDC in comparison
to the LMARS, LM5RT, and LCMLR methods. The figure
also reveals that all log methods are closer to exact line than
the normal methods (compare Figures 8 and 12). On the
basis of comparison, it is obvious that the normal methods
give more scattered forecasts than the log methods. In case
of Shyok catchment, LHLGSA decreases the overall mean
RFRMSE of the LMARS, LM5RT, and LCMLR by 14.49%,
21.73%, and 43.84%, respectively. The log transform does not
equally affect all input combinations and data sets but it can
be observed that this effect is more prominent when more
inputs are used in the case of CMLR methods (see Tables 5
and 6). In contrast to Astore Basin application, for the Shyok
Basin, the best RFRMSE and RFMAE values for the HLGSA
(109.20m3/s and 55.75m3/s) are a little better compared to
LHLGSA (109.41m3/s and 59.01m3/s), respectively. However
in case of similarity index (RFDC), the best RFDC value for
LHLGSA (0.959) is better than that of the HLGSA (0.947)
method. In case of LMARS, LM5RT, and CMLR method,
the best RFRMSE, RFMAE, and RFDC values are better in
comparison withMARS,M5RT, and CMLRmethods, similar
to Astore Basin application.

To evaluate the overall effect of log transform function on
all applied methods, the overall mean error indexes (RFRMSE
andRFMAE) for both basins with andwithout logmethods are
compared in Figures 13(a), 13(b), 14(a), and 14(b). Both graphs
clearly explore that the logmethods give better accuracy than
the normal methods except the LCMLR which gives worse
accuracy compared to the CMLR with respect to RFRMSE
error index. However, the LCMLR gives better accuracy than
the CMLR from the RFMAE index viewpoint for both basins.
The reason of the LCMLR’s bad performance is due to its
worse results in case of IC1 that affects the overall RFRMSE
value. The bar graphs also prove that the proposed HLGSA
method shows better accuracy than the other models in both
cases of normal and logarithm transformed time series data.
According to the bar graphs, the LHLGSA reduces the overall
RFRMSE of the HLGSA by 5.66% and 4.87% for the Astore and
Shyok Basins, respectively. The LMARS reduces the overall
RFRMSE of the MARS by 2.20% and 1.52% for the Astore and
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Figure 10: The observed and forecasted river flow by the LHLGSA, LMARS, LM5RT, and LCMLR models using DS4 data set: Astore
catchment.
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Figure 11: Overall errors of forecasted river flow using all log models for Shyok catchment.

Shyok Basins, respectively. The LM5RT reduced the overall
RFRMSE of the M5RT by 4.41% and 2.22% for the Astore and
Shyok Basins, respectively. However, in the case of multiple
linear regression method, CMLR reduced the overall RFRMSE

of the LCMLR by 9.05% and 7.45% for the Astore and Shyok
Basins, respectively, while, in the case of RFMAE error index,
the LCMLR reduced the overall RFMAE of the CMLR by
3.60% and 10.80%, respectively.
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Figure 12: The observed and forecasted river flow by the LHLGSA, LMARS, LM5RT, and LCMLR models using DS3 data set: Shyok
catchment.
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Figure 13: Comparison of overall errors of all log and normal models for Astore catchment.
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Table 6: Comparison of the LHLGSA, LMARS, LM5RT, and LCMLR methods: Shyok catchment.

Indexes Cross validation data sets Input combinations Methods
LHLGSA LMARS LM5RT LCMLR

RFRMSE

DS1
IC1 165.03 224.25 240.12 395.55
IC2 142.12 160.35 163.1 195.03
IC3 153.55 157.09 171.48 167.49

DS2
IC1 154.19 210.33 224.47 470.32
IC2 133.53 172.82 183.1 201.85
IC3 134.43 155.31 174.73 171.76

DS3
IC1 146.79 186.3 207.49 370.18
IC2 109.41 120.66 141.03 162.35
IC3 117.29 122.36 124.84 138.19

DS4
IC1 207.08 243.15 259.96 512.25
IC2 161.58 171.43 185.77 208.59
IC3 163.91 168.28 209.68 191.93

RFMAE

DS1
IC1 77.85 101.03 131.89 212.74
IC2 65.08 73.75 78.02 85.02
IC3 66.44 66.09 102.13 66.82

DS2
IC1 83.19 99.06 111.59 230.22
IC2 78.05 82.59 94.03 88.69
IC3 78.8 80.38 92.82 86.81

DS3
IC1 75.99 90.21 101.15 190.72
IC2 59.01 64.28 72.03 76.79
IC3 65.47 69.9 71.92 74.58

DS4
IC1 102.66 124.59 138.56 240.1
IC2 76.67 82.41 84.61 93.64
IC3 76.89 80.77 105.49 84.59

RFDC

DS1
IC1 0.845 0.721 0.738 0.677
IC2 0.896 0.884 0.879 0.869
IC3 0.89 0.888 0.842 0.873

DS2
IC1 0.896 0.819 0.818 0.694
IC2 0.91 0.898 0.861 0.856
IC3 0.904 0.901 0.884 0.896

DS3
IC1 0.921 0.782 0.899 0.721
IC2 0.959 0.947 0.923 0.911
IC3 0.953 0.938 0.930 0.920

DS4
IC1 0.823 0.752 0.736 0.625
IC2 0.89 0.887 0.88 0.832
IC3 0.873 0.895 0.782 0.855

8. Comparison of LHLGSA and HLGSA
Methods in Estimating River Flows Using
Nearby River Flows Data

In this last section of the research, the performance of the
HLGSA and LHLGSA is evaluated in river flow estimation
of a basin using flow data from a nearby basin. The river
flows estimation using nearby basin’s flow data is a vital issue
because Pakistan is a developing country and many basins
have long duration of missing flows data due to financial
problems in the maintenance of the hydraulic gauging sta-
tions at higher altitudes. Since river flows play a key role in
planning and designing of hydropower projects and for the

flood mitigation, it is necessary to find a suitable way to fill
these missing flows data. In this paper, the river flows data of
the Astore Basin is used to estimate the flow data of the Shyok
Basin. In this application, also the CV technique is applied
to better see the accuracy of both methods in estimating
river flows. Table 7 shows the RFRMSE, RFMAE, and RFDC
values of both methods in estimating monthly river flows of
Shyok Basin. The best input combination for the LHLGSA
and HLGSA methods is IC3 while IC2 generally gives worse
results for both methods. DS4 gives better accuracy than
the other DS whereas DS1 provides the worst estimates for
both methods. Table 7 clearly shows the superiority of the
LHLGSA over HLGSA in case of accuracy under all data sets
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Table 7: Comparison of the LHLGSA and HLGSA methods in estimating river flow of the Shyok catchment by using the data of Astore
catchment.

Indexes Cross validation data sets Input combinations Methods
LHLGSA HLGSA

RFRMSE

DS1
IC1 267.33 254.43
IC2 237.07 234.53
IC3 232.12 233.22

DS2
IC1 214.19 218.81
IC2 192.56 199.51
IC3 188.45 195.61

DS3
IC1 217.30 241.62
IC2 193.67 214.29
IC3 188.67 204.49

DS4
IC1 192.60 216.17
IC2 182.55 189.68
IC3 177.62 189.03

RFMAE

DS1
IC1 141.17 135.81
IC2 130.29 128.41
IC3 115.68 122.55

DS2
IC1 115.05 119.37
IC2 105.80 107.56
IC3 96.79 99.75

DS3
IC1 104.98 116.19
IC2 91.91 107.76
IC3 88.02 102.42

DS4
IC1 95.95 112.59
IC2 85.95 105.30
IC3 80.21 99.66

RFDC

DS1
IC1 0.775 0.786
IC2 0.847 0.857
IC3 0.866 0.862

DS2
IC1 0.772 0.766
IC2 0.802 0.773
IC3 0.814 0.776

DS3
IC1 0.808 0.797
IC2 0.816 0.801
IC3 0.833 0.809

DS4
IC1 0.846 0.814
IC2 0.878 0.870
IC3 0.882 0.871

and input combinations. It can also be seen that LHLGSA
gave lower values of error indexes in case of the best data set
with the best input combination (RFRMSE of LHLGSA= 177.62< RFRMSE of HLGSA = 189.03 and RFMAE of LHLGSA = 80.21< RFMAE of HLGSA = 99.66). The original and estimated
river flows by the LHLGSA and HLGSA methods using
their best model structures (DS4 with IC3) are illustrated
in Figure 15. The figure clearly shows that the LHLGSA has
higher value of RFDC (0.882 > 0.871) representing better
estimation than the HLGSA method. Figure 16 compares
the mean error indexes of both methods in estimation river
flows of Shyok Basin. It can be seen from the figure that
the LHLGSA shows better accuracy than the HLGSA by

having lower values of errors indexes. LHLGSA decreases the
overall mean RFRMSE of the HLGSA method by 4.10% in the
estimation of ShyokBasin flows using the river flows ofAstore
Basin.

9. Discussion

On the basis of above results, the key findings can be sum-
marized as follows.

(1) TheAstore Basin reported lower values of RFRMSE and
RFMAE in comparison with the Shyok Basin. This is
due to the mean river flow of the basins; Astore Basin
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Figure 14: Comparison of overall errors of all log and normal models for Shyok catchment.
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Figure 15: The river flow estimates of the Shyok Basin by LHLGSA and HLGSA models using the data of Astore Basin: DS4 data set.
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Figure 16: Comparison of overall errors of LHLGSA and HLGSA models for estimating river flow of Shyok catchment using Astore
catchment’s river flow.



20 Advances in Meteorology

is characterized by mean river flow of 142m3/s while
the mean river flow of Shyok Basin is 457m3/s.

(2) It was also observed that the prediction accuracy of
all methods including proposed method was mostly
improved with increasing in input numbers which
indicated that all input combinations have positive
effects on predicting river flow especially in case of
CMLR method.

(3) It was also found that the higher value of testing
data set’s maximum river flow in comparison with
other training data set’s maximum river flow values
caused the extrapolation difficulties and produced
worst prediction results for that data set.

(4) Overall, the HLGSA and LHLGSA methods out-
performed the MARS, M5RT, CMLR and LMARS,
LM5RT, and LCMLR methods, respectively. More-
over, the comparison between Figures 13 and 14
indicates that the prediction results with log trans-
form function are better on the mean basis than
the prediction results without log transform function
using all regression methods including the proposed
method which means the log transform function is
suitable for denoising the river flow data.

(5) In literature, many studies reported that MARS
performed better or equally in comparison with
the LSSVR methods [43, 44, 76–78]. However, in
this study, the hybrid LSSVR method with gravita-
tional search algorithm performed better thanMARS
method. The main reason behind this may be the
LSSVR’s strong generalization capability and nonlin-
ear fitting ability and the second reason may be the
selection of optimal LSSVR control parameters (𝛾 and𝜎2) through GSA that directly affects and improves
the accuracy of the method. The powerful global
search ability of GSA helps to find the optimal and
suitable values for the LSSVR control parameters in
a shorter time in comparison to other algorithms.
We can conclude that, in application of LSSVM,
the control parameters should be adequately opti-
mized by using global optimization techniques. This
will decrease the uncertainties in obtaining optimal
LSSVMmodels.

(6) In general, the benchmark regression methods can
be ranked according to their prediction accuracy as
MARS, M5RT, and CMLR. The reason behind the
worst results ofM5RT and CMLRmethods can be the
linear structure of these models.

(7) The RFRMSE, RFMAE, and RFDC results validate that
the HLGSA and LHLGSA methods can be effectively
applied for the prediction and estimation of river flow.

10. Conclusions

In the current study, river flow data of Astore and Shyok
rivers was used to determine the forecasting capability of
HLGSA, MARS, M5RT, and CMLR methods by using the

antecedent river flow values as inputs. Two error indexes
(RFRMSE and RFMAE) and one similarity index (RFDC) were
used for comparing the prediction accuracy of thesemethods.
CV technique was used in all the applications to better
see the prediction accuracy of the data sets. In the first
part of the study, among four regression methods, HLGSA
provided better results than the other methods in prediction
of the monthly river flow data of both catchments. HLGSA
improved the prediction accuracy of the MARS, M5RT,
and CMLR by 8.22%, 23.15%, and 24.49% in Astore Basin,
respectively, whereas, for Shyok Basin, HLGSA improved the
prediction accuracy of the MARS, M5RT, and CMLR meth-
ods by 11.48%, 19.55%, and 36.19%, respectively. In the current
study, radial basis kernel function was selected for HLGSA
model due to its better prediction accuracy. In the second
part of the study, the effect of logarithm transform function
on prediction performance of all regressionmethods was also
investigated. Results reported that after applying logarithm
function on river flow time series data, all the regression
methods provided better prediction accuracy for both basins.
Prediction results also exposed that the HLGSA method
outperformed the other methods. LHLGSA decreased the
overall mean RFRMSE of the LMARS, LM5RT, and LCMLR by
11.46%, 24.16%, and 35.65%, respectively, for theAstore Basin,
whereas, for Shyok Basin, LHLGSA decreases the overall
meanRFRMSE of the LMARS, LM5RT, and LCMLRby 14.49%,
21.73%, and 43.84%, respectively. On the comparison of log
transformed methods and normal methods, the LHLGSA
reduced the overall RFRMSE of the HLGSA by 5.66% and
4.87% for the Astore and Shyok Basins, respectively. LMARS
reduced the overall RFRMSE of the MARS by 2.20% and 1.52%
for the Astore and Shyok Basins, respectively. The LM5RT
reduced the overall RFRMSE of the M5RT by 4.41% and 2.22%
for the Astore and Shyok Basins, respectively. The third part
of the study evaluated the prediction performance of the
HLGSA and LHLGSAmethods in river flow estimation using
river flow data of the nearby basin. The test results revealed
that the LHLGSA performed better than the HLGSA in esti-
mating river flows of Shyok Basin by using Astore Basin data.

In this study we forecasted river flows with only previous
river flow values as inputs. These prediction accuracies of the
applied methods could be improved if more input variables
were available. Further studies may be conducted by includ-
ing more inputs such as rainfall, snowpack, and temperature
or/and building prediction models using more advanced
modeling methods at these study sites. The proposed data
drivenmethodsmay be applied for other regions with similar
or different climates. In this case, however, the methods
should be properly calibrated by using high number of river
flow data.
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