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Abstract  102 

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated 103 
its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies 104 
on global change biology, primarily for ecosystem researchers but also for those “next users” of the 105 
knowledge, information, and data that such networks provide. Here, we focus on eight lessons 106 
across climate change and variability, disturbance and resilience, drought and heat stress, and 107 
synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify 108 
where further research is needed to fill knowledge gaps and improve the utility and relevance of 109 
the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts 110 
and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this 111 
time of accelerating climate change.  As evidence of worsening global fire risk emerges, the natural 112 
ability of these ecosystems to recover from disturbances such as fire and cyclones provides lessons 113 
on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences 114 
across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a 115 
net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience 116 
to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable 117 
conditions. Located in under-represented areas, OzFlux data have the potential for reducing 118 
uncertainties in global remote sensing products, and these data provide several opportunities to 119 
develop new theories and improve our ecosystem models. The accumulated impacts of these 120 
lessons over the last 20 years highlights the value of long-term flux observations for natural and 121 
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managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with 122 
ecophysiologists, ecologists, geologists, remote sensors and modellers. 123 

Introduction 124 

Ecosystem flux networks are demonstrating their increased relevance to society’s most significant 125 
sustainability challenges, particularly those linked to global change (Baldocchi, 2019; Long, 2020). 126 
The need for better information and knowledge about energy, water and carbon budgets in natural 127 
and managed ecosystems, and the underlying processes that govern these budgets, is growing as 128 
the world looks to land-based carbon sequestration to help achieve net zero greenhouse gas 129 
emissions. Quality data and expert knowledge will be critical to building confidence in these options 130 
for managing net emissions in a changing climate. 131 

OzFlux, the regional flux monitoring network covering Australia and New Zealand, began in the late 132 
1990s in anticipation of these global challenges, especially climate change (see next section for 133 
more detail). Two decades on from its establishment in 2001, OzFlux has matured into a network 134 
that supports research about Australia’s and New Zealand's unique ecosystems, provides key data 135 
for Southern Hemisphere terrestrial systems, and observations for some ecosystems subject to an 136 
extreme and highly variable climate. The OzFlux community has created an observing network and 137 
platform to enable scientific discoveries by generations of researchers, and to deliver relevant and 138 
robust data and information for researchers, resource managers and policymakers, now and into 139 
the future. Through OzFlux, this research community has also transformed its approach to data 140 
sharing, acknowledging the challenges this can involve and developing solutions to address these, 141 
alongside demonstrating the significant benefits that flow from ensuring that data complies with 142 
FAIR (Findable Accessible Interoperable Reusable) principles (Wilkinson et al., 2016). OzFlux 143 
provides an example to other flux networks and research communities of the importance of data 144 
sharing.  145 

The combined research infrastructure of OzFlux and similar regional networks around the world 146 
(Mizoguchi et al., 2009; Novick et al., 2018; Park et al., 2018; Rebmann et al., 2018) contribute to 147 
the globally coordinated FLUXNET network (Baldocchi et al., 2001). Like OzFlux, this global network 148 
of micrometeorological “flux towers” provide observations to advance the understanding and 149 
simulation of processes across the past, present and future for a wide array of the world’s 150 
ecosystems. These continuous, long-term and standardised measurements are critical for detecting 151 
ecosystem stress, recovery from disturbance, and resilience to climate change, as well as exploring 152 
the causes and effects of longer-term climate trends and interannual variability – a goal 153 
unattainable with short-term records (Baldocchi et al., 2017). In-situ flux tower and remote sensing 154 
observations are being combined to upscale from site to regional and global scales (e.g. Cleugh et 155 
al., 2007; Jung et al., 2020; Schimel & Schneider, 2019), contributing valuable data-driven diagnoses 156 
of how climate change affects terrestrial carbon and water cycles (e.g.  Piao et al., 2020). Similarly, 157 
combining in-situ flux tower measurements, manipulation experiments and satellite remote sensing 158 
are advancing knowledge of how climate extremes affect the carbon cycle (Sippel et al., 2018). See 159 
Chapin et al. (2006) for definitions of carbon cycle terms used in this paper. FLUXNET’s global 160 
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database of ecosystem-scale observations are being used to evaluate and improve the processes 161 
represented in many ecophysiological, hydrological and land surface models (LSMs), improving the 162 
regional and global Earth System models used around the world (e.g. Ziehn et al., 2020).  163 

Vegetation of Australian and New Zealand ecosystems have evolved in geographic isolation, 164 
geological stability, long-term aridity, and fire-prone environments. In Australia, these conditions 165 
have resulted in a unique flora with scleromorphic properties enabling existence in arid climates on 166 
old, highly weathered, low nutrient soils and frequent fire (Fox, 1999). As a result, endemism in 167 
Australian flowering plants and gymnosperms is extremely high at 93% and 96% relative to global 168 
floras (Chapman, 2009). The Australian climate envelope differs from that of Europe, most of North 169 
America, Asia and South America, being, on average, warmer and drier (both in terms of rainfall 170 
and vapour pressure deficit - VPD) but also subject to larger interannual variations in rainfall and 171 
VPD than experienced across much of the globe. While much of Australia is arid or semi-arid, there 172 
are also regions that experience extremely large annual rainfall totals. The associated rainforests 173 
are also extensive in the tropical north-east. Unlike other continents, Australian vegetation is 174 
dominated by sclerophyllous, evergreen, woody species - species that are poorly represented in 175 
classifications of global plant functional types. Multiple interactions between these factors of low 176 
soil nutrient content, extreme interannual variability in rainfall, temperature and VPD across most 177 
of Australia, and systemic differences in vegetation attributes (for example, wood density, SLA, 178 
photosynthetic nitrogen-use efficiency - see Table 1) result in divergences of relationships among 179 
climate variables, carbon and water fluxes, resource-use efficiencies (for example Radiation Use 180 
Efficiency; Ponce-Campos et al., 2013) and vegetation attributes across the continents. Of the nine 181 
key ecophysiological attributes listed in Table 1, eight are statistically different from typical values 182 
of European, North American and global vegetation. Such reasoning underpins the rationale for, 183 
and importance of, the OzFlux network.  184 

 185 

Table 1: A comparison of selected vegetation traits across Australian, North American, and 186 
European plant species, and a combined data set (Global). Data retrieved from multiple publicly 187 
available datasets, but especially the TRY plant trait data set (Max Planck Institute for 188 
Biogeochemistry) and GLOPNET (Macquarie University) and the Diefendorf et al., global carbon 189 
discrimination data base. Means followed by a different letter within a row are significantly 190 
different from each other. Numbers of replicates shown in parentheses. Data which have been 191 
transformed are noted in the ‘Trans’ column. Unpublished analyses of data by D. Eamus and B. 192 
Murray.  193 

Trait Australia North 
America 

Europe Global Trans 

Wood density 
(g cm-3) 

0.69 
+  0.0069 
(890) a 

0.63 
+ 0.011 
(317) b 

0.55 
+  0.019 

(46) c 

0.67 
+ 0.0054 
(1253) 

 

Sapwood specific 
hydraulic 
conductivity 

0.54 
+ 0.11 
(90) a 

0.45 
+ 0.11 
(65) a 

-0.53 
+ 0.21 
(23) b 

0.37 
+ 0.077 
(178) 

ln 

http://www.bgc-jena.mpg.de/
http://www.bgc-jena.mpg.de/
http://www.bgc-jena.mpg.de/
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(kg s-1 m-1 MPa-1) 
Specific leaf area  
(m2 kg-1) 

1.61 
+ 0.033 (386) 

a 

2.68 
+ 0.034 
(407) b 

2.75 
+ 0.027 (394) b 

2.36 
+ 0.024 
(1187) 

ln 

Foliar N (mg g DW-1) 12.40 
+ 0.38 (330) a 

21.39 
+ 0.51 (330) 

b 

21.54 
+ 0.57 (253) b 

18.18 
+ 0.31 
(913) 

 

Vcmax mass basis 
(nmol CO2 g-1 s-1) 
 

-1.10 
+ 0.039 (165) 

a 

-0.49 
+ 0.068 (55) 

b 

-0.75 
+ 0.13 (24) b 

-0.93 
+ 0.037 
(244) 

ln 

Stomatal 
conductance (mmol 
m-2 s-1) 

4.98 
+ 0.053 (192) 

a 

5.49 
+ 0.057 
(173) b 

5.41 
+ 0.19 (21) b 

5.23 
+ 0.040 
(386) 

ln 

Amax Maximum 
assimilation rate 
(mass basis) 
(nmol CO2 g-1 s-1) 
 

4.16 
+ 0.042 (192) 

a 

4.75 
+ 0.045 
(176) b 

5.16 
+ 0.13 (40) c 

4.51 
+ 0.035 
(408) 

ln 

Asat/N (= 
photosynthetic 
nitrogen use 
efficiency; PNUE) 

5.21 
+ 0.17 (192) a 

6.41 
+ 0.20 (170) 

b 

8.15 
+ 0.60 (40) c 

6.01 
+ 0.14 
(402) 

 

Foliar 13C 
discrimination 

22.00 
+ 0.27 (63) a 

20.30 
+ 0.17 (141) 

b 

20.15 
+ 0.21 (33) b 

20.70 
+ 0.13 
(237) 

 

 194 

The aim of this paper is to describe the unique and most important insights and new knowledge 195 
contributed by the OzFlux network over its 20-years of operation. Through a series of short 196 
“lessons”, we show how Australian and New Zealand ecosystems and landscapes interact with land 197 
management practices, climate variability and climate change, with a focus on: 1) ecosystem 198 
response, resistance and resilience to disturbance and stress; 2) ecosystem processes that 199 
modulate water availability, runoff and productivity; and 3) net greenhouse gas emissions and the 200 
potential for these ecosystems to mitigate climate change and support ecosystem services and food 201 
production in the future. This aim reflects that our primary audience for these lessons is the 202 
ecosystem research community, however we anticipate that those “next users” of the knowledge, 203 
information and data that networks such as OzFlux support may also find benefit from these 204 
insights. In distilling the key lessons learned, we also identify where further research is needed to 205 
fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. 206 

The genesis of OzFlux 207 

The OzFlux journey began in the early 1990s when Australian and New Zealand researchers 208 
embarked on longer-term micrometeorological field campaigns and studies in agricultural, natural 209 
and modified forest, native grassland and wetland ecosystems. This research revealed gaps in our 210 
knowledge of ecosystem dynamics and feedbacks with climate and hydrology at multiple 211 
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timescales, across the diverse landscapes of New Zealand and Australia  (Campbell & Williamson, 212 
1997; Cleugh et al., 2007; Hollinger et al., 1994; Leuning et al., 2004). Through long-term 213 
international collaborations, Australian and New Zealand researchers learned from the scientific 214 
advances of similar research programs developing overseas, which themselves benefitted from the 215 
history of pioneering micrometeorological research in Australia. This included major contributions 216 
to the theory and methods of flux measurements, data processing and analysis, all of which were 217 
necessary for enabling long-term, autonomous flux monitoring (Finnigan et al., 2003; Leuning et al., 218 
1982; Webb et al., 1980).  High quality, in-situ measurements of ecosystem fluxes and stores of 219 
water, carbon and nutrients were also being sought to calibrate and validate remotely sensed 220 
observations in these unique landscapes and ecosystems. Flux data were also being incorporated 221 
into biophysically realistic land surface models, such as the CABLE LSM within Australia’s global 222 
climate and Earth system model (Australian Community Climate and Earth System Simulator, Ziehn 223 
et al., 2020).  224 

The need for continuous ecosystem data led to the first establishment of flux towers in several 225 
ecosystems around Australia (Fig. 1): 1) a managed wet temperate forest in south-eastern Australia 226 
(Tumbarumba, Bago State Forest, New South Wales); 2) a semi-arid subtropical savanna site in 227 
western Queensland (Virginia Park, Leuning et al., 2005); 3) a wet temperate forest in southeast 228 
Australia (Wallaby Creek in Victoria, Kilinc et al., 2012); 4) a tropical savanna woodland of the 229 
Northern Territory (Howard Springs, Eamus et al., 2001), and 5) a high rainfall, tropical rainforest in 230 
Far North Queensland (Cape Tribulation, Liddell et al., 2016). In New Zealand, the focus was on 231 
understanding the impacts of land management and hydro-climatic factors on ecosystem 232 
(especially soil) carbon stock changes (Hunt et al., 2004; Nieveen et al., 2005; Mudge et al., 2011), 233 
with longer-term tower sites established at both agricultural (Hunt et al., 2016; Rutledge et al., 234 
2017) and wetland (Goodrich et al., 2017) sites (Hampshire et al., 2007; Mudge et al., 2011; 235 
Nieveen et al., 2005). 236 
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 237 

Figure 1: OzFlux tower sites labelled with Fluxnet ID where available (blue square) and critical zone 238 
observatories (purple star) across Australia and New Zealand, including major biome types defined 239 
using the “Ecoregions2017” dataset from Dinerstein et al. (2017) licensed under CC-BY 4.0. For a 240 
current list of active sites and their specifications visit www.ozflux.org. 241 

 242 

These foundational flux tower sites sowed the seeds of OzFlux, which expanded to a continental 243 
network when TERN (Terrestrial Ecosystem Research Network) was funded in 2009. This funding 244 
provided the capital and institutional investment needed to support the “hard” infrastructure of 245 
around a dozen flux towers and supersites across Australia (Beringer  et al., 2016; Karan et al., 246 
2016). Equally important, it  provided the dedicated and sustained support for  “soft” infrastructure 247 
needs such as training for early career researchers; the data management infrastructure to comply 248 
with FAIR data principles (Wilkinson et al., 2016); data curation and data processing to ensure 249 
consistency across the network; data quality control and assurance; and data discoverability and 250 
data access (Beringer et al., 2017; Isaac et al., 2017). 251 

With the addition of new flux towers in ca. 2010 and the development of integrated data 252 
processing systems (Isaac et al., 2017), OzFlux has run as a truly regional network since 2010. 253 
Historically, Australian OzFlux researchers have largely focussed on natural and forested 254 
ecosystems, whereas New Zealand OzFlux research has concentrated on greenhouse gas budgets 255 
and emissions from agricultural systems, including drained peatlands. The long-term investment in 256 
OzFlux has led to significant and diverse research outcomes and impacts as summarised in Fig. 2.  257 
The following sections explore some of the key lessons and outcomes from OzFlux in more detail, 258 
and how they have contributed to global understanding in their respective scientific space. 259 

http://www.ozflux.org/
http://www.ozflux.org/
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 260 

 261 

Figure 2: Summary of the significant scientific and technical outcomes from the OzFlux network 262 
after two decades: Blue relates to discovery, information and knowledge outcomes; Grey outcomes 263 
relate to assessments across site, regional and global scales; Yellow refers to the capacity building 264 
outcomes for researchers; and Green indicates technical outcomes for observations and modelling.  265 

 266 

Lesson 1 – OzFlux ecosystems extend our understanding of the climate space 267 

Terrestrial ecosystems measured in OzFlux span a vast bioclimatic space from alpine to tropical, 268 
coastal to central desert. OzFlux sites include some of the hottest sites within FLUXNET, while also 269 
covering a rainfall range from 260 - 3930 mm yr-1 on average (Beringer et al., 2016), ranging from 270 
water- to energy-limited sites (De Kauwe et al., 2019; Van Der Horst et al., 2019). Many sites are 271 
subject to high temperatures, including frequent heatwaves, and high interannual variability in 272 
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rainfall.  In fact, both the Northern and Southern Australian regions have distributions of Mean 273 
Annual Precipitation (MAP) variability that are much higher than the rest of the world (Fig. 3) and 274 
OzFlux sites measure across a very large range of MAP and moreover in areas with higher MAP co-275 
efficient of variation not captured by FLUXNET sites (Fig. 3). Moreover, OzFlux includes sites with a 276 
very large spatial range in VPD, greater than 6 kPa (Renchon et al., 2018), allowing exploration of 277 
vegetation responses to high VPD that goes well beyond the conditions currently experienced by 278 
most ecosystems in the Northern Hemisphere (Grossiord et al., 2020). It is sometimes argued that 279 
Australian and New Zealand vegetation and its management is unique, with the implication that it is 280 
difficult to use data from these ecosystems to inform our understanding of vegetation function on 281 
other continents (see also Table 1). However, in this time of accelerating climate change, the 282 
network becomes a natural laboratory to develop a global understanding of vegetation responses 283 
to increasingly extreme climate conditions including to high temperatures not yet experienced in 284 
most parts of the world (Hutley et al., 2011; Van Der Horst et al., 2019).  285 

 286 

Figure 1: The coefficient of variation of annual precipitation plotted against mean annual 287 
precipitation (global gridded data) for the period 1981-2010 with probability distributions showing 288 
Northern Australia, Southern Australia, rest of the world (inset). Precipitation data were extracted 289 
from the TerraClimate dataset (Abatzoglou et al., 2018) at 0.09° resolution for regions between 60°S 290 
and 80°N. For visualisation regions where mean annual precipitation was less than 5 mm yr-1 are 291 
removed. Northern (red) and Southern Australia (blue) are differentiated by? the 28° S Latitude 292 
parallel. The corresponding climates of FluxNet (grey triangle) and OzFlux sites (purple circles) are 293 
shown. 294 

 295 
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Australia’s and New Zealand’s climate can vary greatly from one year to the next due to 296 
hemispheric-scale modes of variability (e.g. El Niño Southern Oscillation, Southern Annular Mode, 297 
Indian Ocean Dipole (Rogers & Beringer, 2017)) and the influence of regional weather phenomena 298 
(e.g. Tropical Cyclones, East Coast Lows or West Coast Troughs (Beringer & Tapper, 2000)) with 299 
important impacts on the continent’s terrestrial carbon balance (Teckentrup et al., 2021) – as 300 
illustrated for precipitation in Fig. 3. Regional and continental weather events can trigger 301 
pronounced variations in rainfall distribution that result in large seasonal and interannual variations 302 
of leaf area index (LAI), gross primary productivity (GPP) and ecosystem respiration (ER)  (Cleverly 303 
et al., 2019; Griebel et al., 2017; Haverd, et al., 2016; Hinko-Najera et al., 2017; Li et al., 2017; 304 
Renchon et al., 2018; Xie et al., 2019). They also result in seasonal fluctuations between mild and 305 
wet maritime winds and hot and dry continental winds from the Australian mainland. These shifts 306 
not only affect plant productivity but also provide methodological challenges for comparing annual 307 
budgets that have been constructed from flux tower observations (Griebel et al., 2016; Griebel, et 308 
al., 2020).  309 

Recent heatwaves during a prolonged drought across southern Australia have proven valuable to 310 
examine the individual and compounded effects of extreme temperature and water stress on the 311 
hourly and daily exchange of CO2 and H2O in temperate forests and woodlands. A synthesis across 312 
seven OzFlux sites during the record-breaking heatwave in the ‘Angry Summer’ of 2012/2013 313 
demonstrated that temperate woodlands became net sources of CO2 on a daily average during the 314 
most intense part of the heatwave. This response was attributed to increased ecosystem 315 
respiration during hotter days and nights and to a reduction in the magnitude and number of hours 316 
of carbon uptake (Van Gorsel et al., 2016). However, large reductions (up to 60%) in GPP were only 317 
observed in water-limited woodlands, while forests with access to deep soil water were able to 318 
sustain photosynthesis near to or beyond baseline levels at the cost of increased water loss through 319 
evapotranspiration (Griebel et al., 2020; Van Gorsel et al., 2016). These results highlight that the 320 
potential for temperate forests and woodlands to remain net carbon sinks will not only depend 321 
upon the responses of photosynthesis to warmer temperatures, but also on soil water availability 322 
and on the concomitant responses of ecosystem respiration.  323 

High temperatures and associated deficits in atmospheric vapour pressure provide challenges for 324 
the ability of plants to regulate water loss and to maintain photosynthesis. A synthesis across 17 325 
OzFlux wooded ecosystems demonstrates strong alignment between the thermal optima of GPP 326 
and mean daytime air temperatures, indicating ecosystem scale photosynthesis has adjusted to 327 
past thermal regimes (Bennett et al., 2021). While it currently seems that GPP in Australian 328 
broadleaf evergreen forests is buffered against small increases in air temperature, the shape of this 329 
relationship and the response of ecosystem respiration to rising temperatures will determine the 330 
sustainability of Australian carbon sinks into the future (Bennett et al., 2021; Duffy et al., 2021; 331 
Griebel et al., 2020; van Gorsel et al., 2016).  332 
 333 
The cooling effect of transpiration protects leaves from heat damage during extreme temperatures, 334 
and decoupling of photosynthesis from transpiration has been demonstrated in experimental 335 
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manipulations of young eucalypt trees (Drake et al., 2018). However, a meta-analysis across OzFlux 336 
sites highlighted that the confounding role of increasing VPD on transpiration had blurred any 337 
conclusive evidence of decoupling between photosynthesis and transpiration at the ecosystem 338 
scale (De Kauwe et al., 2019; Drake et al., 2018). 339 
 340 
Whether transpiration continues or is suppressed during heatwaves is crucial for coupled land-341 
atmosphere processes and impacts on regional climate. If vegetation can sustain transpiration 342 
during heatwaves, a negative feedback results in a cooling and moistening of the atmospheric 343 
boundary layer. Conversely if transpiration ceases, the resulting positive feedback leads to heating 344 
and drying of the boundary later and amplifies the heatwave regionally. Understanding these 345 
mechanisms is therefore critical in understanding how climate change will be expressed as 346 
heatwaves over vegetated surfaces. It also means that models representing the impact of global 347 
climate change regionally, and on terrestrial ecosystems, must represent these processes and 348 
mechanisms. 349 

 350 

Lesson 2 – Ecosystem recovery from disturbance 351 

Disturbances in Australia and New Zealand can include fire, cyclones and severe storms, pests, 352 
disease, agricultural management and land-use change, all of which have varying levels of impact 353 
on ecosystem carbon cycling.  Baldocchi (2008) discussed how the ratio of GPP to ER (i.e. GPP/ER) 354 
of disturbed sites is lower than that of undisturbed sites. When plotting GPP and ER from OzFlux 355 
sites, Beringer et al. (2016) showed that only a few had a low GPP/ER ratio, despite several sites in 356 
the network with a history of disturbance.  While much of the network was established in 357 
undisturbed sites, many have been subject to natural or managed disturbance over the past 20 358 
years. The apparent resilience of these ecosystems to disturbance is an important aspect of their 359 
longer-term carbon balance in response to global change, which is discussed further in lesson 4. 360 

Bushfire is one of the most widespread causes of ecosystem disturbance across Australia, having 361 
shaped adaptations in vegetation across the continent for over 80 million years, similar to southern 362 
Africa and in contrast to the more recent development of fire in the Mediterranean region and the 363 
Americas (Carpenter et al., 2015; Cleverly et al., 2019).  In tropical Northern Australian mesic 364 
savannas, bushfires are frequent, with 30% of the total savanna land area burned annually 365 
(Beringer et al., 2011, 2015). This fire regime directly affects carbon emissions and productivity due 366 
to canopy loss (Beringer et al., 2007).  Global climate change is expected to further increase 367 
extreme fire weather, and thus  greenhouse gas emissions, which will further reduce the savanna 368 
carbon sink (Beringer et al., 2003; Duvert et al., 2020).  By contrast, land management which 369 
reduces fire frequency and intensity (e.g., by shifting fires from the late to the early dry season) is 370 
reducing greenhouse gas emissions at landscape scales in the tropical savanna (Edwards et al., 371 
2021).  Fire in Australia’s tropical savannas has been shown to reduce the strength of the monsoon, 372 
and hence affect regional climate, by modifying the dynamics of the atmospheric boundary layer 373 
via changes in the partitioning of the surface energy budget (Beringer et al., 2003, 2015; Gorgen et 374 
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al., 2006; Lynch et al., 2007; Richards et al., 2011; Wendt et al., 2007).  Clearly, lessons learned 375 
about vegetation-climate-fire relations in the Australian tropical savanna are highly relevant  for 376 
understanding global change (Lehmann et al., 2014) and are applicable to fire-prone ecosystems in 377 
the USA, southern Europe and Africa. 378 

Where fires in northern Australia are frequent and of low intensity, fire in southern Australia tends 379 
to be infrequent and very destructive (Cleverly et al., 2019).  Fire in temperate and Mediterranean-380 
type ecosystems of southern Australia turns them initially into a CO2 source, with source strength 381 
depending on vegetation and climate (Sun et al., 2017; Wardlaw, 2021).  This was illustrated by 382 
recent estimates that the bushfires burning in Australia between November 2019 and January 2020 383 
emitted 715 million tonnes (range 517–867) of CO2 into the atmosphere (about twice Australia’s 384 
annual net anthropogenic CO2 emissions (van der Velde et al., 2021)). Fire in a tall eucalypt forest in 385 
southwest Tasmania switched the ecosystem to a net CO2 source for the first year post-fire, despite 386 
the survival of canopy trees and prolific seedling regeneration (Wardlaw, 2021).  In mallee 387 
ecosystems of South Australia, which consist of several species of multi-stemmed Eucalyptus, it can 388 
take over 3 years post-fire before net ecosystem productivity (NEP=GPP-ER) recovers to pre-fire 389 
levels, despite fires having little effect on respiration or nutrient cycling (Sun et al., 2015, 2020). By 390 
contrast, NEP in mesic tropical savanna ecosystems of northern Australia returns to pre-fire status 391 
in three to four months post-fire (Beringer et al., 2007).  The knowledge provided from this 392 
research into bushfires in Australia, including regional differences between the northern and 393 
southern parts of the continent, is important for understanding how these ecosystems adapt to 394 
changing climates. It is particularly useful for determining whether they remain carbon sinks in the 395 
long-term as fire frequency and intensity changes, and for informing and improving Earth system 396 
models, many of which are poor at simulating fire.  397 

Tropical cyclones largely affect OzFlux sites in northern Australia and occur infrequently, but when 398 
they do, they often cause great destruction. For example, Cyclone Monica in April 2006 affected 399 
10,400 km2 of savanna across northern Australia, resulting in mortality and severe structural 400 
damage to 140 million trees (Cook & Nicholls, 2009; Hutley et al., 2013). The current tree-stand 401 
structure at the long-term savanna flux site at Howard Springs is likely to have been affected by 402 
previous cyclones as shown by the age distribution of tree diameter (Fig. 4) (Hutley & Beringer, 403 
2010; O’Grady et al., 2000).  Recruitment and stand regrowth post-1974 are likely to explain the 404 
high NEP typically measured at the site (2–4 Mg C ha−1 y−1) (Beringer et al., 2016; Duvert et al., 405 
2020; Eamus et al., 2001), which is indicative of this site's continued state of disequilibrium and 406 
underscores the importance of understanding site history for interpreting NEP.  The likely impacts 407 
of increased storm intensity include larger recruitment pulses, thus larger episodic CO2 emissions, 408 
potentially with a smaller sequestration potential of these ecosystems. 409 

Whereas the effects of fire and cyclones have been well characterised in some sites across the 410 
OzFlux network, gaps remain in our knowledge about the consequences of changing fire intensity 411 
and regimes on ecosystem carbon and water budgets more broadly across New Zealand and 412 
Australia.  There is the added challenge that some very intense fires can destroy the very 413 
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infrastructure that measures the effects of fire on these fluxes, further limiting our understanding.  414 
Gaps also exist in our understanding of the impacts on ecosystems of very infrequent cyclones, 415 
particularly in the tropical rainforests of Far North Queensland.  Additionally, few or no OzFlux 416 
measurements have provided a detailed carbon budget for disturbance by pests, disease, or land-417 
use change.  These knowledge gaps can be difficult to fill because many but not all disturbances 418 
require the serendipity of being in the right place at the right time. This reinforces the need for 419 
continuous measurements over many decades, to increase the chances of being in the right place 420 
at the right time. 421 

 422 

 423 

Figure 2: Frequency distribution of the age of Eucalyptus and Corymbia trees at the Howard Springs 424 
flux site (number of trees) for trees >2 cm DBH (diameter at breast height) showing history of 425 
disturbance at the site. A relationship between age and tree size has been established for these 426 
ecosystems (Prior et al., 2004) and was used to convert DBH to age. Figure reproduced with 427 
permission from Hutley & Beringer (2011). 428 

 429 

Lesson 3 – The effect of drought and heat stress on ecosystem carbon and water 430 

balances  431 

The primary stress events in natural and managed ecosystems across Australia and New Zealand 432 
are related to water availability, usually in the form of short- or long-term meteorological drought, 433 
and many ecosystems have adapted to withstand prolonged episodes of water limitation. The last 434 
20 years has seen significant increases in temperature (the Australian continent has warmed by 435 
1.44 ± 0.24 °C since 1910) and a resultant increase in more frequent and intense heatwaves 436 
(Australian Bureau of Meteorology & CSIRO, 2020). A shift towards drier conditions across 437 
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Australia’s southern regions, especially in the April to October “cool season”, has been shown to be 438 
the most sustained large-scale change since the late 19th Century and are linked to the effects of 439 
anthropogenic climate change on the circulation systems that affect Australia’s seasonal weather 440 
patterns. Lower rainfall, combined with warming and increased evaporative demand are 441 
exacerbating the reductions in water availability in rivers and in the soil (Australian Bureau of 442 
Meteorology & CSIRO, 2020).  The drier conditions observed in southeast and southwest Australia 443 
over the last two decades have contributed to regional patterns of warming with a positive 444 
feedback effect on increased evaporative demand. Therefore, flux monitoring in Australia and New 445 
Zealand has been critically placed to capture the response of native and managed ecosystems to 446 
the occurrence of these emerging trends in interannual and more frequent stress events (Cleverly, 447 
et al., 2016; Moore et al., 2018) (see lessons 1, 4 and 8). 448 

The impact of drought has been particularly evident in semi-arid Australia, where ecosystems have 449 
shifted from weak CO2 sinks into CO2 sources (Ma et al., 2016; Qiu et al., 2020). The pivot point at 450 
which an ecosystem switches from a CO2 sink to a CO2 source can depend on the vegetation 451 
properties; for example, the Acacia spp dominated woodland near Alice Springs, in the arid centre 452 
of Australia  remain a net CO2 sink as long as the annual rainfall exceeds 260 mm (site average is 453 
300 mm y-1), whereas the nearby hummock grasslands become a CO2 source if the annual rainfall 454 
falls below the pivot point of 506 mm y-1 (Tarin, et al., 2020a).  455 

Ecosystems can also respond to drought stress by regulating their water use via phenotypic 456 
plasticity as observed in Eucalyptus obliqua at the Wombat State Forest in southeastern Australia, 457 
where leaf water potential at the turgor loss point was lowered through osmotic adjustment during 458 
a short-term summer drought (Pritzkow et al., 2020). Other drought response mechanisms include 459 
partial drought deciduousness, where LAI is reduced to minimise the surface area for water loss, 460 
which also increases the Huber value (ratio of sapwood area to leaf area) during extended drought 461 
(Meyer et al., 2015; Pritzkow et al., 2020). Individual species may also behave differently when 462 
subject to similar stresses as shown at Cumberland Plain,  where the melaleuca stand maintained 463 
higher canopy conductance and transpiration under VPD and moisture stress than the neighbouring 464 
eucalypt stand (Griebel, et al., 2020). 465 

Drought events in New Zealand, while less intense than those typically experienced in Australia, can 466 
still reduce ecosystem carbon uptake. For example, a short-term meteorological drought turned an 467 
intensively grazed dairy pasture into a net CO2 source (Kim & Kirschbaum, 2015; Kirschbaum et al., 468 
2015; Rutledge et al., 2015). The intensive grazing that characterises these systems regularly 469 
removes pasture dry matter. Pasture regrowth and  carbon uptake via  photosynthesis following 470 
grazing is limited during drought conditions, leading to net carbon loss (Kirschbaum et al., 2017; 471 
Wall et al., 2019). In contrast to highly managed agroecosystems, native peatland bogs in New 472 
Zealand’s Waikato region are able to maintain a strong carbon sink even during drought (Goodrich 473 
et al., 2017) likely due to ample soil moisture stores.  474 
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Temperate and semi-arid ecosystems in Australia display different mechanisms to tolerate 475 
prolonged water stress. For Mulga dominated semi-arid ecosystems, extensive expression of 476 
ecophysiological adaptations allows survival  through decadal scale droughts (Cleverly, et al., 2016; 477 
Eamus et al., 2013; Tarin, et al., 2020) and are usually reliant on single rainfall events to boost their 478 
CO2 uptake (Cleverly, et al., 2016). Temperate ecosystems in non-water limited regions of Australia 479 
are able to tolerate several years of below average rainfall through access to greater soil moisture 480 
reserves, (Griebel et al., 2020; Keith et al., 2012; Kirschbaum et al., 2007). Access to soil moisture 481 
reserves helps buffer wet sclerophyll ecosystems against heatwaves, as illustrated by the combined 482 
drought and heatwave event in 2012/2013 that led to water-limited woodland ecosystems 483 
becoming CO2 sources due to a reduction in photosynthesis caused by elevated water stress  484 
(Cleverly, et al., 2016; Van Gorsel et al., 2016), while wetter forest systems were much less affected 485 
(Van Gorsel et al., 2016). Model analysis of the more recent 2018/2019 heatwave showed reduced 486 
productivity for most ecosystems across continental Australia (Qiu et al., 2020). Four sites in 487 
southeast Australia also show reduced CO2 sink strength during this period (Fig. 5).  Some of these 488 
OzFlux observations are leading to much-needed and rapid improvements in the CABLE land 489 
surface model to better incorporate groundwater-vegetation interactions (Mu et al. 2021a, b).   490 

Drought can interact with disturbance (lesson 2) or other stress as was demonstrated at the 491 
temperate, wet sclerophyll, managed forest at Tumbarumba, where long term drought coincided 492 
with an insect attack (Kirschbaum et al., 2007). The forest was impacted by this attack, but it 493 
became a CO2 sink again when the insect attack had abated, despite continued and even 494 
intensifying drought conditions (van Gorsel et al., 2013). A future that consists of more frequent 495 
heatwaves in combination with drought could deplete soil moisture reserves beyond the tipping 496 
point for many ecosystems and result in greater ecosystem stress.  497 

 498 
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 499 

 500 

Figure 3: Diurnal average (+/- standard error) net ecosystem exchange (NEE) measured at four 501 
southeast Australian forest OzFlux sites across three typical summer days (left) and three heatwave 502 
summer days (right) in 2019. Typical summer days were determined using historical summer climate 503 
data for southeast Australia and the heatwave days were identified from Qiu et al. (2020). OzFlux 504 
sites include Tumbarumba (TUM, wet sclerophyll), Warra (WAR, wet sclerophyll), Whroo (WHR, dry 505 
sclerophyll) and Wombat State Forest (WOM, dry sclerophyll). Measurements are 30-minute 506 
ensemble averages from the four flux tower sites.  507 

 508 

Lesson 4 – Ecosystem resilience, adaptation and vulnerability to interannual climate 509 

variability 510 

Ecosystems can be resilient to climate variability by maintaining a stable carbon budget during and 511 
shortly following the imposition of stress (Holling, 1973) or through their capacity to rapidly recover 512 
to a pre-stress state after the return of favourable environmental conditions (Ponce Campos et al., 513 
2013). Because of Australia and New Zealand's contrasting climate zones and large interannual 514 
fluctuations in precipitation (Cleverly  et al. 2016; Cleverly et al., 2019; Etten, 2009), measurements 515 
from across the OzFlux network are ideal to analyse and explore the effects of hydroclimatic 516 
variation (e.g. wet to dry seasons or years) on ecosystem carbon and water exchange (Karan et al., 517 
2016). For example, while the strong interannual variability in arid and semi-arid Australian 518 
ecosystems reduces productivity, its recovery does not appear to be limited by previous sequences 519 



 

18 
 

of drought, swinging rapidly between states of net CO2 source and sink, sometimes from one year 520 
to the next (Cleverly, et al., 2016; Ma, et al., 2016; Tarin, et al., 2020b).  Due to the rapid recovery 521 
of Australian semi-arid ecosystems following a year of extreme drought in 2009 (Cleverly et al., 522 
2013, 2016; Eamus et al., 2013), these ecosystems contributed most to the observed global land 523 
carbon sink anomaly during the 2011 La Niña wet year (Poulter et al., 2014; Raupach et al., 2013).  524 

Australian ecosystems also show resilience to drought and fire in their leaf phenology.  For 525 
example, in Australia's mesic savannas, fire usually only consumes the seasonal grassy understorey, 526 
whereas canopy trees mostly remain intact (Lehmann et al., 2014). By contrast, in Australia’s 527 
tropical drylands, a highly resilient leaf phenology allows strong growth during wet years despite 528 
the absence of a growing season in previous dry years (Ma et al., 2013). Similarly, Australian 529 
tropical rainforest trees are considered to be somewhat resilient to high-temperature stress and 530 
heatwaves due to the very high temperature at which leaf dark respiration reaches a peak (60°C)  531 
(Weerasinghe et al., 2014), although they may be instead vulnerable to high VPD stresses (Fu et al., 532 
2018).  However, a loss of resilience has been predicted for Australian drylands with the increased 533 
occurrence of future woody dieback and megadrought events (Ma et al., 2013), and the continued 534 
resilience of many ecosystems in Australia and New Zealand is not assured with global change (van 535 
Gorsel et al., 2016). 536 

Other examples of carbon-function resilience to disturbance and drought are evident in managed 537 
and natural ecosystems of New Zealand.  Here, dairy farm pastures have shown rapid recovery to a 538 
net positive carbon balance within one week following intensive grazing events. In these systems, 539 
grass is maintained in a continuously juvenile state through repeated grazing and defoliation by 540 
cattle (Hunt et al., 2016). In contrast, northern New Zealand’s peat-forming wetland ecosystems 541 
display resilience through the continuous accumulation of deep peat deposits over millennia, 542 
despite existing in a warm maritime climate zone with frequent seasonal water deficits. In the few 543 
remaining intact peat wetlands, resilience to drought is a product of the ecosystem’s conservative 544 
evaporation regime and highly dynamic peat surface level (Campbell & Williamson, 1997; Fritz et 545 
al., 2008), both of which contribute to maintaining a stable and shallow water table, limiting 546 
respired CO2 losses (Goodrich et al., 2017; Ratcliffe et al., 2019). However, imposing artificial 547 
drainage diminishes their ability to self-regulate, leading to a shift in ecosystem structure and 548 
function, resulting in larger component CO2 fluxes (Ratcliffe et al., 2019, 2020). Furthermore, 549 
resilience is completely lost when drained peatlands are used for dairy grazing, where annual CO2 550 
losses can be extremely large, particularly during dry conditions (Campbell et al., 2015, 2020). 551 

Despite these insights, there exist substantial gaps in our knowledge of the impacts of hydroclimatic 552 
variation on diverse natural and managed ecosystems that might yield clues about their resilience 553 
under the stresses imposed by changing climate. Some of these gaps result from the inadequate 554 
distribution of flux tower sites; for instance, the OzFlux network does not include sites within the 555 
indigenous native forests of New Zealand, and semi-arid ecosystems are under-represented in 556 
Australia (Beringer et al. 2016).  Whilst research using OzFlux data have demonstrated the 557 
resilience of Australian ecosystems to the large climate variability experienced in the past, much 558 
less is understood about their resilience to future global changes, especially larger and more 559 
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frequent extreme weather events, warmer temperatures, changed rainfall regimes and higher CO2 560 
levels that result from anthropogenic climate change.  561 

 562 

Lesson 5 – Climate impacts of agroecosystems 563 

Agriculture in New Zealand differs from many other countries in that since 1987, farmers have not 564 
been able to receive any government subsidies for production or environmental services associated 565 
with their ownership or stewardship of land. This forced farmers to rapidly become economically 566 
efficient and led to the growth of a commercially successful export-oriented dairy industry (as well 567 
as other exporting agricultural and horticultural sectors). This dairy expansion, which has to a large 568 
extent replaced extensive sheep farming in the lower and flatter regions of the country, is 569 
overwhelmingly based on rotational grazing practice, involves active nutrient and feed supplement 570 
management, and is in some drier regions supported with irrigation of pastures. Managing the land 571 
for food production has thus accelerated and intensified carbon, nutrient and water cycles and 572 
increased the country's agricultural greenhouse gas emissions by 17 % from 1990 to 2019 (Ministry 573 
for the Environment, 2021). 574 

The carbon budgets of agroecosystems are characterised by large exports of carbon in products 575 
such as grain, milk, meat or wool, as well as imports in fertilisers and animal excreta, in addition to 576 
the net ecosystem exchange (NEE) of carbon. To assess whether an agroecosystem gains or loses 577 
carbon over time, these exports and imports need to be quantified together with NEE to obtain the 578 
net ecosystem carbon balance (NECB). A productive system is usually a net CO2 sink, but there are 579 
examples from the OzFlux network where agroecosystems were a net carbon  source (Laubach et 580 
al., 2019; Rutledge et al., 2017; Wall, et al., 2020; Webb et al., 2018) due to net carbon exports 581 
exceeding NEE. These studies repeatedly suggest that the sign, strength and annual pattern of 582 
NECB are strongly impacted by farm management (Giltrap et al., 2020; Hunt et al., 2016; Rutledge 583 
et al., 2015; Wall, et al., 2020). Agroecosystems on peat soils were both a net CO2 source and a net 584 
carbon source (Campbell et al., 2020; Goodrich et al., 2017). 585 

Water fluxes are of critical concern in agroecosystems, where irrigation decisions are informed by 586 
balancing crop water use with yield-based revenue, irrigation costs, and regulatory limits for 587 
nutrient leaching. There are concerns that the practice of irrigation, increasingly widespread in NZ, 588 
may lead to net carbon losses, and soil-core sampling studies point in this direction (Mudge et al., 589 
2017). However, flux measurements over irrigated pasture did not find any carbon losses 590 
throughout the three years of measurements (Laubach & Hunt, 2018). In another study, flux 591 
measurements over lucerne, it was found that total evaporation and drainage increased in 592 
response to irrigation, relative to a nearby non-irrigated lucerne crop, with the benefit of larger 593 
biomass production at the cost of greater net carbon losses (Laubach et al., 2019). Recent 594 
modelling efforts calibrated with flux measurements have provided some insights into which 595 
combinations of livestock management and environmental factors lead to carbon gains or losses 596 
(Liáng et al, 2021; Kirschbaum et al., 2017). The degree and direction of coupling between 597 
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evaporation and NEE can contribute to a greater understanding of agroecosystem function 598 
(Cleverly et al., 2020). 599 

A globally significant consequence of agricultural food production is emissions of greenhouse gases, 600 
including CH4 (predominantly from ruminant animals and rice farming) and N2O (predominantly 601 
from microbial soil processes, stimulated by N addition with fertilisers and animal excreta). 602 
Technological challenges and instrumentation costs have limited the usage of the eddy covariance 603 
method for measuring fluxes of these non-CO2 greenhouse gases, hence other micrometeorological 604 
methods have predominantly been applied within the OzFlux network. Laubach & Hunt (2018) used 605 
a flux-gradient technique to measure CH4 fluxes over three years at paired grazing sites in 606 
Canterbury, New Zealand, somewhat surprisingly finding that CH4 fluxes were consistently positive 607 
(i.e. the grazed pastures were a net source of methane) most of the time, even in the absence of 608 
cattle. Net emissions of similar magnitude have recently been found on farms in the north of NZ 609 
(Goodrich, pers. comm. 2021). The source of these CH4 emissions is unknown, and therefore it is 610 
not clear whether they are related to agricultural management. The flux gradient technique has 611 
also been applied to measure nitrous oxide emissions from dairy pasture (Laubach & Hunt, 2018). 612 
Wecking et al. (2020) compared N2O emissions, obtained with eddy covariance, to those calculated 613 
using locally determined emission factors, from small chamber plots treated with excreta and 614 
fertiliser. Both studies found that emission factors underestimated the N2O flux, since the chamber 615 
studies do not include N2O background emissions, and possibly also due to a lack of seasonal 616 
variability in emissions factors (Laubach & Hunt, 2018; Wecking et al., 2020). 617 

Studies of the fluxes from agroecosystems are gaining momentum as a robust approach to 618 
quantifying the efficacy of land management practices that aim to reduce or mitigate greenhouse 619 
gas emissions. To this end, paired sites approaches are promising (Laubach et al., 2019; Laubach & 620 
Hunt, 2018). Recent studies have overcome the cost of employing duplicate flux measurement 621 
systems with a split-footprint approach (Goodrich et al., 2021; Wall, et al., 2020), wherein an eddy 622 
covariance system is placed at the boundary between paired sites. Another possible approach lies 623 
in the development of low-cost measurement systems (Hill et al., 2016). Communication between 624 
disciplines and with industry and policy makers will be central to OzFlux and the global flux 625 
community to help transition agricultural practices towards climate-smart food systems. 626 

Lesson 6 – Advancements made via synergies with remote sensing 627 

The initiation of OzFlux was shortly preceded by NASA’s Earth Observing System (EOS) that 628 
introduced the first suite of satellite-based global ecology products for long-term monitoring of 629 
ecosystem functioning, phenology, disturbance, and plant stress (Xiao et al., 2019).  The validity and 630 
robustness of these first biophysical products from remote sensing were challenged by the diversity 631 
of landscapes and extreme environments of Australia (Hill et al., 2006; Kanniah et al., 2009; Sea et 632 
al., 2011). For example, Leuning et al. (2005) reported that the MODIS LAI product overestimated 633 
in-situ LAI more than two-fold over the moderately open, wet sclerophyll forest at the 634 
Tumbarumba OzFlux site. These native forests are known for their highly clumped crown 635 
architecture and vertical leaf inclination angle (Anderson, 1981). The MODIS GPP product estimated 636 
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the annual amplitude of tower GPP fluxes quite well but performed less well in estimating the 637 
seasonal phase of variation (Leuning et al., 2005). These assessments of remotely-sensed products 638 
ultimately resulted in more accurate satellite products and understanding in what the satellite 639 
actually measures. 640 

On the other hand, Sea et al. (2011) and Eamus et al. (2013) reported good agreement between 641 
MODIS LAI and hemispherical photography derived LAI in open-canopied savanna ecosystems of 642 
the Northern Territory.  MODIS vegetation indices  (VIs) combined with meteorological data 643 
estimated GPP and latent heat flux (LE) with relatively high accuracy where ecosystem processes 644 
are phenologically driven, such as in Australian wet to dry tropical savannas, grasslands and 645 
croplands (Cleugh et al., 2007; Glenn et al., 2011; Ma et al., 2013; Moore et al., 2017; Zhang et al., 646 
2008). However in temperate and Mediterranean evergreen Australian forests/ woodlands, the VI 647 
and LAI products were seasonally out of phase with GPP and found to be  better proxies of 648 
photosynthetic ‘infrastructure’ capacity (Pc) than GPP (Restrepo-Coupe et al., 2016). Broich et al. 649 
(2014) found extensive retrieval failures of the MODIS phenology product over the arid and semi-650 
arid regions of Australia, which led to the development of an Australian phenology product 651 
(https://portal.tern.org.au/) to better understand arid vegetation responses to Australia’s climate 652 
extremes (Ma et al., 2015, 2016).  Annually integrated VIs are a remote sensing surrogate of 653 
ecosystem productivity and have revealed the large sensitivity of interannual variations in 654 
productivity to precipitation variability in Australia, relative to all other continents (Fig. 6; Ma et al. 655 
(2016).  656 

Synergies between OzFlux and remote sensing have been utilised in diagnosing broad-scale 657 
ecosystem responses to extreme events, including large scale, significant rainfall events that trigger 658 
continental-scale green-up of arid and semi-arid ecosystems (see lesson 4). These continent-wide 659 
green flushes can contribute significantly to the global land carbon sink and induce sea-level 660 
anomalies, as occurred in 2010-11 (Detmers et al., 2015; Fasullo et al., 2013). Such information is 661 
important in attributing the drivers of short term variability in the Earth system (e.g. are changes to 662 
the carbon sink due to human mitigation efforts or responses of the biosphere to prior events?). 663 
Ma et al. (2016) diagnosed this continental-scale event by integrating multiple satellite measures of 664 
atmospheric CO2 (GOSAT), gravitational total water storage (GRACE), VIs (MODIS), and solar-665 
induced chlorophyll fluorescence (SIF, GOME-2) with OzFlux tower derived NEP. They analysed the 666 
hydroclimate drivers and pulse response behaviour of carbon fluxes during the big wet and 667 
reported that semi-arid Australian net CO2 uptake was highly transient and rapidly dissipated by 668 
subsequent drought. The accuracies of the remotely-sensed CO2 retrievals and the atmospheric 669 
transport models are approaching the levels needed to constrain CO2 fluxes to estimate net biome 670 
productivity (NBP) from the natural biosphere (Buchwitz et al., 2017; Kondo et al., 2016). 671 

The OzFlux network capitalises on skills and infrastructure through strong collaborations of people 672 
both at a national level and through international networks (Fig. 2), including SpecNet (Gamon et 673 
al., 2006), https://specnet.info/tumbarumba/) and the Australian Phenocam Network 674 
(http://phenocam.org.au/). SpecNet sites are equipped with hyperspectral instruments and play 675 

https://protect-au.mimecast.com/s/nj1sCZY1WDc2Nyr8cyzvlU?domain=portal.tern.org.au/
https://specnet.info/tumbarumba/
http://phenocam.org.au/
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important roles in linking in-situ optical measures (fPAR, VIs and SIF) from tower platforms with flux 676 
observations, to explore mechanistic and scaling relationships (Leuning et al., 2006; Woodgate et 677 
al., 2020). The phenocam network enables high temporal image-based recognition of understory/ 678 
overstory dynamics at species levels, and thus enables leaf level demography, ontogeny and 679 
phenology analyses (Moore, et al., 2016; Wu et al., 2016). These sub-daily, near-ground spectral 680 
and phenocam measurements bridge temporal, spatial, and spectral scales with airborne and 681 
satellite remotely sensed proxies of canopy and ecosystem function. 682 

Capturing the range of global variability in ecosystems is critical for accurately calibrating, 683 
validating, and upscaling satellite algorithms and modelled outputs using high-quality ground-level 684 
data. In a global flux tower analysis using MODIS satellite products and meteorological drivers, 685 
Tramontana et al. (2016) found that carbon and water fluxes from extreme climates and Southern 686 
Hemisphere flux sites were less accurately simulated than Northern Hemisphere forested and 687 
temperate climate sites. The OzFlux sites, located in globally under-represented areas, have the 688 
potential to reduce these uncertainties in global carbon and water flux products. OzFlux sites 689 
account for a large proportion of global land surface FLUXNET observations in biomes located at 690 
high mean annual temperatures and with extreme climate variability, as shown in Figs. 1 and 3) 691 
(Van Der Horst et al., 2019), making them crucial for the validation of new satellite sensors, novel 692 
algorithms, and in the development of national and global products and models (Barraza Bernadas 693 
et al., 2018; Barraza et al., 2015, 2017; Guerschman et al., 2009; Pham et al., 2019; Sanders et al., 694 
2016; Verma et al., 2017; Zhang et al., 2019). 695 

While early remote sensing work was focussed primarily on VIs and LAI, an increasing number and 696 
diversity of observations can now target specific components of the terrestrial carbon cycle and 697 
water cycle at high temporal and spatial resolution (Schimel & Schneider, 2019). For example, the 698 
use of SIF and VIs together can be used to disentangle controls of canopy structure from physiology 699 
on GPP (Magney et al., 2019; Springer et al., 2017; Verma et al., 2017). This is particularly important 700 
for evergreen canopies (dominant in Australia and New Zealand) where GPP is often decoupled 701 
from VIs (Restrepo-Coupe et al., 2016).  702 

The current generation geostationary satellites (e.g. Himawari-8) provide sub-daily, 10-min image 703 
acquisition frequencies in near real-time across Australia, enabling integration with diurnal fluxes 704 
for refined insights into ecosystem dynamics. A metric of canopy structure, canopy clumping index, 705 
was recently retrieved from sub daily measures from the Deep Space Climate Observatory 706 
(DSCOVR) satellite and evaluated at OzFlux sites (Pisek et al., 2021). The International Space Station 707 
(ISS) has three instruments that provide regional- diurnal measures of 1) Evapotranspiration from 708 
the ECOsystem Spaceborne Thermal Radiometer Experiment (ECOSTRESS) at 70 m resolution; 2) SIF 709 
from the Orbiting Carbon Observatory-3 (OCO-3), at 100 m resolution; and 3) Biomass and canopy 710 
structure from the Ecosystem LiDAR Global Ecosystem Dynamics Investigation (GEDI) instrument, at 711 
25 m to 1 km resolutions (Xiao et al. 2021). Together these instruments provide unprecedented 712 
opportunities to assess diurnal variations in GPP, ET (evapotranspiration, the mass equivalent of LE) 713 
and thereby water use efficiency (WUE) at different times of day, with OzFlux sites being critical to 714 
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validate these products (Fisher et al., 2020; Xiao et al. 2021). Other sensors include soil moisture 715 
mapping, vegetation optical depth, atmospheric trace gases (CO2, CH4, CO) for inversion studies, 716 
and advanced hyperspectral sensors for canopy traits. These new remote sensing advances will be 717 
vital to scale knowledge (Fig. 2) of ecosystem processes from OzFlux sites to landscape and 718 
continental scales in the context of climate change. 719 

 720 

 721 

Figure 4: Coefficient of variation (%) in annual precipitation and annual vegetation productivity 722 
across six continents showing that Australia has a significantly higher variability in precipitation and 723 
corresponding productivity, as measured with the MODIS annual integrated EVI over a 15-year 724 
reference period from 2000-2014. Reproduced with permission from Ma et al. (2016).  725 

 726 

Lesson 7 – Advancements made via synergies with modelling 727 

One of the most important outcomes from OzFlux has been the ability to constrain models used to 728 
quantify and predict terrestrial carbon and water fluxes, from site-scales (Kirschbaum et al., 2007, 729 
2015) to the continent (Decker, 2015), using multi-annual, continuous data from around Australia 730 
and sampling a range of bioclimates. Foremost among these outcomes was the construction of a 731 
full continental carbon budget for Australia (Haverd et al., 2013). This work used multiple data 732 
sources, including OzFlux data, to constrain the CABLE land surface model (Wang et al., 2011).  The 733 
data-constrained estimate of Australia’s NBP for 1990 to 2011 was 36 ± 29 Tg C yr-1 (Haverd, et al., 734 
2013), with annual net primary productivity (NPP) quantified at 2.2 ± 0.4 Pg C yr-1.  735 

Similarly, OzFlux data underpin operational water modelling in Australia. Although potential 736 
evaporation can be quantified from a spatial network of pan evaporation data dating back to 1975 737 
(Roderick & Farquhar, 2004; Stephens et al., 2018), OzFlux sites provide the only observations of 738 
actual evapotranspiration (AET). OzFlux AET data were used in the evaluation of modelled 739 
evapotranspiration in the operational AWRA model used for the Australian Bureau of 740 
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Meteorology’s water information services (Frost et al., 2015; van Dijk, 2010). OzFlux data have also 741 
been used to constrain large-scale AET estimates from process- and satellite-based models, yielding 742 
a data-constrained estimate of mean Australian AET over the period 2000–10 of 360 ± 205 mm yr-1 743 
(Hobeichi et al., 2021). The marked uncertainty in continental-scale estimates of Australia’s 744 
terrestrial carbon and water fluxes, stems in part from the inherent climate variability (lesson 1) but 745 
also underlines the challenges faced in advancing our understanding of Australia’s terrestrial 746 
biogeochemical cycles and budgets.  747 

OzFlux data have also been an important resource to benchmark, evaluate and improve model 748 
formulations at time scales ranging from sub-daily (Abramowitz, 2012; Haughton et al., 2016) to 749 
interannual (Wang et al., 2011).  The coverage of extreme events in the dataset has been of 750 
significant value (De Kauwe et al., 2019; Yang et al., 2019). The high interannual variability in rainfall 751 
has enabled the use of OzFlux data to uncover systematic biases in land surface models in 752 
simulating carbon and water fluxes during drought (Haverd, et al., 2016; Li et al., 2012; Torre et al., 753 
2019; Ukkola et al., 2016), identifying priorities for model development to reduce uncertainties in 754 
future projections of drought (De Kauwe et al., 2020; Stocker et al., 2018) and water resources.  755 

The unique coverage of the savanna biome provided by the North Australian Tropical Transect 756 
component of OzFlux has helped identify limitations in terrestrial biosphere models in representing 757 
savanna ecosystems (Haverd, et al., 2016; Whitley et al., 2016), providing directions for improving 758 
the modelling of savannas globally (Whitley et al., 2017). The phenology of leaf area, root water 759 
uptake and disturbance from fire were highlighted as key areas of uncertainty for future research. 760 

The open-access availability of OzFlux data has enabled immediate improvements to a diversity of 761 
models. For example, AET data were used to reformulate the representation of soil evaporation 762 
during the wet season, resulting in significant improvements in AET predictions of the GRASP suite 763 
of models used operationally in Queensland for pasture and grazed woodland systems (Owens et 764 
al., 2019). However, OzFlux data have principally been used to evaluate models, rather than to 765 
drive theory development. This gap exists because ancillary site measurements needed to interpret 766 
the measured fluxes in the right (ecosystem-specific) context are often lacking (e.g. plant 767 
physiological and structural traits, phenology, biomass, LAI and soil moisture). To address this 768 
shortcoming, future focus should lie on the provision of a standardised set of these ancillary 769 
measurements at regular time intervals. The founding of Australia’s first Critical Zone Observatory - 770 
a monitoring network covering the top of the tree canopy to the groundwater - at five sites across 771 
Australia - aims to make a significant contribution towards reducing scaling uncertainties over the 772 
next decade (De Kauwe et al., 2017; Medlyn et al., 2017).  773 

There are several obvious opportunities to develop new model theory. Linking OzFlux data, 774 
particularly sites with concurrent measurements of (deep) soil moisture (e.g. the wet sclerophyll 775 
forest site, Wombat, in southeast Australia) with satellite remote sensing, would enable the 776 
development of new theory to understand leaf growth dynamics under changing water availability. 777 
Measurements of hydraulic traits across the OzFlux network (Peters et al., 2021), coupled with eddy 778 
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covariance data, would facilitate the development and testing of new theories governing plant 779 
controls on transpiration.  A key question relates to how the carbon and water cycles will change in 780 
the future; answering this will require longevity across the OzFlux, and the wider FLUXNET network. 781 

 782 

Lesson 8 – the importance of long-term measurements to detect decadal scale 783 

events and climate change effects 784 

Given the geographical extent of the Australian and New Zealand regions and the associated large 785 
range of climate drivers, climatic variability is naturally high (King et al., 2020) and this variability is 786 
increasing due to changes in climate and land use (Head et al., 2014; King et al., 2020). Regional 787 
climate variability is also driven by complex, large-scale ocean–atmosphere influences that operate 788 
at frequencies from weeks to decades and have a strong influence on rainfall (King et al., 2020; 789 
Rogers et al., 2017) and therefore drives variability of ecosystem dynamics (Cleverly, et al., 2016) 790 
(See also lesson 2). The net result is a climate system which operates in widely varying states 791 
spatially and temporally, driving periods of drought, flood and heatwaves (Freund et al., 2017; Kiem 792 
et al., 2016; Perkins-Kirkpatrick et al., 2016)  that are increasing in severity with climate change (Cai 793 
et al., 2014, 2021). Extreme events have a disproportionate effect on annual carbon exchange at 794 
regional to continental scales (Zscheischler et al., 2017) and long-term monitoring of ecosystem 795 
carbon exchange, water use, and resource use efficiency is required to understand and predict 796 
ecosystem responses to the changing climatic range. This is particularly important in Australia, 797 
which is a global hot spot for variability - especially in semi‐arid ecosystems, which exhibit large and 798 
‘asymmetrical’ responses of GPP to rainfall variability (Haverd, et al., 2016). This large interannual 799 
variability makes detecting long term trends from short records extremely difficult (Baldocchi et al., 800 
2017). On the other hand, Australia may also provide an example to inform other continents about 801 
how ecosystems will adapt to increased climate variability with resource availability hard to predict. 802 

A comprehensive understanding of interannual and interdecadal variability of the carbon cycle and 803 
its drivers requires long-term data (>50 years) (Fu et al., 2019; He et al., 2019; Jung et al., 2017; von 804 
Buttlar et al., 2018; Zscheischler et al., 2016). Continued operation of existing sites and the 805 
expansion of the global eddy covariance monitoring network (Baldocchi, 2019), together with the 806 
increasing length of the satellite record, will provide the observational constraints to gain this 807 
understanding. The two decades of observations in the OzFlux network span several significant 808 
ENSO events (Fig. 7), and this length of record can be used to detect change in ecosystem 809 
properties as a function of short-term or high frequency disturbances such as fire, insect attack, 810 
drought and cyclones (Beringer et al., 2007; Hutley et al., 2013; Keith et al., 2012). The network has 811 
captured fluxes during the ‘Millennial Drought’ from 1997-2009 that was followed by the globally 812 
significant southern hemisphere La Nina of 2010/2011, the severe El Niño event of 2015/2016, the 813 
unusually hot and dry spring of 2019, and flooding associated with the 2021 wet season across the 814 
southeast Australian seaboard. However, in terms of long-term climate trends, OzFlux has only a 815 
few sites with 20 years of data. 816 
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The responses and interannual variability of two long-term but contrasting OzFlux sites is shown in 817 
Fig. 8, where we illustrate trends in water- and radiation-use efficiencies (WUE=GPP/LE, 818 
RUE=GPP/APAR) for a managed, temperate mixed Eucalypt forest (AU-Tum) and a tropical savanna 819 
in the NT (AU-How). To estimate absorbed PAR (APAR) for each site, we used the 8-day, 500 m 820 
resolution fractional absorbed photosynthetically active radiation product (fPAR, MOD15A2) 821 
interpolated to provide a daily estimate of fPAR which was then used to scale daily measures of 822 
short-wave radiation after Garbulsky et al. (2010). 823 

WUE is ~30% higher in the temperate, wet sclerophyll forest at Tumbarumba (AU-Tum) than the 824 
tropical savanna at AU-How, which is surprising given C4 grasses (high WUE) dominate the 825 
understory of the savanna ecosystem. However, these grasses are largely annual and are only 826 
active four to five months of the wet season, whereas the evergreen C3 woody species of 827 
Australia’s temperate forests are active all year (Eamus et al., 2001; Moore, et al., 2016). Frequent 828 
savanna fires (2 in 3 years) scorches the woody canopy and post-fire canopy reconstruction results 829 
in high respiratory losses (Cernusak et al., 2006) with the ecosystem a net source of CO2 for months 830 
after fire, whereas LE recovers within weeks (Beringer et al., 2007). This post-fire recovery phase is 831 
a period of lower WUE, and the savanna ecosystem has a lower-than-expected WUE because of 832 
these ecosystem characteristics. 833 

Trends in WUE and RUE are highly statistically significant at AU-Tum (P<0.01) and WUE increased by 834 
16% over 18 years, whereas the tropical savanna site only increased by 6% (Fig. 8). Over the period 835 
of observation, atmospheric CO2 concentrations increased by about 10% and the trend in WUE at 836 
AU-How is consistent with theoretical expectations of increased photosynthesis and water use 837 
efficiency (Kirschbaum & McMillan, 2018; Walker et al., 2021). However, the trend at AU-Tum (16% 838 
for WUE, 30% for RUE) exceeds what could be reasonably attributed to CO2 fertilisation alone, 839 
suggesting recovery from disturbance events (e.g. insect outbreaks, van Gorsel et al., 2013) plus 840 
increasing efficiency as the stand ages and grows in response to commercial forestry activities. 841 

The spatial and temporal limitations of the OzFlux network highlight the importance of integrating 842 
long-term flux observations with remote sensing and modelling studies (lessons 6 and 7). As climate 843 
variability increases, there is a clear imperative to maintain long-term monitoring sites and invest in 844 
modelling systems structured to the physiological properties of Australian and New Zealand 845 
vegetation to assess their response to increasing climatic variability and disturbance. Australian 846 
ecosystems have shown a degree of resilience to date (De Kauwe et al., 2020) but only long-term 847 
data will enable us to detect tipping points across the spectrum of Australian and New Zealand 848 
ecosystems and improve our ability to forecast potential systematic ecological changes (Bergstrom 849 
et al., 2021; Laurance et al., 2011). Assessing cumulative long-term impacts on diverse ecosystems 850 
is critical for the management of both natural and food production systems. It is, therefore, crucial 851 
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to maintain the existing network to ensure the continuity of flux data and increase the number of 852 
long-term sites into the future. 853 

Figure 7:  Monthly SOI record from 1970 to 2021 with key El Niño (red bars) and La Niña (blue bars) 854 
events that led to severe flooding, drought and fire events in Australia. Bar colours represent event 855 
severity (strong, moderate or weak). Overlaying the SOI timeseries is the observation periods for all 856 
previous and current Australian OzFlux and Supersites plotted as coloured lines using site latitude. 857 
Site data durations were taken from the TERN OzFlux data portal 858 
(www.ozflux.org.au/monitoringsites/index.html) and ENSO periods were taken from the Australian 859 
Bureau of Meteorology (www.bom.gov.au/climate/enso/enlist). 860 

 861 
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 862 

Figure 8: Time series of observed ecosystem water use (WUE) and radiation use efficiency (RUE) 863 
from two OzFlux sites with 20-year records: tropical savanna at the Howard Springs site and 864 
temperate Eucalypt forest at the Tumbarumba site. Trend lines are given for significant time series 865 
(P<0.05) using the non-parametric Mann Kendal test. 866 

 867 

The strength of OzFlux and our vision for the future 868 

The IPCC’s Sixth Assessment Working Group I Report (IPCC, 2021) documents an increased rate and 869 
greater certainty of global warming relative to previous assessments. Australia’s climate has already 870 
warmed by 1.44oC since national records began in 1910 (Australian Bureau of Meteorology & 871 
CSIRO, 2020)  and although we have shown that Australian ecosystems currently have some 872 
resilience, the increased frequency and intensity of climate extremes, and an emerging drying trend  873 
in the southern part of the continent, have the potential to push some ecosystems (e.g. temperate 874 
forests) over tipping points (Perkins-Kirkpatrick et al., 2016). As such there is a growing imperative 875 
to use and build on our knowledge of ecosystem processes and emergent phenomena (Karan et al., 876 
2016). These processes must be studied across a range of temporal and spatial scales to be properly 877 
understood and integrated into modelling. Synergistic network science has allowed these emergent 878 
processes to be understood, as patterns in space and time are revealed by multiplying manifold 879 
observations across numerous individual researchers and sites.  880 

The need to continue operating OzFlux and other ecosystem observatories is increasingly important 881 
to 1) inform the science and models needed for accurate ecological forecasts and longer-term 882 
projections of responses to climate extremes; 2) document recovery from disturbances and 883 
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evaluate potential new land management strategies and longer-term trends in the effects of 884 
observed climate change and variability – this demands multi-decadal and continuous observations; 885 
3) diagnose interannual variability in the carbon cycle and net greenhouse gas emissions and verify 886 
carbon market products and greenhouse-gas mitigation approaches; 4) evaluate and improve 887 
models of terrestrial ecosystem feedbacks to climate change; and 5) evaluate and improve 888 
simulations of the feedbacks between the land and atmosphere in the context of short-duration 889 
heatwaves and drought. 890 

Ecosystems are expected to experience continued long term climate change and greater variability 891 
along with increased disturbance leading to a loss of ecosystem services. To best maintain our 892 
ecosystems and their services, we must anticipate and plan for these changes using predictive 893 
modelling and ecological forecasting.  Developing this capability is crucial and will require 894 
forecasting (over the near term) and projections over multidecadal  time scales) using real-time flux 895 
information (OzFlux), ecological observing infrastructure (e.g. TERN), new and emerging satellite 896 
information and a new iterative model forecasting paradigm (Dietze et al., 2018).  Australia’s 2016 897 
National Research Infrastructure Roadmap also identified a need to establish a National 898 
Environmental Prediction System (https://science.uq.edu.au/neps).  This could facilitate integration 899 
of environmental observations with predictive modelling, thus improving environmental risk 900 
management. New streams of earth observing satellite data are emerging from advanced sensors. 901 
However, the interpretation of their underlying ecological signals requires continued validation 902 
with ground-based sensors and leaf-level measurements. Using spectral indices and more direct 903 
observations of vegetation productivity through SIF provide excellent prospects for better detection 904 
of ecosystem stress (e.g. NASA ECOSTRESS, ESA FLEX).  OzFlux will continue to participate as a key 905 
provider of ground stations in the Southern Hemisphere and will provide opportunities for further 906 
synergies between remote sensing and ecosystem ecologists. 907 

Ongoing collaboration between ecophysiologists and ecosystem flux researchers is leading to 908 
improved mechanistic understanding of the role of the terrestrial vegetation in the annual and 909 
inter-decadal hydrologic cycle and the carbon balance across a wide range of ecosystems. 910 

Of emerging interest is the connection of physiological/hydraulic traits to the dynamic role of the 911 
subsurface in regulating surface ecosystem fluxes and vegetation health.  For example, an 912 
increasing body of international evidence illustrates how groundwater, deep soil moisture (Mu et 913 
al., 2021a,b) and rock moisture (Hahm et al., 2019; McCormick et al., 2021) constrain the 914 
interannual variability of plant water use and productivity, potentially buffering ecosystems from 915 
water stress imposed by climate change (McLaughlin et al., 2017).  Similarly, plant hydraulic models 916 
are revealing how the interaction of plant physiological traits with climate and soil at a given site, 917 
rather than these factors in isolation which control the risk of drought mortality (Feng et al., 2018, 918 
2019).  In the future, measurements of hydraulic traits across the OzFlux network (Peters et al., 919 
2021), coupled with eddy covariance data, could facilitate the development and testing of new 920 
theories governing plant controls on transpiration. 921 
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A significant proportion of Australia's total ecosystem biomass (ca. 30-50%, Spawn et al. (2020)) is 922 
found in the subsurface, yet our understanding of how the subsurface environment changes and 923 
influences ecosystems is lagging.  Newly funded Critical Zone Observatories (CZOs), co-located at 924 
several OzFlux sites, are now installing the equipment to monitor water, carbon and energy 925 
throughout deep soil profiles.  By integrating observations of subsurface variation with the surface 926 
fluxes measured by OzFlux, these CZOs will offer better understanding of the interdependencies of 927 
carbon and water cycles across timescales and across the full vertical span of Australian 928 
ecosystems. 929 

Ecosystem observatories are moving beyond CO2 and water cycles to monitoring other greenhouse 930 
gases, especially emissions of CH4 from wetlands and N2O from agricultural systems as highlighted 931 
in the lessons above. These potent greenhouse gases can now be measured at temporal and spatial 932 
scales that are relevant to land management and planning for mitigation of climate change. 933 

There is currently a high demand for new researchers with skills in environmental monitoring, 934 
sensors and data analysis, however, it is a challenge to sustain training of postgraduate students 935 
and our capacity in the discipline of global change biology.  Recruitment of new talent needs to 936 
start at the undergraduate level or earlier, to ensure a flow of quantitatively skilled researchers 937 
who are passionate about ecosystem science. Educational collaborations among engineers, 938 
atmospheric scientists, hydrologists, ecologists, physicists and others will set the stage for the next 939 
generation of environmental leadership and stewardship. OzFlux will continue to play a major role 940 
in training this next generation and in providing the ecosystem data which scientists, the public and 941 
managers/government can rely upon in understanding our rapidly changing environment in 942 
Australia and New Zealand. 943 
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