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1 Introduction

The extent to which asset prices can be characterized by persistent deviations from

fundamental values continues to spark the debate on the functioning of financial

markets. This debate has spawned a sizable literature in experimental and behav-

ioral finance. Mispricing as well as bubbles and crashes in asset prices are robust

features of laboratory experiments where human subjects engage in trading a fi-

nancial asset. These phenomena, which have been linked to bounded rationality

both in speculative trading and in forecasting future market prices, occur under a

vast number of different conditions, see Palan (2013) for a review.

The present paper belongs to the growing literature of so-called “Learning to

Forecast” (LtF) laboratory experiments.1 In LtF experiments participants act as

professional forecasters for hypothetical institutional investors. Given the partic-

ipants’ forecasts, the investors’ trading decisions are optimal, so that any devia-

tion of prices from fundamental values is due to bounded rationality in forecasting.

Participants forecast the future price of an infinitely lived risky asset for many con-

secutive periods, and are rewarded according to their forecasting accuracy.2 The

self-referential nature of financial markets, where expectations of future prices are

an important determinant of market-clearing prices, is explicitly taken into ac-

count in such an experiment. In fact, there exists a positive feedback link between

forecasts and prices in financial markets: an expected future increase in the price

of a stock increases the current demand for that stock and, consequently, increases

the market-clearing price as well. This feedback creates an opportunity for desta-

bilizing trend-extrapolating forecasting strategies to outperform other strategies,

thereby creating persistent mispricing, see for example the theoretical arguments

in Anufriev and Hommes (2012b) and Anufriev et al. (2019).

In previous LtF experiments – which typically feature large bubbles and crashes

in asset prices – the investment (and hence forecast) horizon is fixed to one pe-

riod, which seems quite restrictive. The literature on behavioral finance shows

that short investment horizons may be conducive to mispricing, see, e.g., De Long

et al. (1990) and Dow and Gorton (1994) for theoretical papers, and Cella et al.

(2013) and Cremers and Pareek (2015) for empirical support. The main goal of

1The Learning to Forecast experimental design was introduced in Marimon et al. (1993).
Early contributions are reviewed in Hommes (2011). Recent examples include Bao et al. (2017),
Kopányi et al. (2019), Kopányi-Peuker and Weber (2020), and Hommes et al. (2021).

2The advantage of the LtF experimental design is that it allows the experimenters to obtain
clean data on participants’ forecasts. A potential drawback is that participants’ forecasts might
not be consistent with their trading behavior. However, Bao et al. (2013, 2017) demonstrate
that the results from LtF experiments are similar to those of so-called “Learning to Optimize”
experiments, where participants are allowed to actively trade in the asset.
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the current paper is to understand the role that the investment or forecast hori-

zon plays in the emergence of excess volatility in general, and these bubbles and

crashes in particular. To that end, we design and run a novel LtF experiment,

where we vary the investment horizon of the institutional investors and, as a con-

sequence, the forecast horizon of the participants. Depending on the treatment,

participants have to predict, at the beginning of period t, the price for either pe-

riod t + 1, period t + 2, or period t + 3. The variation in the horizon is our first

treatment variable. Our second treatment variable is the initial price history. Be-

fore participants start their prediction task, they observe the ten previous prices,

where in some treatments this price history is more volatile than in others.3 This

treatment variation allows us to study the effect of the initial history on price

volatility. Importantly, in all our treatments, we have the same rational expec-

tation equilibrium characterized by a constant fundamental price augmented by

small, unpredictable noise.

We find that price fluctuations tend to decrease with the investment hori-

zon. One explanation for this may be that an increase in the investment horizon

decreases the relevant discount factor and thereby weakens the strength of the

expectations feedback. This would decrease price volatility, even if participants’

behavior is unaffected by the investment horizon. To control for this effect, we

add a treatment that compensates for the decrease in feedback strength for longer

investment horizons. Even with this correction, price fluctuations are typically

smaller for longer horizons, confirming that an increase in the horizon tends to

stabilize asset price dynamics. In particular, large bubbles and crashes only emerge

for the shortest possible investment horizon. In relation to the second treatment

variable, we find that in the treatments with a relatively stable initial price his-

tory price volatility remains small until the end of the experiment, with prices

staying in the vicinity of their fundamental value. Fluctuations tend to be much

larger in the treatments with a more volatile initial price history. Taken together,

these results suggest that policy measures that limit the possibilities for trading

with a short investment horizon, e.g., by imposing a minimum holding period for

the asset, may contribute to stabilizing asset markets and reducing excess price

volatility, and that the effect of these measures will last beyond the period for

which they are in place.

3In many LtF experiments – where participants typically start with a blank slate – there is
substantial heterogeneity in the endogenous price dynamics between groups in the same treat-
ment (see, e.g., Hommes et al., 2005 and Kopányi et al., 2019). Anufriev and Hommes (2012a,b)
explain these outcomes by the Heuristic Switching Model (HSM). This model generates path-
dependent price dynamics, suggesting that the between-group heterogeneity in LtF experiments
can be a consequence of the differences in price dynamics that endogenously emerge in the first
few periods of the experiments.
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The large bubbles that emerge for a short investment horizon can be attributed

to participants coordinating on a trend-extrapolating prediction strategy. An in-

crease in prices then leads all participants to expect a further price increase which,

due to the positive feedback nature of the asset pricing model, leads to higher

prices, confirming participants’ expectations. We provide two explanations for

the decrease in price volatility for longer horizons. First, participants have a much

stronger tendency to extrapolate trends over shorter investment horizons than

over longer horizons. Second, participants fail to coordinate their expectations:

dispersion of individual forecasts is typically higher when the investment horizon

is longer. This inhibits the emergence of large self-confirming deviations from the

fundamental value.4 Finally, we do not find a significant difference in the forecast-

ing rules that participants use when we compare treatments with small and large

initial price volatility. This suggests that, in order for trend-extrapolating rules to

be destabilizing, the initial price dynamics should be sufficiently volatile to begin

with.

We contribute to the growing experimental literature on forecasting behavior

along two dimensions, by studying: (i) the impact of “priming” participants by

manipulating the initial price history, and (ii) the effect of the forecasting horizon.

To the best of our knowledge, the only other LtF experiment that controls for

the price history is Hennequin (2019). She finds that the incidence and size of

bubbles increases in markets that contain more participants that have experienced

bubbles before. This is consistent with our finding that an unstable initial price

history induces volatile price dynamics, although in our experiment participants

only observe, but do not experience, the price history.5

For the vast majority of LtF experiments, a short investment horizon is as-

sumed, with participants predicting the price for either the current or the next

period. One exception is Colasante et al. (2020) who consider an LtF experiment

where in each period participants have to predict both the price for the current

period, and the prices for all remaining periods, with realized prices only depend-

ing on the forecasts for the current period. They also find more dispersion in

long-run expectations than in short-run expectations, although – in their case –

this does not affect price volatility. Evans et al. (2019) develop a Lucas tree asset

pricing model where trading decisions depend upon the average expected price

4Related to this, Patton and Timmermann (2010), who study survey data on macroeconomic
forecasts of GDP growth and inflation by private sector forecasters, find that there is much more
dispersion in long-horizon forecasts than in short-horizon forecasts.

5Malmendier and Nagel (2011, 2016) provide empirical evidence that expectations of economic
agents are affected by the experiences they have during their lives, although that information is
also available for those who did not experience it. This effect is sometimes called the experience-
description gap (see Hertwig et al., 2004).
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over a finite horizon, and run an LtF experiment where they vary that horizon.

They find that for longer horizons dispersion of forecasts is higher and that the

price is closer to the fundamental value. These results are in line with ours, even

if the underlying model is different. The maximal investment horizon that Evans

et al. (2019) use is substantially longer than in our experiment (10 instead of 3

periods), which implies a much stronger decrease in feedback strength. We find

that already a minor increase in the investment horizon can have a substantial

effect upon the ensuing price dynamics, even when correcting for the decrease in

feedback strength.

Finally, the effect of the investment horizon has been studied in a number of

experimental markets, where participants can trade in the asset. Hirota and Sun-

der (2007) and Hirota et al. (2020), for example, distinguish long-horizon traders,

who can trade in the asset until it reaches maturity and pays out its dividend,

and short-horizon traders, who leave the market before the asset matures and

can therefore only profit from speculating on capital gains. These short-horizon

traders contribute substantially to mispricing and bubble formation. However,

Razen et al. (2017), who also consider trade in an asset with a single dividend

that is paid out when the asset reaches maturity, find that an increase in the

date of maturity (i.e., the investment horizon) may lead to bubbles, which they

attribute to the decreased salience of the dividend payment.

The remainder of the paper is organized as follows. The next section presents

the experimental design and the hypotheses. Results are presented in Section 3.

Section 4 concludes. Experimental instructions, statistical tests and additional

data analysis can be found in the appendices.

2 Experimental Design

The experiment took place at the University of Technology Sydney’s Behavioural

Lab in May, August, and September 2018. Using the Online Recruitment System

for Economic Experiments (Greiner, 2015), we recruited 210 students who partic-

ipated in seven experimental treatments. No student participated in more than

one session. At each session, participants were randomly divided into groups of six

that operated in the same market during the whole experiment. The experimenter

read the instructions aloud (participants had printed copies of the instructions as

well), after which participants did a short quiz that tested their familiarity with

the task. Once all participants completed the quiz, the computerized experiment,

programmed in z-Tree (Fischbacher, 2007), took place. After the experiment, par-
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ticipants filled in a questionnaire and received payment under the double-blind

protocol. Sessions lasted approximately 80 minutes, and participants earned on

average 27 Australian dollars, including a show-up fee.

In the remainder of this section, we introduce the price generating mechanism

used in our LtF experiment (Section 2.1), discuss our experimental treatments

(Section 2.2), and outline the main hypotheses (Section 2.3).

2.1 Price forecasts and market prices: the price generating

mechanism

Our experiment is based on the standard Learning-to-Forecast (LtF) experimental

setup, see Hommes (2011) for an overview. LtF experiments use the present

value model of asset pricing, see, e.g., Campbell et al. (1997), micro-founded and

extended to heterogeneous beliefs in Brock and Hommes (1998). In the model,

mean-variance investors divide their wealth between a risk-free and a risky asset.

The risk-free asset has gross return R = 1 + r > 1. The risky asset pays an IID

dividend with mean ȳ each period; the dividend process is common knowledge.

The price of the risky asset, pt, is determined from the market clearing condition.

In the original model the price evolves as

pt = pf +
1

R

(
p̄et+1 − pf

)
, (1)

where pf = ȳ/r denotes the so-called fundamental value of the risky asset, i.e., the

discounted expected value of future dividends, and p̄et+1 are average investor expec-

tations made in the beginning of time t. The original model assumes that traders

are myopic and the investment horizon of each trader is one period. Consequently,

the expectations at time t are about the next period price, pt+1.

In Appendix A, we generalize this model to the case where traders with ar-

bitrary investment horizons are present in the market, in fixed proportions. The

interpretation that we use in our experiment is that institutional investors, such

as pension funds, trade every period, but each time operate on behalf of retirees

with a specific and fixed investment horizon.6

In our experiment we focus on the situation where all investors have the same

investment horizon H. We leave the case where different investors have differ-

ent investment horizons for future research. To determine optimal demand in

6For example, a pension fund may pursue a strategy with a horizon of 10 years, investing the
funds every month on behalf of a new cohort of clients.
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period t, investor i forms expectations about the dividend stream, Et,i[yt+s] for

s = 1, . . . , H, and about the market clearing price in period t + H, Et,i[pt+H ].

Only these expectations are relevant for the cohort of clients of i investing at time

t. Under our assumption about the dividend process, the stream of discounted

expected dividend payments over the next H periods is the same for all investors

and given by
H∑
s=1

RH−sEt,i[yt+s] = ȳ
RH − 1

R− 1
= pf

(
RH − 1

)
.

Instead, the price forecasts are heterogeneous, and the demand of mean-variance

investor i, given his expectations, can be shown to be

zt,i =
1

aσ2

(
Et,i[pt+H ] + pf (RH − 1)−Rhpt

)
,

where a is the risk aversion coefficient, and σ2 is the perceived variance of the

risky asset return during H periods, assumed to be the same for all investors. The

market-clearing price is then given by

pt = pf +
1

RH

(
p̄et+H − pf − εt

)
, (2)

where p̄et+H is the average prediction for the price in period t + H and εt is a

small random outside supply of the asset from noise traders, with mean zero.

Equation (2) governs the relation between individual forecasts and market-clearing

prices that we use in our LtF laboratory experiment.7 Note that in period t,

subjects have to predict the price for time t+H on the basis of information up to

time t− 1, since pt is not in their information set yet.8

The rational expectation equilibrium is given by the fundamental value pf .

Indeed, if all traders predict the fundamental price, the realized price will be

equal to pf in expectation, and forecasts will be correct, on average. Importantly,

the fundamental value is independent of the investment horizon.

The price generating mechanism (2) defines the current market price pt as a

weighted average of the fundamental value and average expectations for the price

in period t+H. This creates positive expectations feedback : an increase in average

expectations of the future price increases the demand for the asset and, through

7As all investors have the same investment horizon, there is no structural dependence between
subsequent periods for H > 1. For example, when H = 2, price expectations for the odd periods
determine prices in the odd periods, and price expectations for even periods determine prices in
even periods. However, there could be a behavioral dependence: expectations could be informed
by past prices from both odd and even periods.

8For this reason, experiments with H = 1 are referred as “two-periods ahead” LtF experi-
ments in the literature. To avoid confusion we will not use this terminology.
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market clearing, leads to an instantaneous increase in the current market price.

The strength of this feedback is given by the discount factor 1/RH in (2) which

diminishes with the investment horizon H, with RH reflecting the opportunity

cost of investing in the risky asset. As a consequence, an expected price increase

will have a smaller effect on the market-clearing price, if it lies in the more distant

future.9

A potential issue for LtF experiments based on the pricing equation (2) is

that extreme “outlier” forecasts have a substantial effect on the realized price

dynamics. One way around this problem would be to let the realized price be a

function of the median, instead of the average, forecast, as in Arifovic and Petersen

(2017). Another possibility would be to exclude forecasts that deviate too much

from the last price when determining the average forecast, as in Kopányi-Peuker

and Weber (2020). We use the standard LtF setup in our experiment, as this is

the most straightforward implementation of the underlying asset pricing model.

2.2 Treatments

In our experiment, participants have to forecast asset prices for about 50 consec-

utive periods. The instructions (see Appendix B) specify the participant’s role as

a “financial forecaster” for a large pension fund. It is explained that the partici-

pant’s task is to give point forecasts of the future asset price, and that based on

those forecasts, the pension fund the participant advises will make trading deci-

sions. Following the standard practice of LtF experiments, the instructions do not

specify the exact pricing equation. However, they highlight qualitative features of

the market, e.g., that a higher price forecast leads to a larger demand for the asset

by the fund, that there are several funds affecting the total demand (the number of

funds is unknown to the participants), and that the realized price follows from the

equilibrium between aggregate demand and fixed supply. The numerical values

of the interest rate r and the mean dividend ȳ are provided to the participants

which, in principle, allows them to calculate the fundamental value pf = ȳ/r. We

choose values of r and ȳ in such a way that this fundamental value is 60 in all

treatments. The instructions carefully explain the timing of the forecasting task,

i.e., for how many periods ahead the price forecast is made, and how forecasting

accuracy is determined.

9Mean-variance optimization underlying our theoretical model results in a constant discount
factor per period, inversely related to the gross return of the risk-free asset. The discount factor
gets smaller with a longer horizon, reflecting that investors betting on growing prices of the risky
asset require a larger expected price increase to hold the asset for a longer time.
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Figure 1: An example of the experimental screen.

During the experiment, the information at the disposal of a participant consists

of all past realized prices and own past predictions shown in the computer screen,

see Fig. 1. This information is presented in both graph and table format. The last

period earnings and cumulative earnings are also shown on the screen. In each

decision period, participants should type their forecast in the box in the lower

part of the screen and submit it by pressing the “OK” button.10 The timer in the

upper part of the screen suggests participants to submit their forecast within 30

seconds, but this is not a binding restriction.

Participants are rewarded for their forecasting accuracy under the following

scoring rule widely used in LtF experiments:

ei,t = max

{
1300− 1300

49

(
pt − pei,t

)2
, 0

}
, (3)

where ei,t are the points earned by participant i in period t and pei,t is the par-

ticipant’s point prediction for price pt. Rule (3) is decreasing in the quadratic

forecasting error, providing incentives to make accurate predictions, and is trun-

cated at zero to avoid that participants suffer losses. Points accumulated during 50

periods (as specified below) are converted to Australian dollars (AUD), with the

exchange rate of 0.5 AUD for 1300 points, and are paid to the participants on top

10No restrictions are given to the participants about the prices they can submit. However, to
be consistent with earlier LtF experiments, only numbers between 0 and 1000 with up to two
decimal places are accepted. A participant will only learn about these restrictions after trying
to submit a prediction that is not acceptable with a prompt indicating the bounds and asking
to submit another prediction. This rarely happens in our experiment.
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Treatment Initial Horizon Interest Dividend Feedback Paid Number of
price H r ȳ 1/(1 + r)H periods groups

ConH1
Converging

1 5% 3 0.95 12− 61 3
ConH2 2 5% 3 0.91 13− 62 4
ConH3 3 5% 3 0.86 14− 63 3

OscH1

Oscillating

1 5% 3 0.95 12− 61 8
OscH2 2 5% 3 0.91 13− 62 5
OscH3 3 5% 3 0.86 14− 63 6
OscH3SF 3 1.6% 0.96 0.95 14− 63 6

Table 1: Information on experimental design.

of a show-up fee.11 Note that expected payoffs are maximized if all participants

predict the fundamental value in each period.

Our experiment features seven treatments. They are summarized in Table 1.

Fundamental price, pf = ȳ/r, is the same in each treatment and equal to 60.

There are N = 6 participants in each group and the same realization of shocks

εt ∼ N(0, 0.25) is used in every group of each treatment. The treatments differ

along three dimensions. First, we use two different initial price histories as initial

conditions for the experiment, to study the effect of previous price developments

on the ensuing price dynamics in a positive expectations feedback environment.

For the two initial price histories, we take the first 10 prices in two groups from

the standard LtF experiment in Hommes et al. (2005). The left panels of Fig. 3

below start with the first 10 prices observed in group 6 of the Hommes et al.

(2005), and the right panels start with the first 10 prices observed in group 7

of the same experiment. Both price histories are hill-shaped and deviate from

the fundamental price, which is also 60 in the Hommes et al. (2005) experiment.

However, the deviations of the first price history (all 10 prices are between 56.0

and 60.0) are much smaller than those of the second price history, where all prices

are between 44.8 and 67.1. From now on we will refer to the first price history

as “Converging” and to the second price history as “Oscillating”.12 Note that,

given the initial price history of 10 periods, the first price that is determined

endogenously in the experiment is the price in period t = 11.

11We set a show-up fee of 10 AUD and communicated this in advance to the participants. Be-
cause payoffs in some treatments were quite low, we increased show-up fees for those treatments
ex post. In the end show-up fees ranged between 10 and 20 AUD.

12The two price histories are qualitatively relatively similar, with prices first increasing up
to, or larger than the fundamental value, and then decreasing again. Alternatively, we could
have chosen price histories that are farther apart (e.g., one where prices slowly approach the
fundamental value from below versus one where prices are monotonically increasing and go far
beyond the fundamental value in the first 10 periods). In order to focus on the effect of small
variations in initial conditions, we did not want to make the differences between the two price
histories too large.
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The second, and most important, variation in treatments is the investment

horizon H that affects pricing equation (2). All participants in the same treatment

have the same investment horizon, which is either H = 1, H = 2, or H = 3. For

treatments with H = 1, participants start the experiment by predicting the price

for period 12. These forecasts determine, through equation (2), price p11. After

learning this price, participants predict the price for period 13, which determines

p12, and so on. The final forecast is for period 62, and determines price p61. The

forecasting accuracy of the participants’ predictions can only be evaluated for

periods 12 up to 61. Thus, participants are rewarded for their forecasts for these

periods only (see column ‘Paid periods’ in Table 1). Similarly, for treatments with

H = 2, the first prediction, which determines p11, is for the price in period 13,

and the final prediction, determining p62, is for period 64. In these treatments,

participants are rewarded for the predictions for periods 13 to 62. Finally, for

treatments with H = 3, the first prediction, determining p11, is for period 14,

and the final prediction, determining p63, is for period 66. In the treatments with

H = 3, the participants are rewarded for predictions for periods 14 to 63. The

corresponding dynamic structure of the experiment, relating the current period,

periods for which information is available, and the period for which the forecast

is made, is carefully explained in the instructions. Participants are explicitly

informed about the periods for which their forecasting accuracy affects earnings.13

By having two price histories and three investment horizons, we have a 2 × 3

between-subjects design. We run one more treatment with the oscillatory initial

price history and investment horizon H = 3, but with a lower interest rate, r =

0.016 and a mean dividend of ȳ = 0.96. This combination of lower interest rate and

lower mean dividend gives rise to the same fundamental value, pf = 60, as in the

other treatments. However, the feedback strength, 1/RH , for this new treatment

(with H = 3) is now the same as that for the original treatment with H = 1. We

refer to this treatment as the OscH3SF treatment, where SF stands for “strong

feedback”.

2.3 Conjectures

For H = 1, the pricing equation (2) corresponds to the price generating mechanism

used in earlier LtF experiments (see, e.g., Hommes et al., 2005, 2008, 2021). The

following results from these experiments are remarkably robust, although there are

13Note that in all treatments participants were incentivized for fifty periods. Forecasts for
some periods (e.g., for periods 64, 65 and 66, in treatments with H = 3) were not incentivized.
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minor differences in the experimental design.14 Price dynamics often do not con-

verge to the fundamental value within 50 periods, and instead are characterized

by the emergence of large bubbles and crashes, with prices regularly approach-

ing the upper bound of 1000, exceeding the fundamental value by a factor of 16.

Moreover, although participants cannot observe each others’ forecasts, individual

forecasts of participants in the same group are highly coordinated. These results

have been attributed to the positive expectations feedback of the price generating

mechanism. For instance, for a standard choice of R = 1.05, the market price in

(2) will be close to the average expected price, even when this average deviates

from the fundamental value. Participants that submit forecasts that are close

to the average forecast in their group will perform relatively well. This feature

promotes coordination of expectations and, as a consequence, forecast errors are

typically strongly correlated across participants. Moreover, as soon as price de-

viates from the fundamental value, participants tend to coordinate on a so-called

trend-extrapolating heuristic

pei,t+1 = pt−1 + θ (pt−1 − pt−2) , (4)

with positive θ. This forecasting rule extrapolates the most recent trend in prices

into the future. For large enough θ, the use of such a rule is consistent with

the endogenous emergence of bubbles.15 Indeed, such rules have been frequently

observed in LtF experiments, for example, in Hommes et al. (2005).

Our experiment aims at understanding the effect of providing a price history

and increasing the investment horizon on the emergence of asset price bubbles.

To the best of our knowledge, in all LtF experiments, except Hennequin (2019),

participants start the experiment without any prior information about prices.16

Given the path dependency observed in these earlier experiments, i.e., the finding

that the price dynamics in the initial periods can help explain the price dynamics

in the remaining periods of the experiment (see Anufriev and Hommes, 2012a),

we hypothesize that the difference in price histories will affect price dynamics in

our experiment, as formulated in our first conjecture.

Conjecture 1. Price volatility will be higher in groups with an oscillating initial

price history than in groups with a converging initial price history.

14For example, in Hommes et al. (2005) stabilizing “robot” traders are added to most groups,
and the number of participants per group varies across experiments from N = 6 in Hommes
et al. (2005, 2008), to around 100 in some of the groups in Hommes et al. (2021).

15See the discussion of Fig. 2 below.
16In most LtF experiments, participants are only told that the first two prices are “likely” to

lie between 0 and 100.
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To test for differences in volatility, we will compare price volatility between treat-

ments with the same horizons (and interest rate) but different price histories. That

is, we will compare treatment ConH1 with treatment OscH1, treatment ConH2

with treatment OscH2, and treatment ConH3 with treatment OscH3.

Our remaining conjectures are concerned with the effect of the investment

horizon on aggregate price behavior and individual predictions. When comparing

the pricing equation (2) for different values of H, two effects stand out. First, as

explained above, the feedback strength (1/RH) decreases with H. This effect is

stabilizing for the price dynamics, because with longer horizons a given deviation

of the average prediction from the fundamental value will result in a smaller price

deviation (see Sonnemans and Tuinstra, 2010, for the effect of feedback strength

on price dynamics). Second, participants have to predict further into the future.

In particular, if they believe that prices will increase between two subsequent peri-

ods, they have to extrapolate this price increase accordingly over their investment

horizon. To be specific, assume that all participants believe that prices between

two subsequent periods evolve as in (4) with θ ≥ 0. By iterating this equation

forward, we obtain

pei,t+H = pt−1 + θ
(
1 + θ + · · ·+ θH

)
(pt−1 − pt−2) , (5)

for a participant with investment horizon H. As one would expect, an increase

in H will lead to an increase in the expected price change. Hence, the trend-

extrapolating heuristic will amplify price trends stronger, when the horizon is

longer. Thus, this effect is destabilizing for the price dynamics. On the other

hand, it assumes a consistent use of the trend-extrapolating heuristic over time,

as in (5), which is computationally more demanding for longer horizons.

It depends on the values of θ, R and H, how the destabilizing effect of a further

extrapolation compares to the stabilizing effect of a lower feedback strength. To

illustrate this dependence, assume that all participants use trend-extrapolating

heuristic (5) and that there are no supply shocks in the market-clearing equation

(2). Then price dynamics in deviations from the fundamental level xt = pt − pf

are given by

xt =
1

RH

(
xt−1 + θ

(
1 + θ + · · ·+ θH

)
(xt−1 − xt−2)

)
. (6)

This is a second-order linear difference equation whose steady state, x = 0, corre-

sponds to the fundamental value. The speed of convergence to this steady state (or

divergence from it) depends on the largest eigenvalue in modulus of this system.

Fig. 2 depicts this largest eigenvalue as a function of the extrapolation coefficient
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Figure 2: The largest eigenvalue for trend-extrapolating behavior in system (6).

θ for all combinations of H and R considered in this paper. The horizontal black

line corresponds to the threshold value 1. Price dynamics are stable if the largest

eigenvalue is below this threshold and unstable otherwise. Generally, the higher

the largest eigenvalue is, the faster the price diverges (or the slower it converges).

The three curves labeled “H=1”, “H=2” and “H=3” show the largest eigen-

value for the corresponding horizon, when R = 1.05. We observe that for small θ

an increase in H stabilizes the system, and for large θ such an increase destabi-

lizes it.17 The effect of an increase in the investment horizon is, therefore, a priori

ambiguous, even if participants form expectations consistently across different in-

vestment horizons. Estimations of the forecasting rules reported in Hommes et al.

(2005) and supported by later LtF experiments with H = 1 and R = 1.05 show

that the value of θ in the trend-extrapolating heuristic (4) is typically above 0.4

and can be as large as 1. Although it does not resolve all ambiguity, this provides

the basis for the following conjecture.18

Conjecture 2. An increase in the investment horizon H leads to an increase in

price volatility.

To verify if this conjecture is correct, we will compare price dynamics across treat-

17All three curves intersect for θ = θc ≈ 0.44, when the horizon effect reverses. The funda-
mental value is stable for θ < 0.64 if H = 1, for θ < 0.58 if H = 2, and for θ < 0.56 if H = 3.
The fundamental value is stable for θ < 0.53 if H = 3 and the feedback is strong as in the
OscH3SF treatment. All threshold values are computed numerically.

18Fig. 2 is obtained assuming that each individual uses the same trend-extrapolating rule (5).
However, simulations also support Hypothesis 2 for the case where the extrapolation coefficient
for each individual is uniformly distributed around the mean value of θ̄ > 0.5. Also note that,
applying Jensen’s inequality, for a given horizon, to the trend-extrapolating rule (5) we find that
the amplification of price trends will be stronger in a population with heterogeneous θ than in
the homogeneous case.
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ments ConH1, ConH2 and ConH3, and across treatments OscH1, OscH2,

and OscH3.

As discussed, the ambiguity of the horizon effect arises because the change of

the horizon affects the feedback strength. Treatment OscH3SF is designed to

remedy this effect: it features the same feedback strength as treatment OscH1,

but the investment horizon is longer. The black solid line in Fig. 2 shows the

largest eigenvalue for treatment OscH3SF, when R = 1.016 and H = 3. For

small θ, the stability is very similar to treatment OscH1, but for large θ the

system is more unstable than in the other three cases. Therefore, provided that

trend-extrapolating participants take the investment horizon into account when

forecasting future prices, we expect to see less stable price dynamics in treatment

OscH3SF than in treatment OscH1. In addition, price dynamics in treatment

OscH3SF should be less stable than in treatment OscH3 as well, because feed-

back strength is higher in OscH3SF than in OscH3, but the investment horizon

is the same.

Conjecture 3. Prices in treatment OscH3SF are more volatile than prices in

treatments OscH1 and OscH3.

If we do not find a significant difference between treatments OscH3SF and

OscH1, this may be because participants do not take into account the longer

investment horizon when extrapolating in the former treatment. In fact, both

Conjecture 2 and Conjecture 3 are based upon the behavioral assumption that

participants extrapolate past prices stronger in their predictions when they face

a longer investment horizon. We use this observation to formulate the following

conjecture.

Conjecture 4. Forecasts of participants in treatments with longer investment

horizons are characterized by a stronger degree of trend extrapolation.

Earlier LtF asset pricing experiments are characterized by strong coordination of

expectations on a common trend-extrapolating prediction strategy. Strong coor-

dination further contributes to the endogenous emergence of bubbles. Because

in our experiment participants have to predict further ahead in treatments with

H > 1, forming predictions there might be cognitively or computationally more

demanding. This may lead to a larger heterogeneity across individual forecasts,

impeding coordination and the emergence of bubbles. This observation gives rise

to our final conjecture.

Conjecture 5. Coordination of expectations in treatments with longer investment

horizons will be lower than in the treatments with shorter investment horizons.

15



We will the validity of this last conjecture by comparing the dispersion of forecasts

across treatments ConH1, ConH2 and ConH3, and across treatments OscH1,

OscH2, and OscH3.

3 Price dynamics, investment horizons and price

histories: Experimental results

We start the discussion of our experimental results with analyzing the impact

of the initial price history and the length of the investment horizon on market

price volatility in Section 3.1. To understand the findings presented there, we

subsequently turn our attention to forecasting behavior in Section 3.2, and discuss

the effect of the investment horizon on the coordination of expectations and on

participants’ tendency to extrapolate trends in prices. For our analysis, we restrict

attention to the incentivized periods, see Table 1. Thus we have observations on

prices and predictions for fifty periods in each group.19

3.1 Aggregate market dynamics

We have 35 groups in our experiment in total, divided over seven treatments, see

Table 1. Fig. 3 shows the evolution of prices for each of these groups, organized by

treatment.20 The left panels of Fig. 3 present market prices for the groups in the

ConH1, ConH2 and ConH3 treatments, and the right panels present market

prices for the groups in the OscH1, OscH2, OscH3 and OscH3SF treatments,

respectively. The first ten periods in each panel show the initial price history (in

black). This initial history is the same for all groups in the same treatment but

differs between the Con and Osc treatments, as explained in Section 2.2. To

19As discussed in Section 2.1, the LtF experiments are vulnerable to forecasts that are seem-
ingly unrelated to the price dynamics. Such outliers were also present in our experiment, which
forced us to exclude some data from the analysis. First, nine of the last ten forecasts of partic-
ipant 5 in group 1 of treatment OscH3SF are equal to either 0, 999 or 1000. These extreme
predictions have a large impact on the realized market price in periods 54−63 in that group. We
excluded those periods in that group from the analysis. Second, we excluded two groups from
the analysis altogether. In a group from treatment ConH1, all predictions of one participant
are much lower (5.0 on average and never higher than 15.4) than both the initial prices (all ten
of which are at least 56.0) or the realized prices (which are 23.8 on average). In a group from
treatment OscH2, the predictions of one participant start with 60.59 for period 13, then mono-
tonically decrease to 2.15 for period 32, after which they monotonically increase up to 102.85 for
period 64. In both cases, these peculiar forecasting rules have an important effect on the entire
price dynamics, which is why we excluded these two groups. Note, however, that our results are
qualitatively robust with respect to including these outliers (see the Online Appendix).

20See Appendix D for the evolution of prices and predictions for each group separately.
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Figure 3: Price dynamics in all experimental treatments. The initial price history
for periods 1-10 is shown in black. Experimental price dynamics in different groups
is shown with different colours. The constant fundamental price of 60 is shown by
the dashed line.
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Figure 4: Price dynamics in groups 6 (purple), 7 (blue) and 8 (yellow) of the
OscH1 treatment.

facilitate the comparison, all panels in Fig. 3 have the same vertical scaling, from

0 to 100. However, in three out of the 35 groups prices systematically go above

100. These three groups are all from treatment OscH1, and prices in these groups

(groups 6, 7 and 8) are shown separately in Fig. 4 with a larger vertical scale.21

We make several observations based on Figs. 3 and 4. First, there is an appar-

ent effect of the initial price history on market price dynamics. Price oscillations

in all 10 groups that start with the converging initial price history are limited,

whereas more than half of the groups that start with the oscillating initial price

history lead to substantial and persistent oscillations. In addition, the treatments

with H = 1 can be compared to earlier LtF experiments. As discussed above,

these experiments – where no initial price history was given to participants – of-

ten lead to large bubbles in asset prices with prices rising to more than 10 times

the fundamental value.22 In our experiment, such a large bubble only emerges in

one out of the eight groups (group 7) in treatment OscH1 and in none of the

three groups in ConH1. This observation suggests that, compared to giving no

price history at all, the oscillating initial price history also tends to reduce the

incidence of large bubbles substantially. That may happen because in the last

21There are two other instances where the price is above 100 for only one period. These are
period 32 in group 2 of treatment OscH3 and period 58 in group 5 of treatment OscH3SF,
when the price suddenly jumps to 145 and 134, respectively, and drops below 100 again in the
subsequent period. In both cases, this is due to a sudden extreme prediction by one of the
participants. The reason might be an accidental typo by that participant. For example, in the
first case a participant predicts 647 instead of 64.7, where the latter would be very much in line
with the last observed price and the participant’s preceding forecasts.

22For example, this is the case for five of the six groups in Hommes et al. (2008) whose design,
apart from the initial price history, is essentially equivalent to our treatments with H = 1.
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couple of periods of this oscillating initial price history prices decrease again. This

effect alone is sufficient to inhibit the emergence of large bubbles, although the

oscillating initial prices history does tend to increase price volatility.

The effect of the investment horizon on price volatility is more difficult to

distill from Fig. 3. Price dynamics in all groups from the Con treatments are

relatively stable with no visible effect of the investment horizon on price volatility

(which is low for all groups in these treatments). For the Osc treatments, the

general picture is somewhat blurred by the heterogeneity between outcomes in

the same treatment. For example, three of the groups in treatment OscH1 are

characterized by relatively stable price dynamics. In contrast, the other five groups

either show persistent oscillations from the start or feature such oscillations in the

second half of the experiment. Similarly, one of the six groups in treatment OscH3

and three of the six groups in treatment OscH3SF show persistent oscillations,

with price dynamics in the other groups in those treatments relatively stable.

Only in treatment OscH2, dynamics across the different groups are relatively

homogeneous with persistent price fluctuations in all five groups of that treatment.

Notwithstanding this heterogeneity, the Osc treatments do not seem to provide

much evidence in support of a positive effect of the investment horizon on price

volatility. Although the fraction of groups that are characterized by persistent fluc-

tuations goes up from 5 out of 8 to 5 out of 5, when going from treatment OscH1

to treatment OscH2, it falls to 1 out of 6 in treatment OscH3. Also, the max-

imal amplitude of the price oscillations is different between treatments. In three

groups in treatment OscH1, illustrated in Fig. 4, prices eventually grow much

larger than 100, whereas prices in treatments OscH2, OscH3 and OscH3SF

consistently stay below 100, even in groups that exhibit persistent oscillations.

All this points towards the conclusion that increasing the time horizon impedes

the emergence of large bubbles. Finally, when comparing treatment OscH3SF –

which compensates for the decrease in feedback strength – with treatment OscH1,

the former does not appear to lead to higher price volatility, with only 3 out of 6

groups showing persistent fluctuations; these fluctuations are much smaller than

the largest fluctuations in treatment OscH1. Therefore, an increase in the invest-

ment horizon seems more likely to decrease price volatility, rather than to increase

it.23

23The following observation further supports this conclusion. Bao and Hommes (2019) vary
feedback strengths in an LtF experiment with H = 1. Their treatment L has a feedback strength
0.86, coinciding with the feedback strength in our treatment OscH3. However, where we only
find persistent oscillations in 1 out of 6 groups in treatment OscH3, Bao and Hommes (2019)
find persistent oscillations in all 5 groups in their treatment L. Note that this difference may
also partly be attributed to the absence of an initial price history in Bao and Hommes (2019).
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Figure 5: Left: Level of mispricing measured as the median of the relative absolute
deviation. Right: Level of volatility measured as the Interquartile Range (log
scale). For both panels, the data are organized by treatments, where the statistics
for individual groups (black dots), the median for the treatment (red circle), and
the average for the treatment (blue square) are shown.

To corroborate these impressions, we consider two measures that quantify price

volatility. The first measure is the median RAD, i.e., the median (over all incen-

tivized periods in a group) of the relative absolute deviation of price from the fun-

damental price, |pt− pf |/pf . The RAD is one of the measures proposed by Stöckl

et al. (2010) to study bubbles in asset market experiments.24 Our second measure

is the interquartile range (IQR), i.e., the length of the interval that contains the

middle 50% of the prices from the given group. Fig. 5 depicts both measures for

all 35 groups in the experiment, as well as the mean (blue squares) and median

(red circles) of these measures for every treatment. The numeric values of these

and other descriptive statistics can be found in Table 2 in Appendix C.1.

The quantitative measures depicted in Fig. 5 are consistent with our earlier

observations. All groups from the Con treatments have low values of both mea-

sures. In contrast, a substantial number of groups from the Osc treatments have

much higher values of these measures (note the log-scale of the right panel for

the IQR). At the same time, there are some groups from these four treatments

for which the measures are comparable to the values from the Con treatments.

We perform pairwise tests of similarity of both measures between the treatments.

The p-values of three one-sided non-parametric tests (the Kolmogorov-Smirnov,

Fischer-Pitman and Mann-Whitney-Wilcoxon tests) are reported in Appendices

C.2 and C.3 for the median RAD and IQR, respectively. All tests show that there

24Instead of looking at the mean value of the relative absolute deviations, as in Kirchler et al.
(2012), for example, we look at the median value. This limits the effect of outliers caused by
extreme predictions.
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is a significant difference, at the 1% level, for both measures, between treatment

OscH2 and treatment ConH2. The other relevant comparisons (i.e., keeping

the horizon the same) are not as strong but point in the same direction. For the

comparison of treatments ConH1 and OscH1, the difference in median RAD is

significant for two tests at the 5% level (and at the 10% level for the third test),

but the difference in IQR is not statistically significant. For the comparison of

treatments ConH3 and OscH3, the difference in median RAD is significant for

one test only (at the 10% level), while for all three tests the difference in IQR is

significant, at least at the 5% level. The heterogeneity in outcomes in treatment

OscH1 and, to a lesser extent, in treatment OscH3, which can be seen in Fig. 5,

may explain the lack of strongly significant differences in outcomes. This hetero-

geneity is small in treatment OscH2, which is precisely the treatment for which

the most convincing results are obtained.

Based upon our discussion and statistical tests, we conclude that we find evi-

dence that supports Conjecture 1. In particular, we find support for the following

result.

Result 1. The initial price history plays an important role in subsequent price

dynamics. Price volatility is higher for treatments with the oscillating initial price

history than for treatments with the converging initial price history.

Fig. 5 confirms another observation. There seems to be only a small effect of

an increase in the investment horizon in the Con treatments, and there is no

clear support for an increase in volatility with the investment horizon in the Osc

treatments. In fact, for treatments OscH1, OscH2 and OscH3 the average values

of both the mean RAD and the IQR are lower for longer horizons, and the same

holds when comparing treatments OscH1 and OscH3SF. From the statistical

tests presented in Appendices C.2 and C.3, we find that the only statistically

significant difference is that volatility is lower in OscH3 than in OscH2 (for

both measures and all three tests, at the 1% level). Also the differences between

OscH3SF and treatments OscH1 and OscH3 are not statistically significant

with only one exception for each measure, with significance at the 10% level. We

therefore conclude that both Conjectures 2 and 3 do not have empirical support,

which brings us to our second result.

Result 2. Price volatility does not increase for longer investment horizons, even

after correcting for differences in feedback strength. In fact, it tends to decrease.

We take one more look at prices by characterizing price dynamics in the following

way. The simplest linear model that might give rise to oscillations in prices is the
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following AR(2) specification

pt = β0 + β1pt−1 + β2pt−2 + νt . (7)

Depending on coefficients β1 and β2, the dynamics in such a model can be con-

verging or diverging. This dependence is captured by the triangles25 in (β1, β2)

coordinates, plotted in Fig. 6. In particular, the dynamics are converging for

the coefficient combinations inside the triangles, diverging for the combinations

outside the triangles, and oscillatory for combinations (β1, β2) below the parabola.

We fitted the AR(2) model (7) on the prices for each experimental group. The

estimation results can be found in Table 9 in Appendix C.4. The price dynamics in

26 of the 35 markets can be described well by (7), in the sense that the estimated

rules pass two specification tests (on autocorrelation and heteroskedasticity) for

residuals. We superimposed the estimated values (β̂1, β̂2) for each experimental

group on the triangles of Fig. 6. Note that almost all estimated pairs lie in the

region where the dynamics are characterized by converging oscillations. The only

two exceptions are groups 4 and 6 in treatment OscH1, where oscillations are di-

verging. The regularities we identified before are nicely represented by the plots.

Estimations in most groups from the Con treatments are relatively far away from

the instability boundary β2 = −1. In the Osc treatments, the estimated combina-

tions tend to become more stable (i.e., they lie further away from that boundary)

when the investment horizon increases.

3.2 Trend extrapolation and coordination of expectations

The results from the previous section suggest that there is a tendency for price

volatility to decrease when the investment horizon increases. In fact, large bub-

bles with prices eventually growing to a level that is a multiple of the fundamental

value only appear in our experiment for an investment horizon of H = 1. As

discussed in Section 2.3 the prevalence and size of bubbles in earlier LtF experi-

ments have been attributed to participants in the same group coordinating their

forecasts on a trend-extrapolating strategy. The absence of large bubbles and the

tendency to have fewer groups with persistent asset price fluctuations for longer

investment horizons in our experiment might therefore be caused by either a fail-

ure of participants to coordinate their expectations, or a failure to coordinate on

trend-extrapolating strategies, or a combination of both. In this section we will

study participants’ individual forecasts to better understand how an increase in

25The edges of the triangles are given by β2 = 1− β1, β2 = 1 + β1 and β2 = −1.
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Figure 6: Stability triangles for the AR(2) model and estimated AR(2) rules.
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Figure 7: Examples of individual forecast dynamics. Price is shown by the thick
black line. The constant fundamental price of 60 is shown by the dashed line.

the investment horizon affects their tendency to coordinate on trend-extrapolating

strategies. For an illustration of the individual predictions see Fig. 7, which shows,

for one group from each treatment, both the market price (in black) and partici-

pants’ individual predictions (in color). See Appendix D for plots for all groups.

Recall from Section 2.3 that, if participants believe prices evolve according to
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pt = pt−1 + θ(pt−1 − pt−2), their predictions should be given by Eq. (5), implying

pei,t+H − pt−1 = θ
(
1 + θ + · · ·+ θH

)
(pt−1 − pt−2) , (8)

for investment horizon H. Therefore, the effect of the last observed price change,

pt−1 − pt−2, on the expected price increase, pei,t+H − pt−1, should be stronger for

longer investment horizons H.

To investigate this, Fig. 8 shows scatter plots where, for each of the seven

treatments, the averages of participants’ expected price changes, p̄et+H − pt−1, are

plotted against the last observed price change, pt−1 − pt−2. The red line in each

panel represents a linear regression line, the slope of which is shown in the title

of the panel. According to (8), the slope should increase with the investment

horizon, but it actually decreases substantially.26 Therefore, participants not only

insufficiently account for the investment horizon when extrapolating trends, but

their tendency to extrapolate these trends diminishes when the investment horizon

increases. We conclude the following:

Result 3. An increase in the investment horizon leads to a substantial decrease

in the extent to which trends in past prices are extrapolated by participants.

Result 3, together with the effect of horizons on the feedback strength in the

pricing equation, provides an explanation for why price volatility tends to go

down for longer investment horizons. A related, but separate, question is whether

participants’ ability to coordinate on a common prediction strategy is affected by

the investment horizon as well.

From Fig. 7, it appears that predictions within groups are well-coordinated, al-

though there are some differences between treatments. For example, coordination

seems to be stronger in group 3 of treatment OscH1 than in group 4 of treatment

OscH2 and in group 4 of treatment OscH3. To quantify coordination of expec-

tations, we compute, for each group in our experiment, the standard deviation

of the six predictions in each period and take the median of those 50 standard

deviations. We will refer to this quantity as the discoordination measure. It is

depicted for all groups, and organized by treatment, in Fig. 9. The numeric values

can be found in Table 2 from Appendix C.1.

26For example, the slope changes from 0.81 in treatment OscH1 to 0.64 in treatment OscH2
to 0.01 in treatment OscH3. The slope for treatment OscH1 is significantly higher (at the 5%
level) than the slopes in treatments OscH2, OscH3 and OscH3SF, see Appendix C.5. The
slope of 0.81 for H = 1 is consistent with a value θ̃ ≈ 0.53 for the extrapolation coefficient. This
would imply slopes θ̃(1 + θ̃ + θ̃2) ≈ 0.97 and θ̃(1 + θ̃ + θ̃2 + θ̃3) ≈ 1.05 for treatments OscH2
and OscH3, respectively, for forecasting behavior to be consistent between treatments.
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Figure 8: Scatter plots of p̄ei,t+h−pt−1 and the most recent price change, pt−1−pt−2.
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Figure 9: Level of discoordination of predictions in all groups measured as the
median of the standard deviation of predictions. For each treatments, the statistics
for individual groups (black dots), the median for the treatment (red circle), and
the average for the treatment (blue square) are shown.

We see substantial heterogeneity in this discoordination measure between groups

in the same treatment. Given the heterogeneity in price volatility within treat-

ments, this is hardly surprising: if prices converge to the fundamental value, then

typically all forecasts also converge to that value, which reduces the dispersion of

the forecasts considerably. However, when restricting attention to the groups with

a higher price volatility, there seems to be a tendency for an increase in the invest-

ment horizon to adversely affect the level of coordination. Although one might

expect that the dispersion of forecasts is highest in large bubbles, the five groups

with the highest dispersion in forecasts are all from treatments with H = 2 or

H = 3, whereas the largest bubbles emerge in treatment OscH1. The left panel

of Fig. 10 explores the relationship between discoordination and price volatility

further. It plots, for each group, the discoordination measure against the median

RAD (which measures the price volatility as discussed in Section 3.1). The plot

suggests that coordination is easier if the investment horizon is shorter. To see

this, note that for groups from different treatments with a similar price volatility,

the dispersion of predictions is higher if the investment horizon is longer. Remark-

ably, the groups with the highest price volatility (groups 3, 6 and 7 from treatment

OscH1) are characterized by a smaller dispersion of forecasts than groups with

lower price volatility but a longer investment horizon.

Figs. 9 and 10 suggest that the ability of participants to coordinate their fore-

cast on a common prediction strategy decreases when the investment horizon in-
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Figure 10: Left: Median of the standard deviation of predictions plotted against
median of RAD. Right: Average payoff plotted against median of RAD. The data
from the OscH1, OscH2, OscH3 and OscH3SF treatments are used.

creases. Due to the heterogeneity of outcomes within treatments, the differences

between treatments are not always statistically significant: the three pairwise dif-

ferences between OscH1 and OscH2 are statistically significant, but most other

comparisons between Osc treatments are not (see the p-values of the three tests

in Appendix C.6). We conclude the following:

Result 4. The extent to which participants coordinate their expectations decreases

with the investment horizon.

The fact that coordination of expectations becomes more difficult may be respon-

sible for the fact that large bubbles do not emerge for longer investment horizons.

Note that along such a large bubble, participants are still able to do relatively well

if they coordinate their forecasts. As long as a participant’s forecasts are close to

the average forecast and thereby relatively close to the market price, forecast er-

rors remain reasonably small (although they tend to be smaller when prices are

closer to the fundamental value). Participants are, therefore, more willing to “ride

the bubble” if they can coordinate their expectations. If dispersion of the price

forecasts is large, at least some participants will make large forecast errors, and

low payoffs, along such a bubble. Those participants are then likely to change their

forecasting behavior, and this makes large bubbles unsustainable. The right panel

of Fig. 10 supports this explanation for the absence of large bubbles for longer

investment horizons. The panel plots the average payoff (the number of earned

points, averaged over periods and participants in a group) versus price volatility

in that group (represented by the median RAD again). It shows that, for groups

that have approximately the same level of price volatility but are from different

treatments, the average number of points earned by participants is indeed lower if
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the investment horizon is longer than one period. Participants in the groups with

large bubbles in treatment OscH1 still do better than participants in groups from

treatments OscH2, OscH3 and OscH3SF that experience persistent, but much

smaller, fluctuations in asset prices.

Large bubbles can develop because of the self-confirming nature of financial

markets. If all traders believe the price of an asset will go up, many traders

will buy the asset, and the price will indeed go up, because of the increase in

demand. For such an expectation-induced asset price bubble to emerge and be

sustainable it is, however, necessary that there is a sufficient degree of agreement

between traders about the price development of the asset. From the analysis of

the individual forecasts in our experiment, we learn that this agreement is difficult

to maintain when the investment horizon increases.

4 Conclusion

In this paper we discussed a Learning to Forecast laboratory experiment to inves-

tigate the effect of the investment horizon on asset price dynamics. In previous

LtF asset pricing experiments, characterized by short investment horizons and the

absence of an initial price history, large bubbles and crashes often emerge, with

prices regularly exceeding their fundamental values by one order of magnitude,

see, e.g., Hommes et al. (2008, 2021). We only observe such bubbles for an invest-

ment horizon of one period and even then they are unlikely to occur if the market

has a history of relatively stable prices, which suggests that a short investment

horizon is a necessary (but not sufficient) condition for the emergence of bubbles.

An increase in the investment horizon tends to lead to smaller fluctuations and

lower price volatility.

The large bubbles that emerge for a short investment horizon seem to be driven

by the tendency of participants to coordinate on trend-extrapolating prediction

strategies that reinforce and amplify initial price fluctuations. If the investment

horizon increases, both the extent to which participants extrapolate price trends,

and participants’ success in coordinating their predictions, decrease and as a con-

sequence price volatility goes down.27

As mentioned in the Introduction, in the existing behavioral finance litera-

ture, deviations from fundamental values have often been associated explicitly

27Remarkably, participants’ expectations, therefore, are consistent with the empirical finding
that asset returns show momentum in the short run, but revert to fundamental values in the
longer run, see, e.g., Hong and Stein (1999) for a discussion.
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with short-horizon speculative trading. Note, however, that our results do not

require limits to arbitrage for participants with shorter investment horizons, as

in De Long et al. (1990) or Dow and Gorton (1994). In particular, the infor-

mation asymmetries between traders assumed in these papers and responsible

for creating arbitrage opportunities, are absent in our experimental framework.

Combined with the observation that many decisions of institutional investors are

driven by short-term gains, possibly at the expense of earnings in the long-run,28

several measures have been suggested to curb this so-called “short-termism”, see,

e.g., Bolton and Samama (2013), and Crouzet et al. (2020). Our results suggest

that policy measures that inhibit the possibility of short-horizon trading, e.g., by

imposing a minimum holding period for the asset, may indeed help in reducing

price volatility. However, such measures might also decrease the speed with which

private information about the asset is reflected in its price (note that, because

information asymmetries are absent, this does not play a role in our experiment).

Moreover, from our findings on the effect of initial price histories it follows that

the impact of such measures may be mitigated by the historical performance of

the market.

There are several avenues for extending our research. First, in our stylized

experiment we only consider investment horizons of up to three periods, and we

assume that all investors active in the same market have the same investment

horizon. An obvious extension would be to consider longer horizons (and possibly

compensate for the implied reduction in feedback strength, as we did in treatment

OscH3SF) or to consider markets composed of participants with different invest-

ment horizons. Because both extensions are likely to increase the dispersion of

expectations even further (and the first extension is likely to reduce the level of

trend extrapolation) we expect a similar (but stronger) effect of the investment

horizon. A second, potentially more interesting, extension is to consider mixed

investment horizons, and make the impact that participants with different invest-

ment horizons have on the market-clearing price depend on their relative perfor-

mance. If participants with a shorter time horizon are more accurate forecasters,

and therefore attract more investors, their impact on the market-clearing price

increases. This means that – even in an environment with mixed horizons – large

bubbles may still emerge, making the use of short investment horizons viable.29

28See Bushee (2001), for empirical evidence, and Bolton et al. (2006), for a theoretical expla-
nation.

29The impact of relative performance can, for example, be formalized by letting the weights
on individual expectations in pricing equation (2) depend upon the forecast accuracy of the
participants (as in Kopányi et al., 2019). In addition, note that performance rankings play an
important role in risk-taking behavior of financial professionals (see e.g., Kirchler et al., 2020),
which might contribute further to price volatility.
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Another relevant extension concerns the initial price history. In treatment OscH1,

a relatively small fraction of groups experiences large bubbles, when compared to

the results in Hommes et al. (2008, 2021), which use an experimental design that

is, apart from the initial price history, virtually the same as that of treatment

OscH1. So, even though the initial price history in treatment OscH1 features

oscillations, it still seems to induce more stability than not providing an initial

history of prices at all. The question, therefore, is whether a treatment without

any initial price history, or with an initial price history that features monotonically

increasing prices that already go (far) beyond the fundamental value might be able

to give rise to large bubbles and crashes, even for longer investment horizons.
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APPENDIX

A An asset pricing model with different invest-

ment horizons

A.1 A generalization of the standard asset pricing model

Following Brock and Hommes (1998), we consider a market populated by a number
of investors, e.g., institutional investors, such as pension funds. These investors
maximize their wealth by investing in two assets, a risk-free asset and a risky
asset. The supply of the risk-free asset is infinitely elastic, and this asset gives a
fixed net return of r per period. We denote gross return of this risk-free asset by
R = 1 + r. The risky asset pays stochastic dividend yt in period t and its price pt,
which may vary over time, follows from temporary equilibrium between demand
and supply in period t.

We extend the model in Brock and Hommes (1998) by allowing investors to
differ in their investment horizons. Let us denote the wealth of investor i in period
t by Wt,i. Suppose this investor has investment horizon h, i.e., a portfolio should
maximize wealth in period t+ h. Investor i’s wealth in period t+ h is given by

Wt+h,i = (1− xt,i)Wt,iR
h + xt,i

Wt,i

pt

(
pt+h +

h∑
s=1

Rh−syt+s

)

= Wt,iR
h +

(
pt+h +

h∑
s=1

Rh−syt+s −Rhpt

)
zt,i ,

(A.1)

where xt,i is the share of the investor’s wealth invested in the risky asset, so that
zt,i = xt,iWt,i/pt are the investor’s holdings of the risky asset bought at time t. In
expression (A.1), it is assumed that all dividends are automatically reinvested in
the risk-free asset every period.

Following Brock and Hommes (1998), we assume that all investors with in-
vestment horizon h are mean-variance maximizers with risk aversion parameter a
and belief about the conditional variance of excess return (over h periods) given
by σ2

h. The optimal amount of the risky asset to be purchased by an investor with
horizon h, given return expectations, is then

zt,i,h =
Et,i,h

(
pt+h +

∑h
s=1R

h−syt+s −Rhpt

)
aσ2

h

,

where Et,i,h[ · ] stands for the expectations that investor i holds, in period t, about
future prices and dividends. The notation stresses that the expectations may be
heterogeneous even for investors with the same horizon, and that expectations are
formed at time t.
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The asset price at period t is found from the equilibrium between the total
demand, i.e., the sum of individual demands by all institutional investors (with
different investment horizons) in the market, and supply, which is assumed to
fluctuate randomly, due to noise traders, around the zero mean.30 The temporary
market equilibrium equation reads

∑
i,h

zt,i,h =
∑
h

1

aσ2
h

(∑
i

Et,i,h[pt+h] +
∑
i

h∑
s=1

Rh−sEt,i,h[yt+s]−NhR
hpt

)
= εt,

where Nh represents the number of investors with investment horizon h. Dividing
this equation by the total number of investors, N =

∑
hNh, we obtain

∑
h

fh
Nh

∑
i

(
Et,i,h[pt+h] +

h∑
s=1

Rh−sEt,i,h[yt+s]

)
−
∑
h

fhR
hpt = εt,

where the “adjusted” fraction of investors with horizon h is fh = Nh/(aσ
2
hN),

and the normalized supply from the noise traders is εt = εt/N . From this, it
immediately follows that the market-clearing price is given as:

pt =
1∑

h fhR
h

(∑
h

fh
Nh

∑
i

(
Et,i,h[pt+h] +

h∑
s=1

Rh−sEt,i,h[yt+s]

)
− εt

)
. (A.2)

A.2 Asset prices in the laboratory experiment

To use (A.2) as the price generating mechanism for the laboratory experiment, we
make two further assumptions. First, we assume that the dividend process is IID
with mean value ȳ, which is known to all investors. This implies that the stream
of expected dividend payments can be computed as:

h∑
s=1

Rh−sEt,i,h[yt+s] = ȳ
Rh − 1

R− 1
=
ȳ

r

(
Rh − 1

)
.

We define the fundamental price as the constant price solution under the assump-
tion that all investors have rational expectations, i.e., Et,i,h[pt+h] = pt+h, for all t,
i and h, and the total supply of noise traders is zero. Under this assumption, the
pricing equation (A.2) becomes

pt =
1∑

h fhR
h

∑
h

fh

(
pt+h +

ȳ

r

(
Rh − 1

))
.

Then it is straight-forward to check that the fundamental price is pf = ȳ/r, i.e., it
is equal to the discounted sum of all future expected dividends, and is independent
of the distribution of traders over the different investment horizons.

30The assumption that, on average, there is no outside supply of the risky asset, is standard
in the literature, see, e.g., Brock and Hommes (1998).
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Second, in this paper we focus on the case where all N investors have the same
horizon H. Pricing equation (A.2) then simplifies to

pt =
1

RH

(
1

N

∑
i

Et,i[pt+H ] + ȳ

(
RH − 1

R− 1

)
− εt

)
,

which, using fundamental price pf = ȳ/r, can be further rewritten as

pt = pf +
1

RH

(
1

N

N∑
i=1

Et,i[pt+H ]− pf − εt

)
. (A.3)

This equation defines the market-clearing price in period t that we use in the ex-
periment, see Eq. (2) in the main text. In the experiment we implement Eq. (A.3)
with N = 6 (the size of the group), H = 1, 2 and 3 (values of the investment hori-
zon in different treatments), pf = 60 and R = 1.05 or, in treatment OscH3SF,
R = 1.016, see Table 1. Note that the fundamental price, pf = ȳ/r, is the rational
expectation solution of (A.3) regardless of the values of the parameters.

We note that, in the absence of noise traders (i.e., when εt = 0 for all t) other
rational expectations equilibria, so-called rational bubbles, exist in this model.
Such a rational bubble is an equilibrium where traders expect the deviation of the
asset price from the fundamental value to grow with a factor R each period. That
is, if p0 > pf and expectations of all traders at time t are given by

Et,i[pt+H ] = pf +RH+1(pt−1 − pf ) ,

then substituting these expectations in (A.3), we derive that the price in period t
is pt = pf +R(pt−1−pf ), confirming the expectation scheme. Hommes et al. (2008)
study the experimental bubbles and reject that they correspond to the rational
bubbles.

B Experimental Instructions

Instructions below were distributed to all subjects participating in the OscH3SF
treatment. The wording of the instructions in all other treatments is the same.
The instructions are only adjusted to the corresponding investment horizon and
the specific values of parameters r and ȳ used in a treatment, see Table 1.

INSTRUCTIONS

General information

Today you will participate in an experiment which will require you to predict the
future price of a risky asset. During the experiment you will be able to earn a
number of points. The better your predictions are, the more points will you earn.
These points will be converted into Australian dollars after the experiment.
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Information about your task

You are a financial forecaster working for a pension fund that wants to optimally
invest a large amount of money for 3 periods. The pension fund has two investment
options: a risk-free investment and a risky investment. The risk-free investment
is putting money in a savings account, which pays a fixed and constant interest
rate over 3 periods. The alternative for the pension fund is to invest its money in
a risky asset, where risk comes from the uncertain future price of that asset.

In each period the pension fund has to decide which fraction of its money to put
in the savings account and which fraction of its money to invest in the risky asset.
To make the optimal investment decision, the pension fund needs an accurate
prediction of the future price of the asset. The pension fund is only interested in
the price of the risky asset after 3 periods.

As the financial forecaster of the fund, you have to predict the price for the
risky asset 3 periods ahead during 53 subsequent periods. Your earnings during
the experiment depend upon the accuracy of your predictions. The smaller your
errors in each period are, the higher your total earnings will be.

Information about the asset market

The market price of the risky asset in each period is determined by demand and
supply. The total supply of assets is fixed during the experiment. The demand
for assets is mainly determined by the aggregate demand of several large pension
funds active in the asset market. There is also some uncertain, small demand for
assets by private investors but the effect of private investors upon the asset price
is small.

Information about the investment strategies of the pension funds

The precise investment strategy of the pension fund that you are advising and
the investment strategies of the other pension funds are unknown. The savings
account, that provides the risk-free investment, pays a fixed interest rate of 1.6%
per period. The owner of the risky asset receives an uncertain payment in each
period, but economic experts have computed that this payment is 0.96 dollars per
period on average. The return of the asset market per period depends upon these
payments as well as upon price changes of the asset.

As the financial forecaster of a pension fund you are only asked to predict, in
each period, the 3 periods ahead price of the asset. Based upon your future price
predictions, your pension fund will make an optimal investment decision and hold
the asset for 3 periods. The higher your predicted future price is, the larger will
be the fraction of money invested by your pension fund in the asset market in the
current period, so the larger will be its demand for assets.

Information during the experiment

At the beginning of the experiment, you have the history of the asset price in the
first 10 periods, and you start in period 11 by giving your prediction of the price
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in period 14. After all participants have given their predictions, the realized asset
price for period 11 will be revealed. Then you (as all other participants) will need
to make a new prediction, now for the price in period 15, so that the asset price
for period 12 can be defined. And so on. This process continues until period 63,
where the last prediction, for the price in period 66, will be given.

To predict the asset price for period t + 3 in period t, the available information
consists of

• past prices up to period t− 1,

• your previous predictions up to period t+ 2,

• your past earnings up to period t− 1.

Starting from period 14, your earnings in each period will be based upon your
prediction error, that is, the difference between the price you predicted for that
period and the realized price in that period. The last period for which you will be
paid is period 63.

The better you predict the asset price in each period, the higher your aggregate
earnings will be. Earnings for each period in points will be automatically computed
according to the following earnings table, where “error” denotes the absolute value
of the difference between your prediction and price in that period. Information
on your earnings in the current period and cumulative earnings will be reported
to you during the experiment.

After the experiment your earned points will be converted into Australian dollars,
with 1300 points equal to 50 cents. You will be paid the sum of show-up fee and
all your earnings in AUD.

Additional information
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• By the end of the experiment, you will be paid privately. Before the payment
you will be asked to answer a questionnaire. Inserted data will be processed
in nameless form only. Please fill in the correct information.

• During the experiment any communication with other participants, whether
verbal or written, is forbidden. The use of phones, tablets or any other
gadgets is not allowed. Violation of the rules can result in exclusion from
the experiment without any remuneration.

• Please follow the instructions carefully at all the stages of the experiment.
If you have any questions or encounter any problems during the experiment,
please raise your hand and the experimenter will come to help you.

Please ask any questions you have now!
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C Descriptive statistics, tests, estimations

C.1 Descriptive statistics

Treatment Group Mean Std Median IQR Discoord Average
price dev RAD payoffs

ConH1

Group 1 57.67 2.07 0.04 3.36 0.66 1221.2
Group 2 58.69 0.99 0.02 1.23 0.28 1272.4
Group 3 58.23 3.65 0.02 3.72 0.46 1226.5

Average 58.20 2.24 0.02 2.77 0.46 930.0
Median 58.23 2.07 0.02 3.36 0.46 1223.8

ConH2

Group 1 56.63 0.99 0.05 1.35 1.01 1198.9
Group 2 64.33 14.34 0.04 3.99 1.97 857.6
Group 3 59.37 1.08 0.01 0.81 0.70 1215.5
Group 4 59.08 0.70 0.01 0.88 0.68 1241.1

Average 59.85 4.28 0.03 1.76 1.09 1128.3
Median 59.22 1.04 0.03 1.12 0.86 1207.2

ConH3

Group 1 63.46 1.28 0.06 1.47 2.12 1016.7
Group 2 58.96 1.24 0.02 1.82 1.31 1121.6
Group 3 59.76 0.62 0.00 0.80 0.62 1252.2

Average 60.73 1.05 0.03 1.36 1.35 1130.2
Median 59.76 1.24 0.02 1.47 1.31 1121.6

OscH1

Group 1 63.28 1.26 0.05 0.86 0.37 1266.0
Group 2 60.64 1.64 0.02 2.76 0.88 1223.5
Group 3 52.25 23.91 0.36 42.42 5.24 494.7
Group 4 63.85 6.96 0.08 6.48 1.39 946.3
Group 5 61.30 1.07 0.02 0.99 0.35 1266.9
Group 6 72.25 45.16 0.49 76.90 5.44 382.9
Group 7 231.63 305.74 0.47 268.87 6.18 475.5
Group 8 67.64 57.04 0.11 16.78 0.87 909.5

Average 84.10 55.35 0.20 52.01 2.59 870.7
Median 63.57 15.43 0.10 11.63 1.14 927.9

OscH2

Group 1 54.84 6.76 0.11 8.98 4.94 413.5
Group 2 51.93 18.56 0.16 23.67 5.27 332.3
Group 3 58.42 14.08 0.14 15.99 6.29 279.0
Group 4 60.32 11.83 0.19 23.46 5.67 213.5
Group 5 57.84 13.09 0.16 19.86 9.79 149.9

Average 56.67 12.86 0.15 18.39 6.39 231.4
Median 57.84 13.09 0.16 19.86 5.67 246.3

OscH3

Group 1 60.47 2.18 0.02 2.40 2.50 977.6
Group 2 67.57 12.73 0.09 2.49 2.76 791.4
Group 3 60.56 2.57 0.03 3.66 1.77 813.4
Group 4 54.37 11.12 0.12 10.90 10.31 270.6
Group 5 61.33 4.60 0.03 2.28 3.89 766.6
Group 6 58.57 3.61 0.02 2.20 1.53 907.9

Average 60.48 6.14 0.05 3.99 3.79 754.6
Median 60.52 4.11 0.03 2.44 2.63 802.4

OscH3SF

Group 1 61.02 3.34 0.02 1.69 0.60 776.8
Group 2 60.72 0.97 0.01 1.02 0.88 1192.8
Group 3 59.76 15.61 0.14 17.11 7.21 284.2
Group 4 55.73 1.82 0.07 2.24 2.21 1022.2
Group 5 50.60 19.54 0.19 21.05 11.96 206.4
Group 6 45.10 14.72 0.23 17.31 8.61 249.0

Average 55.49 9.33 0.11 10.07 5.25 621.9
Median 57.74 9.03 0.11 9.68 4.71 530.5

Table 2: Descriptive statistics in the experiment.
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C.2 Nonparametric test for median of RAD comparison

Median RAD ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.318 0.633 0.043** 0.007*** 0.273 0.099*
ConH2 0.318 X 0.601 0.075* 0.003*** 0.220 0.068*
ConH3 0.161 0.601 X 0.083* 0.007*** 0.099* 0.099*
OscH1 1.000 1.000 1.000 X 0.153 0.879 0.879
OscH2 1.000 1.000 1.000 0.348 X 1.000 0.472
OscH3 1.000 0.845 1.000 0.239 0.009*** X 0.160
OscH3SF 0.561 1.000 1.000 0.313 0.185 0.442 X

Table 3: p-values of the one-sided Kolmogorov-Smirnov test comparing the me-
dian of RAD statistics, pairwise for different treatments, where the alternative
hypothesis is that the row treatment has a value not lower than the column treat-
ment. *, **, and *** denote treatment comparisons when the null hypothesis of
equality is rejected at the 10%, 5% or 1% significance level, respectively.

Median RAD ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.338 0.444 0.063* 0.005*** 0.232 0.095*
ConH2 0.662 X 0.556 0.030** 0.005*** 0.227 0.066*
ConH3 0.556 0.444 X 0.048** 0.024** 0.212 0.082*
OscH1 0.938 0.970 0.952 X 0.712 0.936 0.834
OscH2 0.991 0.995 0.976 0.288 X 0.996 0.815
OscH3 0.768 0.773 0.788 0.064* 0.004*** X 0.090*
OscH3SF 0.905 0.934 0.918 0.166 0.185 0.910 X

Table 4: p-values of the one-sided Fischer-Pitman permutation test comparing the
median of RAD statistics, pairwise for different treatments, where the alternative
hypothesis is that the row treatment has a value not lower than the column treat-
ment. *, **, and *** denote treatment comparisons when the null hypothesis of
equality is rejected at the 10%, 5% or 1% significance level, respectively.

Median RAD ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.571 0.800 0.042** 0.018** 0.190 0.274
ConH2 0.571 X 0.571 0.036** 0.008*** 0.238 0.057*
ConH3 0.350 0.571 X 0.042** 0.018** 0.131 0.131
OscH1 0.976 0.976 0.976 X 0.311 0.886 0.793
OscH2 1.000 1.000 1.000 0.738 X 0.998 0.732
OscH3 0.869 0.824 0.917 0.141 0.004*** X 0.294
OscH3SF 0.810 0.967 0.917 0.245 0.331 0.758 X

Table 5: p-values of the one-sided Mann-Whitney-Wilcoxon test comparing the
median of RAD statistics, pairwise for different treatments, where the alternative
hypothesis is that the row treatment has a value not lower than the column treat-
ment. *, **, and *** denote treatment comparisons when the null hypothesis of
equality is rejected at the 10%, 5% or 1% significance level, respectively.
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C.3 Nonparametric test for IQR comparison

IQR ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.751 1.000 0.113 0.007*** 0.561 0.273
ConH2 0.318 X 0.451 0.075* 0.003*** 0.033** 0.127
ConH3 0.161 0.601 X 0.043** 0.007*** 0.006*** 0.099*
OscH1 0.705 1.000 1.000 X 0.153 0.597 0.597
OscH2 1.000 1.000 1.000 0.348 X 1.000 1.000
OscH3 0.561 0.959 1.000 0.127 0.009*** X 0.160
OscH3SF 0.866 1.000 1.000 0.313 0.185 0.442 X

Table 6: p-values of the one-sided Kolmogorov-Smirnov test comparing the in-
terquartile range statistics, pairwise for different treatments, where the alterna-
tive hypothesis is that the row treatment has a value not lower than the column
treatment. *, **, and *** denote treatment comparisons when the null hypothesis
of equality is rejected at the 10%, 5% or 1% significance level, respectively.

IQR ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.817 0.889 0.173 0.009*** 0.393 0.156
ConH2 0.183 X 0.528 0.042** 0.005*** 0.104 0.081*
ConH3 0.111 0.472 X 0.048** 0.012** 0.012** 0.071*
OscH1 0.827 0.958 0.952 X 0.710 0.953 0.870
OscH2 0.986 0.995 0.988 0.290 X 0.997 0.938
OscH3 0.607 0.896 0.988 0.047** 0.003*** X 0.090*
OscH3SF 0.844 0.919 0.929 0.130 0.062* 0.910 X

Table 7: p-values of the one-sided Fischer-Pitman permutation test comparing the
interquartile range statistics, pairwise for different treatments, where the alterna-
tive hypothesis is that the row treatment has a value not lower than the column
treatment. *, **, and *** denote treatment comparisons when the null hypothesis
of equality is rejected at the 10%, 5% or 1% significance level, respectively.

IQR ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.800 0.900 0.248 0.018** 0.548 0.357
ConH2 0.314 X 0.571 0.055* 0.008*** 0.086* 0.057*
ConH3 0.200 0.571 X 0.067* 0.018** 0.012** 0.083*
OscH1 0.812 0.964 0.958 X 0.362 0.886 0.669
OscH2 1.000 1.000 1.000 0.689 X 0.998 0.937
OscH3 0.548 0.943 1.000 0.141 0.004*** X 0.469
OscH3SF 0.726 0.967 0.952 0.377 0.089* 0.591 X

Table 8: p-values of the one-sided Mann-Whitney-Wilcoxon test comparing the
interquartile range statistics, pairwise for different treatments, where the alterna-
tive hypothesis is that the row treatment has a value not lower than the column
treatment. *, **, and *** denote treatment comparisons when the null hypothesis
of equality is rejected at the 10%, 5% or 1% significance level, respectively.
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C.4 Estimated AR(2) Rules

Treatment Group Const Past Prices Specification Tests AdjRSq NObs
lag 1 lag 2 autoc hskd

ConH1
Group 1 17.72*** 1.54*** −0.85*** 0.71 0.35 0.92 48

(2.55) (0.08) (0.08)
Group 2 18.66*** 1.32*** −0.64*** 0.68 0.70 0.78 48

(4.24) (0.11) (0.11)
Group 3 5.41*** 1.37*** −0.46*** 0.34 0.24 0.97 48

(1.39) (0.12) (0.11)

ConH2
Group 1 40.99*** 0.90*** −0.62*** 0.13 0.25 0.57 48

(6.05) (0.12) (0.11)
Group 2 45.76*** 0.44*** −0.15 1.00 0.88 0.13 48

(10.70) (0.15) (0.15)
Group 3 53.60*** 0.49*** −0.39*** 0.99 0.54 0.23 48

(9.24) (0.14) (0.14)
Group 4 52.03*** 0.54*** −0.42*** 0.74 0.43 0.28 48

(8.32) (0.13) (0.13)

ConH3
Group 1 35.45*** 0.91*** −0.47*** 0.51 0.57 0.51 48

(7.24) (0.13) (0.13)
Group 2 27.81*** 1.21*** −0.69*** 0.69 0.54 0.73 48

(4.80) (0.11) (0.11)
Group 3 46.64*** 0.48*** −0.26* 0.32 0.07 0.17 48

(9.50) (0.14) (0.14)

OscH1
Group 1 9.05*** 1.34*** −0.48*** 0.42 0.88 0.87 48

(3.13) (0.13) (0.12)
Group 2 11.66*** 1.34*** −0.53*** 0.81 0.39 0.84 48

(3.71) (0.12) (0.12)
Group 3 16.87*** 1.53*** −0.85*** 0.01 0.31 0.91 48

(2.68) (0.08) (0.08)
Group 4 25.34*** 1.76*** −1.16*** 0.06 0.85 0.98 48

(1.29) (0.04) (0.04)
Group 5 12.36*** 1.14*** −0.34** 0.66 0.52 0.76 48

(4.19) (0.14) (0.13)
Group 6 12.29*** 1.86*** −1.03*** 0.00 0.44 0.99 48

(1.48) (0.04) (0.04)
Group 7 29.91** 1.76*** −0.88*** 0.08 0.06 0.96 48

(11.32) (0.08) (0.09)
Group 8 2.56** 2.33*** −1.37*** 0.92 0.55 1.00 48

(1.13) (0.04) (0.05)

OscH2
Group 1 28.23*** 1.28*** −0.79*** 0.74 0.23 0.83 48

(3.43) (0.08) (0.08)
Group 2 25.82*** 1.40*** −0.89*** 0.03 0.55 0.89 48

(2.85) (0.07) (0.07)
Group 3 28.71*** 1.31*** −0.80*** 0.01 0.00 0.82 48

(3.95) (0.09) (0.09)
Group 4 34.97*** 1.28*** −0.86*** 0.09 0.02 0.86 48

(3.56) (0.07) (0.07)
Group 5 33.02*** 1.19*** −0.76*** 0.03 0.84 0.76 48

(4.65) (0.10) (0.10)

OscH3
Group 1 23.33*** 0.59*** 0.02 0.97 0.67 0.37 48

(7.12) (0.15) (0.14)
Group 2 47.17*** 0.40*** −0.10 1.00 0.88 0.10 48

(11.37) (0.15) (0.15)
Group 3 21.56*** 1.53*** −0.89*** 0.12 0.41 0.92 48

(2.64) (0.07) (0.07)
Group 4 34.48*** 0.94*** −0.56*** 0.16 0.19 0.60 48

(4.90) (0.11) (0.10)
Group 5 39.42*** 0.99*** −0.63*** 0.00 0.33 0.69 48

(4.63) (0.10) (0.08)
Group 6 10.59*** 1.54*** −0.71*** 0.01 0.10 0.93 48

(2.09) (0.09) (0.09)

OscH3SF
Group 1 18.98** 1.03*** −0.34* 0.27 0.66 0.57 38

(7.16) (0.18) (0.18)
Group 2 38.99*** 0.96*** −0.60*** 0.21 0.93 0.61 48

(5.56) (0.11) (0.10)
Group 3 26.25*** 1.27*** −0.71*** 0.46 0.13 0.77 48

(4.61) (0.10) (0.10)
Group 4 21.73*** 1.08*** −0.47*** 0.13 0.60 0.66 48

(5.12) (0.12) (0.11)
Group 5 30.25*** 0.75*** −0.34** 1.00 0.98 0.36 48

(7.03) (0.14) (0.14)
Group 6 23.44*** 1.11*** −0.63*** 0.26 0.05 0.66 48

(4.29) (0.11) (0.11)

Table 9: Estimated AR(2) rules, Eq. (7), for each experimental group. *, **, and
*** for the estimations show significance at the 10%, 5% or 1% significance level,
respectively, with the standard errors shown below in parentheses. Columns ’au-
toc’ and ’hskd’ show p-values of the specification tests for the residual autocorre-
lation (Ljung-Box test) and heteroscedasticity (Engle’s ARCH tests), respectively.
The group label is in bold when the estimated rule passes both tests at the 5%
significance level.
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C.5 t-test for correlations comparison

Slope ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.944 0.947 0.993 0.991 0.957 0.981
ConH2 0.962 X 0.963 0.988 0.973 0.970 0.975
ConH3 0.002*** 0.866 X 0.964 0.882 0.868 0.901
OscH1 0.036** 0.033** 0.036** X 0.028** 0.024** 0.026**
OscH2 0.861 0.895 0.862 0.956 X 0.887 0.901
OscH3 0.169 0.216 0.169 0.926 0.781 X 0.768
OscH3SF 0.935 0.946 0.935 0.970 0.941 0.942 X

Table 10: p-values of the t-test of the differences in correlations between p̄ei,t+h−pt−1

and the price change, pt−1 − pt−2 (see Fig. 8), pairwise for different treatments,
where the alternative hypothesis is that the row treatment has a value not lower
than the column treatment. *, **, and *** denote treatment comparisons when
the null hypothesis of equality is rejected at the 10%, 5% or 1% significance level,
respectively.

C.6 Nonparametric test for discoordination comparison

Discoord ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.010** 0.161 0.043** 0.007*** 0.006*** 0.027**
ConH2 1.000 X 0.451 0.394 0.003*** 0.033** 0.068*
ConH3 1.000 0.601 X 0.456 0.007*** 0.099* 0.099*
OscH1 1.000 0.661 0.705 X 0.053* 0.040** 0.127
OscH2 1.000 1.000 1.000 1.000 X 0.829 0.544
OscH3 1.000 1.000 1.000 0.699 0.009*** X 0.442
OscH3SF 1.000 0.845 0.866 1.000 0.185 0.442 X

Table 11: p-values of the one-sided Kolmogorov-Smirnov test comparing the dis-
coordination (median of the standard deviations of predictions) statistics, pairwise
for different treatments, where the alternative hypothesis is that the row treatment
has a value not lower than the column treatment. *, **, and *** denote treatment
comparisons when the null hypothesis of equality is rejected at the 10%, 5% or
1% significance level, respectively.

D Dynamics of individual forecasts and price

Figures 11-17 show the evolution of individual forecasts and prices (in black with
markers) for each of the 35 groups of our experiment. Figures are organized by
treatment, see captions for the details. The first ten periods in each panel show
the initial price history in the group. The point forecasts are displayed against
those time periods that they are made for (and not when they are made). For
instance, in treatment ConH3, in period t = 15, we show price p15 and individual
forecasts, pei,15 that were made in period 12.
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Discoord ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.056* 0.083* 0.087* 0.005*** 0.014** 0.062*
ConH2 0.944 X 0.278 0.200 0.005*** 0.014** 0.062*
ConH3 0.917 0.722 X 0.301 0.012** 0.047** 0.141
OscH1 0.913 0.800 0.699 X 0.013** 0.236 0.101
OscH2 0.991 0.995 0.988 0.987 X 0.915 0.690
OscH3 0.986 0.986 0.953 0.764 0.085* X 0.270
OscH3SF 0.938 0.938 0.859 0.899 0.310 0.730 X

Table 12: p-values of the one-sided Fischer-Pitman permutation test comparing
the discoordination (median of the standard deviations of predictions) statistics,
pairwise for different treatments, where the alternative hypothesis is that the row
treatment has a value not lower than the column treatment. *, **, and *** denote
treatment comparisons when the null hypothesis of equality is rejected at the 10%,
5% or 1% significance level, respectively.

Discoord ConH1 ConH2 ConH3 OscH1 OscH2 OscH3 OscH3SF

ConH1 X 0.029** 0.100 0.067* 0.018** 0.012** 0.024**
ConH2 1.000 X 0.429 0.341 0.008*** 0.019** 0.129
ConH3 0.950 0.686 X 0.461 0.018** 0.048** 0.190
OscH1 0.958 0.715 0.612 X 0.023** 0.141 0.091*
OscH2 1.000 1.000 1.000 0.985 X 0.974 0.669
OscH3 1.000 0.990 0.976 0.886 0.041** X 0.531
OscH3SF 0.988 0.914 0.869 0.929 0.396 0.531 X

Table 13: p-values of the one-sided Mann-Whitney-Wilcoxon test comparing the
discoordination (median of the standard deviations of predictions) statistics, pair-
wise for different treatments, where the alternative hypothesis is that the row
treatment has a value not lower than the column treatment. *, **, and *** de-
note treatment comparisons when the null hypothesis of equality is rejected at the
10%, 5% or 1% significance level, respectively.
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Figure 11: Forecasts and price dynamics (black) in the three groups of the ConH1
treatment.
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Figure 12: Forecasts and price dynamics in the four groups of the ConH2 treat-
ment.
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Figure 13: Forecasts and price dynamics in the three groups of the ConH3 treat-
ment.
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Figure 14: Forecasts and price dynamics in the eight groups of the OscH1 treat-
ment.
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Figure 15: Forecasts and price dynamics in the five groups of the OscH2 treat-
ment.
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Figure 16: Forecasts and price dynamics in the six groups of the OscH3 treatment.
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Figure 17: Forecasts and price dynamics in the six groups of the OscH3SF treat-
ment. Note the abnormal behaviour of one of the participants in the last 10
periods in group 1, which significantly affected the price dynamics. We excluded
the last 10 periods on this group from our analysis.
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