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Abstract—In this paper, we consider IRS-assisted transmissions
from a multi-antenna access point (AP) to a receiver with
uncertain channel information. By adjusting the magnitude of
reflecting coefficients, the IRS can sustain its operations by har-
vesting energy from the AP’s signal beamforming. Considering
channel estimation errors, we model both the AP-IRS channel
and the AP-IRS-receiver as a cascaded channel by norm-based
uncertainty sets. This allows us to formulate a robust optimization
problem to minimize the AP’s transmit power, subject to the
receiver’s worst-case data rate requirement and the IRS’s worst-
case power budget constraint. Instead of using the alternating
optimization (AO) method, we firstly propose a heuristic scheme
to decompose the IRS’s phase shift optimization and the AP’s
active beamforming. Based on semidefinite relaxations of the
worst-case constraints, we further devise an iterative algorithm
to optimize the AP’s transmit beamforming and the magnitude
of the IRS’s reflecting coefficients efficiently by solving a set
of semidefinite programs. Simulation results reveal that the AP
requires a higher transmit power to deal with the channel
uncertainty. Moreover, the negative effect of channel uncertainty
can be alleviated by using a larger-size IRS.

I. INTRODUCTION

Recently, intelligent reflecting surface (IRS) has been pro-

posed to enhance wireless communications by proactively re-

configuring the radio environment, i.e., wireless channels [1],

[2]. This provides an additional degree of freedom for system

design and performance optimization of wireless networks. As

such, the integration of transmission control at end devices

and the online reconfiguration of wireless channels can be

envisioned as a revolutionary technology for future wireless

networks. The operation of the IRS relies on a large array of

passive scattering elements with the physical dimension equiv-

alent to the signals’ wavelength. Each scattering element can

induce a controllable phase shift on the incident RF signals.

All passive elements are connected and jointly controlled by

the IRS controller, which can communicate with external user

devices to exchange control information, e.g., [3], [4].

To enhance wireless communications, the IRS controller

can optimize the phase shifts of all scattering elements jointly

and thus reshape the physical wireless channels between the

transceivers. In contrast to the conventional transmit beam-

forming, this is viewed as passive beamforming due to the

passive operations of the IRS’s scattering elements. Recently,

there is an upsurge in research works on the optimization

of IRS-assisted wireless networks by leveraging the IRS’s

passive beamforming capability, e.g., channel capacity or

energy efficiency maximization in [5], [6], transmit power

minimization in [7], [8], and physical layer security issues

in [9], [10]. However, most of the existing works assume

perfect channel state information (CSI) and focus on one-shot

or static beamforming optimization problems. This requires

the capabilities of channel sensing and signal processing

involving the IRS, which becomes very challenging due to

the IRS’s passive nature. As a countermeasure, the authors

in [11] modeled the channel’s error estimates due to pilot

contamination as Gaussian variables, and then asymptotically

studied the negative effect of channel estimation errors in IRS-

assisted uplink transmissions.

Instead of such a stochastic approach, another approach for

modeling channel uncertainty is to impose a bounded norm

on the error estimates, which generally results in robust op-

timization formulations to ensure the worst-case performance

guarantee. The authors in [12] considered a norm-based uncer-

tainty set for the reflecting channels from the IRS to receivers

and proposed a robust power minimization problem subject to

the worst-case data rate requirements at individual receivers. A

similar uncertainty model is applied to an IRS-assisted secure

communication system in [13], where the channel between

the IRS and an eavesdropper is subject to a norm-based

uncertainty set. The authors in [13] proposed a robust sum-rate

maximization problem subject to the worst-case information

leakage to an eavesdropper. Different from [12], an extended

work in [14] assumed that the cascaded channel from the

base station to the receiver via the IRS is subject to a norm-

based uncertainty set. The worst-case robust design in [14]

ensures that each receiver can have a data rate guarantee for

all realizations of the channel conditions. The solutions to the

above robust designs typically rely on convex reformulations

of the worst-case constraints in the first place, and then use

the AO method to optimize iteratively the active and passive

beamforming strategies.

In this paper, we consider a similar norm-based uncertainty

model for IRS-assisted multiple-input single-output (MISO)

transmissions from a multi-antenna AP to a receiver. Different



from [11]–[14], we focus on a more practical case with both

the worst-case data rate requirement at the receiver and the

worst-case power budget constraint at the IRS, considering

the uncertainties in both the AP-IRS and the cascaded AP-

receiver channels. We propose a robust design to minimize the

AP’s transmit power by jointly optimizing the AP’s transmit

beamforming and the IRS’s passive beamforming strategies.

To the best of our knowledge, this is the first work to study the

worst-case power budget constraint in IRS-assisted wireless

networks. To solve this robust problem, we firstly propose a

heuristic scheme to decompose the active and passive beam-

forming optimizations. We then focus on the joint optimization

of the AP’s transmit beamforming and the magnitude of

the IRS’s reflecting coefficients. By exploiting the problem

structure, we design an efficient search algorithm to solve the

joint optimization problem iteratively. Our simulation results

reveal that, with uncertain channel information, a significant

increase in the AP’s transmit power is required to maintain the

same quality of service provisioning to the receiver. Another

countermeasure to the negative effect of channel uncertainty

is to use a larger-size IRS instead of increasing AP’s transmit

power. This verifies the potential benefit of improving energy

efficiency by deploying the IRS in wireless networks.

II. SYSTEM MODEL

We consider an IRS-assisted MISO downlink system as

shown in Fig. 1. The IRS has N reflecting elements and

the multi-antenna AP has M antennas serving one single-

antenna receiver. The system model can be easily extended to

a multi-receiver case. We assume that the number of passive

reflecting elements is much larger than the number of the AP’s

antennas. The IRS controller is capable of adjusting the phase

shift and the magnitude of each reflecting element dynamically

according to the channel conditions. The joint control of phase

shifts and magnitudes, namely passive beamforming, provides

the capability of reshaping the physical channel conditions

in favor of information transmissions from the AP to the

receiver. The direct AP-receiver, AP-IRS and IRS-receiver

complex channels are denoted by g ∈ C
M×1, H ∈ C

M×N

and f ∈ C
N×1, respectively.

A. IRS-assisted Channel Enhancement

We assume that the IRS controller can adjust the magnitude

and phase of each reflecting coefficient individually. Each

reflecting element sets a phase shift θn ∈ [0, 2π] and its

magnitude ρn ∈ [0, 1] to reflect the incident RF signals.

Let Θ = diag(ρ1e
jθ1 , . . . , ρNejθN ) denote the IRS’s passive

beamforming, where diag(a) denoting the diagonal matrix

with the diagonal vector a. Hence the IRS-assisted equivalent

channel from the AP to the receiver is given by

ĝ = g +HΘf , (1)

where H = [h1, . . . ,hN ] denotes the channel matrix from the

AP to the IRS. Let w ∈ C
M×1 denote the AP’s beamforming

vector and s denote the complex symbol transmitted by the

AP with unit power. The received signal at the receiver is

Fig. 1: IRS-assisted MISO system.

given by y = ĝHws + νd
1, where νd ∼ CN (0, σ2) is the

Gaussian noise with zero mean and variance σ2. For notational

convenience, we normalize the noise variance to unit one.

Hence, the received signal-to-noise ratio (SNR) is given by

γ(w,Θ) = ‖(g +HΘf)Hw‖2. (2)

It is clear that the SNR performance depends on the AP’s

transmit beamforming w and the IRS’s passive beamforming

Θ, which are coupled in a non-convex form.

B. IRS’s Power Budget Constraint

Given the AP’s transmit beamforming, the incident signal

at the IRS is x = HHws. We assume that each reflecting ele-

ment is connected to a phase controller and also equipped with

an energy harvester that is able to harvest RF energy from the

AP’s beamforming signals. By tuning the magnitudes of the

reflecting coefficients ρ � {ρ1, . . . , ρ1, . . . , ρN}, a part ρ2n of

the incident signal power is reflected to the receiver, while the

other part 1− ρ2n is fed into the energy harvester. To maintain

the IRS’s operations, the total harvested energy has to meet the

IRS’s total power consumption, which leads to the following

power budget constraint: η
∑

n(1−ρ2n)‖hH
n w‖2 ≥ Nμ, where

η denotes the energy harvesting efficiency and hn is the

channel vector from the AP to the n-th reflecting element.

Note that the IRS’s power consumption relates to the number

of reflecting elements and the phase resolution [6]. Assuming

identical bit resolutions for all reflecting elements, the IRS’s

total power consumption is simply denoted as Nμ, where μ
is the power consumption of a single reflecting element.

We aim to minimize the AP’s transmit power, denoted as

||w||2, by jointly optimizing the active and passive beam-

forming strategies, constrained by the IRS’s power budget

constraint and the receiver’s SNR requirement.

min
w,Θ

||w||2 (3a)

s.t |(g +HΘf)Hw|2 ≥ γ1, (3b)

η
∑
n

(1− ρ2n)|hH
n w|2 ≥ Nμ, (3c)

ρn ∈ (0, 1) and θn ∈ (0, 2π) ∀n ∈ N . (3d)

Note that problem (3) can be easily extended to a multi-

receiver case by imposing individual SNR requirement for

each receiver.

1Here the superscript H denotes the conjugate transpose.



III. ROBUST ACTIVE AND PASSIVE BEAMFORMING

OPTIMIZATION

It is clear that problem (3) is non-convex due to the

couplings between w and Θ, which is conventionally solved in

an AO framework. Different from [8], we allow each reflecting

element to tune both the magnitude and phase of the reflecting

coefficients. Moreover, the optimal solution to (3) relies on

the knowledge of exact channel information, including the

direct channel g and the reflected channels (H, f) via the IRS,

which are inevitably subject to estimation errors. In the sequel,

we firstly propose a channel uncertainty model for the IRS-

assisted channels, and then reformulate a robust counterpart

of the power minimization problem in (3). After that, we

transform the robust counterpart to a tractable form that is

the major benefit for our algorithm design.

A. Channel Uncertainty Model

We assume that the direct channel g from the HAP to the

receiver can be estimated accurately by the active receiver

in a training process. In particular, the HAP can send a

known pilot information to the receiver with fixed transmit

power. Meanwhile, the IRS switches off its reflecting elements.

The channel g can be recovered at the receiver based on

the received signal samples. However, without information

decoding capability at the IRS, the channels H and f have to

be estimated at either the AP or the receiver by overhearing

the channel response. Similar to the uncertainty modeling for

the IRS-receiver channel in [12] and [13], we assume that

the AP-IRS channel matrix H is subject to estimation errors,

i.e., H = H̄ + Δh, where H̄ denotes the averaged estimate

and Δh denotes the error estimate of the channel matrix H.

The error estimate Δh has limited power and thus we can

define the uncertainty set Uh for H as follows:

H ∈ Uh � {H = H̄+Δh : Tr(ΔH
h Δh) ≤ δ2h}, (4)

where Tr(·) denotes the trace operation and δh is the power

limit of error estimate Δh corresponding to the channel H.

The estimation of the IRS-receiver channel f becomes more

difficult as the passive IRS cannot emit RF pilot signals for

channel training. As such, the estimation of the channel f has

to be bundled with the AP-IRS channel H and performed at

the receiver by overhearing a mixture of signals from the AP

and the IRS’s reflections, e.g., [14]. Define the IRS-assisted

reflecting channel Hf as follows:

Hf � Hdiag(f) = [f1h1, f2h2, . . . , fNhN ],

which is the cascaded channel matrix from the AP to the re-

ceiver via the IRS [14]. Hence, the channel model in (1) can be

rewritten as ĝ = g+Hfv, where v = [ρ1e
jθ1 , . . . , ρNejθN )]T

denotes the diagonal vector of the matrix Θ. Similar to (4),

we can define the uncertainty of channel Hf as follows:

Hf ∈ Uf � {Hf = H̄f +Δf : Tr(ΔH
f Δf ) ≤ δ2f }, (5)

where δf denotes the power limit of the error estimate Δf for

the reflecting channel Hf . The average channel estimate H̄f

and the power limit δf are assumed to be known in advance

by channel measurements.

B. Robust Counterpart and Reformulations

Given the channel uncertainty models in (4) and (5), the

robust counterpart of (3) can be formulated as follows:

min
w,v

||w||2 (6a)

s.t |(g +Hfv)
Hw|2 ≥ γ1, ∀Hf ∈ Uf , (6b)

η
∑
n

(1− ρ2n)|hH
n w|2 ≥ Nμ, ∀H ∈ Uh (6c)

ρn ∈ (0, 1) and θn ∈ (0, 2π) ∀n ∈ N . (6d)

Here the constraints (6b) and (6c) define the receiver’s worst-

case SNR requirement and the IRS’s worst-case power bud-

get constraint, respectively. To simplify problem (6), we as-

sume that all the IRS’s reflecting elements have the same

magnitude ρ. The simplification allows us to decompose

the optimization of the magnitude ρ and the phase vector

θ � [ejθ1 , . . . , ejθN ]T . In particular, we can rewrite the IRS-

enhanced channel as ĝ = g +Hfv = g + ρHfθ. The energy

harvested by the IRS is also simplified as η(1−ρ2)||HHw||2.

Hence, we can simplify the robust problem in (6) as follows:

min
w,θ,ρ

‖w‖2 (7a)

s.t. |(g + ρHfθ)
Hw|2 ≥ γ1, ∀Hf ∈ Uf , (7b)

η(1− ρ2)‖HHw‖2 ≥ Nμ, ∀H ∈ Uh, (7c)

ρ ∈ (0, 1) and θn ∈ (0, 2π) ∀n ∈ N . (7d)

The difficulty of problem (7) firstly lies in that the magnitude

ρ is coupled with the phase vector θ and the AP’s transmit

beamforming w. With perfect channel conditions, the joint

optimization of (w,θ) for any fixed ρ can follow the con-

ventional AO method, similar to that in [15]. Given the fixed

w, the worst-case constraints in (7b)-(7c) define the lower and

upper bounds on ρ. This implies that we may resort to a linear

search method to optimize ρ. Another difficulty comes from

the semi-infinite constraints in (7b)-(7c), which are required to

hold for any channel error estimate in the uncertainty set. In

the sequel, we first present a simple heuristic to decompose the

optimization of w and θ. Then, we reformulate the worst-case

constraints in (7b)-(7c) and present a convex approximation to

problem (7).

C. Heuristics for Optimization Decomposition

In this work, different from the conventional AO method, we

propose a new method that decomposes the joint optimization

of (w,θ) and also enable us to rewrite the semi-infinite

constraint (7b) into a linear matrix inequality. The intuition

behind the decomposition lies in that we can expect that

the IRS-assisted channel ρHfθ in (7b) aligns with the direct

channel g from the AP to the receiver. This happens when

the direct channel g is strong under the line-of-sight (LoS)

channel conditions. We present this property as follows:



Observation 1: Assuming a large-scale IRS, i.e., N � M ,
we can always find a phase vector θ such that

Hfθ = κg, (8)

where κ ∈ R
+ is a scalar constant.

This property is easy to verify as the phase vector θ of a

large-scale IRS provides sufficient control variables to solve

a set of linear equations in the form of Hfθ = κg for a

feasible κ > 0. Though Observation 1 may not hold at the

optimum of problem (7) due to the coupling of w in both (7b)

and (7c), it implies that the IRS can always enhance the direct

channel g by its phase tuning. This may shed some light on

the optimization decomposition of w and θ into two sub-

problems. It is clear that the phase solution to (8) is not

unique due to the large size of reflecting elements. Based

on Observation 1, we can simply choose θ to maximize the

channel gain ||(1 + ρκm)g||2 of the IRS-assisted channel.

This implies a bisection method to search for the maximum

gain, denoted as κm, and the corresponding phase vector θ.

Considering the channel uncertainty model in (5), practically

we can replace Hf in (8) by its mean estimate H̄f .

1) Convex Reformulation for Worst-case Constraints:
Given the optimized phase vector θ and the channel gain κm,

now we focus on the optimization of ρ and w in problem (7),

which are closely coupled with the uncertain channel matrices

Hf and H. In the sequel, we explore equivalent reformulations

of the constraints (7b)-(7c), respectively.

Proposition 1: Given the solution (θ, κm) to (8), the con-
straint (7b) is equivalent to the following matrix inequality:[

ρ2
(
θθH ⊗W

)
+ tIMN αρ(θ ⊗W)g

αρgH(θ ⊗W)H α2gHWg − γ1 − tδ2f

]

 0,

(9)

for some t ≥ 0, where α � (1 + ρκm), IMN denotes the
identity matrix with size MN , and the semidefinite matrix W
is a rank-one relaxation of wwH , i.e., W 
 wwH .

Due to space limits, the complete proof of Proposition 1

is relegated to our online technical report [16]. Proposition 1

transforms the worst-case constraint in (7b) into a semidefinite

matrix inequality. Note that the matrix coefficient θθH ⊗W
can be further simplified as (θ⊗W)(θH⊗IM ). The common

term θ ⊗W in (9) is linear with respect to the beamforming

matrix W. However, the resulting constraint in (9) is still non-

convex due to the quadratic coupling between ρ and W. We

also observe that for any fixed ρ the constraint in (9) becomes

a linear matrix inequality, which is convex in terms of W and

the auxiliary variable t.

Proposition 2: Given the solution (θ, κm) to (8), the con-
straint in (7c) has the following semidefinite reformulation:[

Wc + τIMN , Wcvec(H̄)

vec(H̄)HWc, γ̄0 − Nμ
η(1−ρ2) − τδ2h

]

 0, (10)

for some τ ≥ 0, where we define Wc = IN ⊗W and γ̄0 =
vec(H̄)HWcvec(H̄) for notational convenience.

The proof of Proposition 2 follows a similar idea to that for

Proposition 1 by rewriting the semi-infinite constraint (7c) in

a quadratic form. The detailed derivation can be found in our

online technical report [16].

2) Iterative Search Algorithm for (ρ,W): Till now, we can

reformulate the robust power minimization problem under the

uncertain channel conditions as follows:

min
ρ≥0,W�0,t≥0,τ≥0

{Tr(W) : (9) and (10)} (11)

The linear beamforming vector w can be retrieved by eigen-

value decomposition if the matrix solution W to problem (11)

is of rank one. Otherwise we can extract an approximate

rank-one solution via Gaussian randomization [17]. However,

problem (11) is still non-convex due to the coupling of ρ and

W in the constraints (9) and (10). For fixed ρ, it is easy to

verify that both constraints (9) and (10) become linear matrix

inequalities. Thus, problem (11) can be efficiently solved by

semidefinite programming. However, with fixed W, it is still

difficult to optimize ρ due to to the non-convex structure in

constraint (9). This implies that the conventional AO method

does not apply to problem (11) directly. In the sequel, we first

exploit the structural property of problem (7) and then devise

a simple iterative algorithm to search for (ρ,W).

Proposition 3: Assuming that problem (7) is feasible, the
constraint in (7c) always holds with equality at the optimum
of problem (7).

Due to space limits, the detailed proof of this proposition is

relegated to our online technical report in [16]. Proposition 3

implies a simple iterative solution method for problem (11).

Specifically, the algorithm starts with a feasible ρ, the opti-

mal transmit beamforming W can be efficiently optimized

by solving the semidefinite program in (11). According to

Proposition 3, we can simply update ρ by its maximum defined

by the constraint in (10). The detailed procedures are listed in

Algorithm 1. The algorithm terminates when the AP’s transmit

power becomes stabilized.

Algorithm 1 The Max-ρ Algorithm for Problem (11)

1: Initial with small ρ, k ← 1, ε ← 10−5

2: while |Tr(W(k))−Tr(W(k−1))| ≥ ε
3: k ← k + 1
4: Find κm and θ via bisection

5: Solve (11) with given ρ
6: Retrieve W and update W(k) ← W
7: Evaluate the upper bound ρmax

8: Update ρ ← ρmax

9: end while

IV. NUMERICAL RESULTS

In the simulation, we evaluate the AP’s transmit power with

different SNR requirements at the receiver. The impact of

channel uncertainty on the AP’s minimum transmit power is

also examined under different parameter settings. Specifically,



Fig. 2: Simulation topology

we consider the AP with 2 − 4 antennas and the IRS with

20 − 100 reflecting elements. We consider a fixed topology

shown in Fig. 2 to verify the proposed algorithm. The path

loss follows a log-distance propagation model with the loss

exponent equal to 2. The path loss at 1 meter distance

is 30 dB. To characterize the level of channel uncertainty,

we define uncertainty factors as βh � δ2h/Tr(H̄H̄H) and

βf � δ2f /Tr(H̄f H̄
H
f ), respectively for the uncertain channels

H and Hf . For simplicity, we consider β = βh = βf in the

simulation. A larger β implies a higher variation of the channel

conditions and thus larger errors in channel estimation.

In the following, we first verify the convergence of the

proposed Max-ρ Algorithm and explain its efficacy. Secondly,

we conduct a set of experiments to study the impact of

different parameters on the AP’s minimum transmit power,

including a) the uncertainty factor, b) the size of the IRS, c)

the SNR requirement at the receiver, and d) the number of

AP’s antennas. For each simulation setting, we run the exper-

iment 10 times with randomly generated channel conditions

and record the averaged performance for a fair comparison.

In Fig. 3, we show the convergence of the AP’s transmit

power and the IRS’s magnitude ρ of reflecting coefficients in

Algorithm 1. The magnitude ρ is also called a power-splitting

(PS) ratio. We consider M = 2 antennas at the AP and N = 20
reflecting elements in the IRS. The SNR requirement at the

receiver is set to γ1 = 30 dB and the uncertainty factor is

set to β = 0.1. It is clear that initially the AP operates with

a large transmit power to ensure the fulfillment of the worst-

case SNR requirement at the receiver and the worst-case power

budget constraint at the IRS. As the algorithm iterates, the

AP’s transmit power decreases significantly meanwhile the PS

ratio ρ increases to reflect more RF power to the receiver. By

dynamically adjusting the operating parameters at both the AP

and the IRS in an alternating manner, the AP can tune down

its transmit power gradually while still maintaining the desired

service provisioning requirement. We can see from Fig. 3 that

Algorithm 1 converges quickly in around 20 iterations, which

verifies the effectiveness of our algorithm design.

In Fig. 4, we evaluate the impact of the uncertainty factor

β on the AP’s transmit power. The uncertainty factors are set

to β = 0.1 and β = 0.15, respectively. The number of the

IRS’s reflecting elements varies from 20 to 100. As shown

in Fig. 4(a), with a fixed size of the IRS, the AP’s transmit

power becomes higher with a larger uncertainty level. This

observation is intuitive since the AP needs to raise its transmit

power to ensure the worse worst-case data rate guarantee at
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the receiver. This can be viewed as the price for robustness.

Besides, as shown in Fig. 4(b), when the uncertainty factor

β becomes large, the IRS prefers to reserve more energy by

setting a smaller value of ρ to maintain its operations even

in the worst-case channel conditions. Fig. 4 also verifies that

a large-size IRS can provide more performance improvement.

In particular, the AP’s transmit power decreases as the number

of reflecting elements increases. A larger size of the IRS

indicates more channel diversity that can be exploited by the

AP to enhance the receiver’s data rate. This means that we can

maintain the same service provisioning with reduced transmit

power at the AP. On the other hand, a larger size of the

IRS also implies more energy consumption, which requires

more energy harvesting from the AP’s signal beamforming by

setting a smaller value of ρ, as shown in Fig. 4(b).

We further exam the AP’s transmit power by varying the

receiver’s SNR requirement. We fix the number of reflecting

elements at N = 50 and the uncertainty factor at β = 0.1.

As shown in Fig. 5(a), the AP’s minimum transmit power

grows with the increasing of the receiver’s SNR requirement.

However, the PS ratio ρ increases much slower as shown

in Fig. 5(b). The IRS’s PS ratio can be jointly tuned up

to enhance the information transmission when the receiver’s
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SNR requirement becomes more stringent. In Fig. 6, we

investigate the performance impact of the number of AP’s

antennas and the size of the IRS. The uncertainty factor is

fixed at β = 0.1. As shown in Fig. 6(a), the AP’s transmit

power decreases with the increase in the size of the IRS,

which is consistent with the results in Fig. 4. We also record

an interesting observation in Fig. 6(a) where different curves

intersect with each. This implies that a larger size of the

IRS and more antennas at the AP do not guarantee a better

performance under channel uncertainties. The reason is that a

large-size IRS and more antennas at the AP may exaggerate

the uncertainty in the cascaded AP-IRS-receiver channel, and

thus the price of robustness also becomes higher. Moreover, the

IRS’s power budget constraint also limits the feasible size of

the IRS in practice. These observations provide useful insights

for practical deployment of IRS with imperfect channel and

energy conditions.

V. CONCLUSIONS

In this paper, we have proposed a robust power minimization

problem by jointly optimizing the active and passive beam-

forming strategies, subject to both the worst-case data rate

requirement at the receiver and the worst-case power budget

constraint at the IRS. We have reformulated the worst-case

constraints into matrix inequalities and devised a novel itera-

tive algorithm to search for the AP’s transmit beamforming and

the IRS’s power-splitting ratio. Our simulation results reveal

that the price of robustness is inevitable, however, it can be

alleviated by using a larger-size IRS. In our future work, we

may focus on a quantitative study on the relationship between

the size of the IRS and the price of robustness.
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