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Abstract

We introduce a simple quantum imperative language that has both classical and quantum con-

structs. We investigate its formal semantics by providing an operational semantics, a denotational

semantics and two Hoare-style proof systems: an abstract one and a concrete one. The two proof

systems are sound and relatively complete.

Programming is the core of software development, but it is also an inherently error-prone activity.

The likelihood of errors will even be significantly higher when programming with a quantum computer,

as the techniques used for classical programming are, unfortunately, hard to apply to quantum computers

because quantum systems are essentially different from classical ones. Thus, there is a pressing need to

provide verification and analysis techniques for reasoning about the correctness of quantum programs.

Furthermore, these techniques would also be very useful for compiling and optimising quantum programs.

Among other techniques, Hoare logic [11] provides a syntax-oriented proof system to reason about

program correctness. After decades of development, Hoare logic has been successfully applied in analysis

of programs with non-determinism, recursion, parallel execution, etc [2, 1]. It was also extended to

programming languages with probabilistic features. Remarkably, as the program states for probabilistic

languages are (sub)distributions over evaluations of program variables, the extension naturally follows

two different approaches, depending on how assertions of probabilistic states are defined. The first one

takes subsets of distributions as (qualitative) assertions, similar to the non-probabilistic case, and the

satisfaction relation between distributions and assertions is then just the ordinary membership [20, 8, 6, 4].

In contrast, the other approach takes non-negative functions on evaluations as (quantitative) assertions.

Consequently, one is concerned with the expectation of a distribution satisfying an assertion [17, 16, 19,

13, 14].

In the past two decades, several Hoare-type logic systems for quantum programs (QHL) have been

proposed, also following the two approaches as in the probabilistic setting.

Expectation-based QHLs. In the logic systems proposed in [24, 26, 27, 15] for purely quantum

programs, the assertions P and Q in a Hoare triple {P}S{Q} are both positive operators with the

eigenvalues lying in [0, 1], and such a triple is valid in the sense of total correctness if for any initial

quantum state ρ, tr(Pρ) ≤ tr(Qρ′) where ρ′ is the final state obtained by executing S on ρ, and tr(Pρ)

denotes the expectation/degree of ρ satisfying P (or physically, the average outcome when measuring

ρ according to the projective measurement determined by P ). This definition captures the idea that

the precondition P (on the initial state) provides a lower bound on the degree of satisfaction of the

postcondition Q (on the finial state). More recently, this type of expectation-based QHL has been

extended to quantum programs with classical variables [10] as well as distributed quantum programs with

classical communication [9]. These logic systems have proven to be useful in describing and verifying

correctness of a wide range of quantum algorithms such as Grover’s algorithm, Shor’s algorithm, etc.

Moreover, they are theoretically elegant: all of these system are (relatively) complete in the sense that

every semantically valid Hoare triple can be deduced from the corresponding proof system.

Limit of the expectation-based approach. However, the expectation-based quantum Hoare logic

systems proposed in the literature all suffer from the following expressiveness problems.
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• Unlike the classical boolean-valued assertions, the positive operator assertions cannot exclude un-

desirable quantum inputs. Note that the correctness of many algorithms such as quantum tele-

portation (an EPR pair is assumed as part of the input) and phase estimation (the corresponding

eigenstate is given) all have some restriction on the input. The expressiveness of expectation-based

QHL might be limited, as the following artificial example suggests. Let

S ≡ x := M±[q]

where M± is the measurement according to the |±〉 basis. Obviously, starting with |0〉, the program

ends at |+〉 with probability 0.5. However, expectation-based QHL cannot describe this property:

the natural candidate

{0.5|0〉〈0|} S {|+〉〈+|} (1)

is actually not valid. The reason is, it somehow over-specifies the correctness: in addition to the

above desirable property, it also puts certain requirement for all other possible input states. To see

this, take ρ = |−〉〈−|. Then [[S]](ρ) = |−〉〈−|. Thus

tr(0.5|0〉〈0|ρ) = 0.25 > tr(|+〉〈+|[[S]](ρ)) = 0,

making the Hoare triple in Eq. (1) invalid.

• As logic operations such as conjunction and disjunction are difficult, if at all possible, to define for

positive operators, complicated properties can only be analysed separately, making the verification

process cumbersome. This has been pointed out in [3] for expectation-based probabilistic Hoare

logics. The same is obviously true for expectation-based QHLs as well.

Satisfaction-based QHLs. An Ensemble Exogenous Quantum Propositional Logic (EEQPL) was

proposed in [7] for a simple quantum language with bounded iteration. The assertions in EEQPL can

access amplitudes of quantum states, which makes it very strong in expressiveness but also hinders its

use in applications such as debugging, as amplitudes are not physically accessible through measurements.

The completeness of EEQPL is only proven in a special case where all real and complex values involved

range over a finite set. In contrast, the QHL proposed in [12] takes as the assertion language an extended

first-order logic with the primitives of applying a matrix on a set of qubits and computing the probability

that a classical predicate is satisfied by the outcome of a quantum measurement. The proof system is

shown to be sound, but no completeness result was established.

Another way of defining satisfaction-based QHLs proposed in [28, 21] regard subspaces of the Hilbert

space as assertions, and a quantum state ρ satisfies an assertion P iff the support (the image space of

linear operators) of ρ is included in P . The subspace assertion makes it easy to describe and determine

properties of quantum programs, but the expressive power of the assertions is limited: they only assert

if a given quantum state lies completely within a subspace. Consequently, quantum algorithms which

succeed with certain probability cannot be verified in their logic systems.

Contribution of the current paper. In this paper, motivated by [3], we propose two Hoare-style

proof systems: an abstract one and a concrete one, and prove that they are both sound and relatively

complete. It is worth noting that the imperative language we consider here involves both classical and

quantum constructs. Our work distinguishes itself from the works on QHLs mentioned above in the

following aspects:

• Assertion language. The assertions used in our logic systems are boolean-typed, so that they can be

easily combined using logic operations such as disjunction and conjunction. On the other hand, all

information used in the assertions are physically accessible: they can be obtained through quantum

measurement applying on the program states.

• Satisfaction-based complete QHL. The existing satisfaction-based QHLs proposed in the literature

all lack of completeness; the only exception is [28] but as mention above, the assertions there are

not expressive enough to verify probabilistic correctness.
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1 Preliminaries

We briefly recall some basic notations from linear algebra and quantum mechanics which are needed in

this paper. For more details, we refer to [18].

A Hilbert space H is a complete vector space with an inner product 〈·|·〉 : H×H → C such that

1. 〈ψ|ψ〉 ≥ 0 for any |ψ〉 ∈ H, with equality if and only if |ψ〉 = 0;

2. 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗;

3. 〈ϕ|
∑
i ci|ψi〉 =

∑
i ci〈ϕ|ψi〉,

where C is the set of complex numbers, and for each c ∈ C, c∗ stands for the complex conjugate of c. For

any vector |ψ〉 ∈ H, its length |||ψ〉|| is defined to be
√
〈ψ|ψ〉, and it is said to be normalised if |||ψ〉|| = 1.

Two vectors |ψ〉 and |ϕ〉 are orthogonal if 〈ψ|ϕ〉 = 0. An orthonormal basis of a Hilbert space H is a basis

{|i〉} where each |i〉 is normalised and any pair of them are orthogonal.

Let L(H) be the set of linear operators on H. For any A ∈ L(H), A is Hermitian if A† = A where

A† is the adjoint operator of A such that 〈ψ|A†|ϕ〉 = 〈ϕ|A|ψ〉∗ for any |ψ〉, |ϕ〉 ∈ H. A linear operator

A ∈ L(H) is unitary if A†A = AA† = IH where IH is the identity operator on H. The trace of A is

defined as tr(A) =
∑
i〈i|A|i〉 for some given orthonormal basis {|i〉} of H. A linear operator A ∈ L(H)

is positive if 〈ϕ|A|ϕ〉 ≥ 0 for any state |ϕ〉 ∈ H. The Löwner order v on the set of Hermitian operators

on H is defined by letting A v B iff B −A is positive.

Let H1 and H2 be two Hilbert spaces. Their tensor product H1 ⊗ H2 is defined as a vector space

consisting of linear combinations of the vectors |ψ1ψ2〉 = |ψ1〉|ψ2〉 = |ψ1〉 ⊗ |ψ2〉 with |ψ1〉 ∈ H1 and

|ψ2〉 ∈ H2. Here the tensor product of two vectors is defined by a new vector such that(∑
i

λi|ψi〉

)
⊗

∑
j

µj |ϕj〉

 =
∑
i,j

λiµj |ψi〉 ⊗ |ϕj〉.

Then H1 ⊗ H2 is also a Hilbert space where the inner product is defined as the following: for any

|ψ1〉, |ϕ1〉 ∈ H1 and |ψ2〉, |ϕ2〉 ∈ H2,

〈ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2〉 = 〈ψ1|ϕ1〉H1〈ψ2|ϕ2〉H2

where 〈·|·〉Hi is the inner product of Hi.
By applying quantum gates to qubits, we can change their states. For example, the Hadamard gate

(H gate) can be applied on a single qubit, while the CNOT gate can be applied on two qubits. Some

commonly used gates and their representation in terms of matrices are as follows.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

H =
1√
2

(
1 1

1 −1

)
, I2 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
.

According to von Neumann’s formalism of quantum mechanics [22], an isolated physical system is

associated with a Hilbert space which is called the state space of the system. A pure state of a quantum

system is a normalised vector in its state space, and a mixed state is represented by a density operator

on the state space. Here a density operator ρ on Hilbert space H is a positive linear operator such that

tr(ρ) = 1. A partial density operator ρ is a positive linear operator with tr(ρ) ≤ 1.

The evolution of a closed quantum system is described by a unitary operator on its state space: if the

states of the system at times t1 and t2 are ρ1 and ρ2, respectively, then ρ2 = Uρ1U
† for some unitary

operator U which depends only on t1 and t2.
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A quantum measurement is described by a collection {Mm} of measurement operators, where the

indices m refer to the measurement outcomes. It is required that the measurement operators satisfy

the completeness equation
∑
mM

†
mMm = IH. If the system is in state ρ, then the probability that

measurement result m occurs is given by

p(m) = tr(M†mMmρ),

and the state of the post-measurement system is MmρM
†
m/p(m).

2 QIMP

We define the syntax and operational semantics of a simple quantum imperative language called QIMP.

The language is essentially extended from IMP [23] by adding quantum data and a few operations for

manipulating quantum data.

2.1 Syntax

We assume three types of data in our language: Bool for booleans, Int for integers, and qubits Qbt

for quantum data. Let Z be the set of constant integer numbers, ranged over by n. Let Cvar, ranged

over by x, y, ..., be the set of classical variables, and Qvar, ranged over by q, q′, ..., the set of quantum

variables. It is assumed that both Cvar and Qvar are countably infinite. We assume a set Aexp of

arithmetic expressions over Int, which includes Cvar as a subset and is ranged over by a, a′, ..., and a

set of boolean-valued expressions Bexp, ranged over by b, b′, ..., with the usual boolean constants true,

false and boolean operators ¬,∧,∨. In particular, we let a = a′ and a ≤ a′ be boolean expressions for

any a, a′ ∈ Aexp. We further assume that only classical variables can occur free in both arithmetic and

boolean expressions.

We let U range over unitary operators, which can be user-defined matrices or built in if the language is

implemented. For example, we often denote by H the 1-qubit Hadamard operator, CNOT the controlled-

NOT 2-qubit operator, etc. Similarly, we write M for the measurement described by a collection {Mi}
of measurement operators, with each index i representing a measurement outcome. For example, to

describe the measurement of the qubit referred to by variable q in the computational basis, we can write

M := {M0,M1}, where M0 = |0〉q〈0| and M1 = |1〉q〈1|.
Sometimes we use metavariables which are primed or subscripted, e.g. x′, x0 for classical variables.

We abbreviate a tuple of quantum variables 〈q1, ..., qn〉 as q̄ if the length n of the tuple is not important.

The formation rules for arithmetic and boolean expressions as well as commands are defined by the

following grammar.

• For Aexp: a ::= n | x | a0 + a1 | a0 − a1 | a0 × a1

• For Bexp: b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• For Com:
c ::= skip | x := a | c0; c1 | if b then c0 else c1 | while b do c

| q := |0〉 | U [q̄] | x := M [q̄]

An arithmetic expression can be an integer, a variable, or built from other arithmetic expressions by

addition, substraction, or multiplication. A boolean expression can be formed by comparing arithmetic

expressions or by using the usual boolean operators. A command can be a skip statement, a classical

assignment, a conditional statement, or a while-loop, as in many classical imperative languages. In

addition, there are three commands that involve quantum data. The command q := |0〉 initialises the

qubit referrred to by variable q to be the basis state |0〉. The command U [q̄] applies the unitary operator

U to the quantum system referred to by q̄. The command x := M [q̄] performs a measurement M on q̄ and

assigns the measurement outcome to x. It differs from a classical assignment because the measurement

M may change the quantum state of q̄, besides the fact that the value of x is updated.
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〈x, σ〉 ↪→ 〈σ(x), σ〉

〈a0, σ〉 ↪→ 〈a′0, σ〉
〈a0 + a1, σ〉 ↪→ 〈a′0 + a1, σ〉

〈a1, σ〉 ↪→ 〈a′1, σ〉
〈n+ a1, σ〉 ↪→ 〈n+ a′1, σ〉

〈n+m,σ〉 ↪→ 〈p, σ〉 if p is the sum of n and m

〈a0, σ〉 ↪→ 〈a′0, σ〉
〈a0 ≤ a1, σ〉 ↪→ 〈a′0 ≤ a1, σ〉

〈a1, σ〉 ↪→ 〈a′1, σ〉
〈n ≤ a1, σ〉 ↪→ 〈n ≤ a′1, σ〉

〈n ≤ m,σ〉 ↪→ 〈true, σ〉 if n is less than or equal to m.

〈n ≤ m,σ〉 ↪→ 〈false, σ〉 if n is greater than m.

Figure 1: Evaluation of arithmetic and boolean expressions (selected rules)

2.2 Operational Semantics

Since the execution of a QIMP program may involve both classical and quantum data, we consider the

setting where the CPU that processes the program has two registers: one stores classical data and the

other quantum data. Therefore, we will model a machine state as a pair composed of a classical state

and a quantum state.

The notion of classical state is standard. Formally, a classical state is a function σ : Cvar→ Z from

classical variables to integers. Thus σ(x) is the value of varible x in state σ. The notion of quantum state

is slightly more complicated. For each quantum variable q ∈ Qvar, we assume a 2-dimensional Hilbert

space Hq to be the state space of the q-system. For any nonempty set V ⊆ Qvar, we denote

HV =
⊗
q∈V
Hq.

That is, HV is the tensor product of the individual state spaces of all the quantum variables in V . In

particular, H = HQvar is the state space of the whole environment consisting of all the quantum variables.

The set of quantum states consists of all partial density operators in the space H, denoted by D−(H).

A machine state is a pair 〈σ, ρ〉 where σ is a classical state and ρ a quantum state. In the presence of

measurements, we often need to consider an ensemble of states. For that purpose, we introduce a notion

of distribution.

Definition 2.1 Let Σ be the set of classical states, i.e., the set of functions of type Cvar→ Z. A partial

density operator valued distribution (POVD) is a function µ : Σ→ D−(H) with
∑
σ∈Σ tr(µ(σ)) ≤ 1.

Intuitively, a POVD µ represents a collection of machine states where each classical state σ is associated

with a quantum state µ(σ). If the collection has only one element σ, we explicitly write (σ, µ(σ)) for µ.

The support of µ, written dµe, is the set {σ ∈ Σ | µ(σ) 6= 0}. We can also define the addition of two

distributions by letting (µ1 + µ2)(σ) = µ1(σ) + µ2(σ).

A configuration is a pair 〈e, σ, ρ〉, where e is an expression and (σ, ρ) is a POVD. We define the

small-step operational semantics of arithmetic and boolean expressions as well as commands in a syntax-

directed way by using an evaluation relation ↪→ between configurations. In Figure 1 we list the rules for

evaluating integer variables, sums, and expressions of the form a0 ≤ a1; the rules for other arithmetic and

boolean expressions are similar. When evaluating an arithmetic or boolean expression, we only rely on

the information from the given classical state, therefore we omit the quantum state in the configuration.

This is not the case when we execute commands.

Let σ be a classical state and n ∈ Z. We write σ[n/x] for the updated state satisfying

σ[n/x](y) =

{
n if y = x,

σ(y) if y 6= x.
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〈skip, σ, ρ〉 → 〈nil, σ, ρ〉

〈a, σ〉 ↪→ 〈a′, σ′〉
〈x := a, σ, ρ〉 → 〈x := a′, σ′, ρ〉

〈x := n, σ, ρ〉 → 〈nil, σ[n/x], ρ〉

〈c0, σ, ρ〉 → 〈c′0, σ′, ρ′〉
〈c0; c1, σ, ρ〉 → 〈c′0; c1, σ

′, ρ′〉
〈c1, σ, ρ〉 → 〈c′1, σ′, ρ′〉
〈nil; c1, σ, ρ〉 → 〈c′1, σ′, ρ′〉

〈b, σ〉 ↪→ 〈b′, σ′〉
〈if b then c0 else c1, σ, ρ〉 → 〈if b′ then c0 else c1, σ

′, ρ′〉

〈if true then c0 else c1, σ, ρ〉 → 〈c0, σ, ρ〉 〈if false then c0 else c1, σ, ρ〉 → 〈c1, σ, ρ〉

〈while b do c, σ, ρ〉 → 〈if b then (c; while b do c) else skip, σ, ρ〉

〈q := |0〉, σ, ρ〉 → 〈nil, σ, ρ′〉 with ρ′ = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

〈U [q̄], σ, ρ〉 → 〈nil, σ, UρU†〉

M := {Mi}i∈I
〈x := M [q̄], σ, ρ〉 → 〈nil, σ[i/x],MiρM

†
i 〉

Figure 2: Execution of commands

We are going to write → for the execution of commands. The transition rules are given in Figure 2.

For convenience of presentation, we introduce a special command nil that stands for a successful ter-

mination of programs. We follow [25] to define the operational semantics of quantum measurements in

a nondeterministic way, and the probabilities of different branches are encoded in the quantum part of

the configurations. For that reason we need to take partial density operators instead of the normalised

density operators to represent quantum states. After the measurement M defined by some measurement

operators Mi, the original state (σ, ρ) may evolve into a new state whose classical part is the updated

state σ[i/x] and the quantum part is the new quantum state MiρM
†
i . In all other rules, the execution

of a command changes a configuration to another one. Among them, the rules for initialising qubits and

unitary transformations only affect the quantum part of the original machine state. On the contrary, the

commands for manipulating classical data only update the classical part of a state.

2.3 Denotational Semantics

For convenience of presenting the denotational semantics, we add an abort command that halts the

computation with no result. We interpret programs as POVD transformers. We write State for the set

of machine states and SDist(State) for the set of POVDs called distribution states.

Lemma 2.2 We impose an order between POVDs by letting µ1 ≤ µ2 if for any classical state σ we have

µ1(σ) v µ2(σ), where v is the Löwner order. Let (µn)n∈N ∈ SDist(State) be an increasing sequence of

POVDs. This sequence converges to some POVD µ∞ and µn ≤ µ∞ for any n ∈ N.

Given an expression e, we denote its interpretation with respect to machine state (σ, ρ) by [[e]](σ,ρ). The

denotational semantics of commands is displayed in Figure 3, where we omit the denotational semantics

of arithmetic and boolean expressions such as [[a]]σ and [[b]]σ, which is almost the same as in the classical

setting because the quantum part plays no role for those expressions. This is an extension of the semantics

for probabilistic programs presented in [3]. Instead of probabilistic assignments are measurements of

quantum systems. A state evolves into a POVD after some quantum qubits are measured, with the

measurement outcomes assigned to a classical variable. Two other quantum commands, initialisation of

qubits and unitary operations, are deterministic and only affect the quantum part of a state. As usual,
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[[skip]](σ,ρ) = (σ, ρ)

[[abort]](σ,ρ) = ε

[[x := a]](σ,ρ) = (σ[[[a]]σ/x], ρ)

[[c0; c1]](σ,ρ) = [[c1]][[c0]](σ,ρ)

[[if b then c0 else c1]](σ,ρ) =

{
[[c0]](σ,ρ) if [[b]]σ = true

[[c1]](σ,ρ) if [[b]]σ = false

[[while b do c]](σ,ρ) = limn→∞[[(if b then c)n; if b then abort]](σ,ρ)

[[q := |0〉]](σ,ρ) = 〈σ, ρ′〉
where ρ′ := |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

[[U [q̄]]](σ,ρ) = 〈σ, UρU†〉

[[x := M [q̄]]](σ,ρ) = µ

where M = {Mi}i∈I and µ(σ′) =
∑
i{MiρM

†
i | σ[i/x] = σ′}

[[c]]µ =
∑
σ∈dµe[[c]](σ,µ(σ)).

Figure 3: Denotational semantics of commands

we define the semantics of a loop (while b do c) as the limit of its lower approximations, where the n-th

lower approximation of [[while b do c]](σ,ρ) is [[(if b then c)n; if b then abort]](σ,ρ), where (if b then c)

is shorthand for (if b then c else skip) and cn is the command c iterated n times with c0 ≡ skip. The

limit exists because the sequence ([[(if b then c)n; if b then abort]](σ,ρ))n∈N is increasing and bounded.

We write ε for the special POVD whose support is the empty set.

Proposition 2.3 The semantics [[c]](σ,ρ) of a command c in initial state (σ, ρ) is a POVD. The lifted

semantics [[c]]µ of a command c in initial POVD µ is a POVD.

The operational and denotational semantics are related by the following theorem.

Theorem 2.4 For any command c and state (σ, ρ), we have

[[c]](σ,ρ) =
∑
i

{(σi, ρi) | 〈c, σ, ρ〉 →∗ 〈nil, σi, ρi〉} .

Proof: We proceed by induction on the structure of c. The most difficult case is when c ≡ while b do c′

for some command c′. Below we consider this case.

Let Whilen = (if b then c′)n; if b then abort and 〈c, σ, ρ〉 →n 〈nil, σ′, ρ′〉 be the sequence of maximal

transitions from 〈c, σ, ρ〉 such that the unfolding rule

〈while b do c′, σ′′, ρ′′〉 → 〈if b then (c′; while b do c′) else skip, σ′′, ρ′′〉 ,

for any σ′′ and ρ′′, has been applied at most n times.

Claim: [[Whilen]](σ,ρ) =
∑
i

{(σi, ρi) | 〈c, σ, ρ〉 →n+1 〈nil, σi, ρi〉} .

We prove the above claim by induction on n.

• n = 0. On the left hand side, we have

[[While0]](σ,ρ) = [[if b then abort]](σ,ρ) =

{
ε if [[b]]σ = true

(σ, ρ) if [[b]]σ = false
.
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On the right hand side, we observe that

〈while b do c′, σ, ρ〉 → 〈if b then (c′; while b do c′) else skip, σ, ρ〉

→∗
{
〈(c′; while b do c′), σ, ρ〉 if [[b]]σ = true

〈skip, σ, ρ〉 if [[b]]σ = false

(2)

The unfolding rule has been used in the first reduction step in (2). If [[b]]σ = false then the claim

clearly holds. If [[b]]σ = true then the configuration 〈(c′; while b do c′), σ, ρ〉 cannot reduce to

any 〈nil, σ′′, ρ′′〉 without using the unfolding rule again, which means that there is no maximal

transition from 〈c, σ, ρ〉 that uses the unfolding rule at most once. It follows that the claim also

holds in this case.

• Suppose n = k + 1 and the claim holds for some k. On the left hand side, we have

[[Whilek+1]](σ,ρ) = [[if b then c′; Whilek]](σ,ρ)

=

{
[[Whilek]][[c′]](σ,ρ) if [[b]]σ = true

(σ, ρ) if [[b]]σ = false

(3)

On the right hand side, we have the same transitions as in (2). If [[b]]σ = false then the claim

clearly holds. If [[b]]σ = true then we infer as follows. Since c′ is a subterm of c, we know from the

hypothesis of the structural induction that

[[c′]](σ,ρ) =
∑
j∈J
{(σj , ρj) | 〈c′, σ, ρ〉 →∗ 〈nil, σj , ρj〉} (4)

for some set J . It follows that

[[Whilek]][[c′]](σ,ρ) =
∑
j∈J

[[Whilek]](σj ,ρj) . (5)

By induction hypothesis on k,

[[Whilek]](σj ,ρj) =
∑
i∈Ij

{(σi, ρi) | 〈c, σj , ρj〉 →k+1 〈nil, σi, ρi〉} (6)

for some index set Ij . As a result, when [[b]]σ = true, we have

〈c, σ, ρ〉 → 〈if b then (c′; c) else skip, σ, ρ〉
→∗ 〈(c′; c), σ, ρ〉
→∗ 〈c, σj , ρj〉 by (4)

→k+1 〈nil, σi, ρi〉 by (6)

(7)

for each j ∈ J and i ∈ Ij . This means that

〈c, σ, ρ〉 →k+2 〈nil, σi, ρi〉 (8)

for each j ∈ J and i ∈ Ij . Thus, we rewrite (6) as follows.

[[Whilek]](σj ,ρj) =
∑
i∈Ij

{(σi, ρi) | 〈c, σ, ρ〉 →k+2 〈nil, σi, ρi〉} (9)

Combining (3), (5) and (9), we obtain the desired result that

[[Whilek+1]](σ,ρ) =
∑
j∈J

∑
i∈Ij

{(σi, ρi) | 〈c, σ, ρ〉 →k+2 〈nil, σi, ρi〉}

So far we have proved the claim. Then by taking the limit on both sides of the claim, we see that

[[c]](σ,ρ) =
∑
i{(σi, ρi) | 〈c, σ, ρ〉 →∗ 〈nil, σi, ρi〉}. �
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3 An Abstract Proof System

In this section, we present an abstract proof system, where assertions are arbitrary predicates on POVDs.

We show that the proof system is sound and relatively complete.

Definition 3.1 The set Assn of assertions is defined as P(SDist(State)). Each assertion P can be

constructed by the following grammar.

P := 1µ | S | ¬P | P1 ∧ P2 | �ψ | P1 ⊕ P2 | P [f ]

where µ ∈ SDist(State), S ⊆ SDist(State), ψ is a predicate over states and f is a function from

SDist(State) to SDist(State).

Here 1µ is also called the characteristic function of the POVD µ, which is a predicate requiring that 1µ
holds on µ′ if and only if µ′ = µ, for any distribution state µ′. The satisfaction relation |= between a

POVD and an assertion is defined as follows.

µ |= 1µ′ iff µ = µ′

µ |= S iff µ ∈ S
µ |= ¬P iff not µ |= P

µ |= P1 ∧ P2 iff µ |= P1 ∧ µ |= P2

µ |= �ψ iff ∀σ.σ ∈ dµe ⇒ [[ψ]]σ = true

µ |= P1 ⊕ P2 iff ∃µ1, µ2. µ = µ1 + µ2 ∧ µ1 |= P1 ∧ µ2 |= P2

µ |= P [f ] iff f(µ) |= P

Let [[P ]] := {µ | µ |= P} be the semantic interpretation of assertion P . We see that boolean operations of

assertions are represented by set operations. For example, we have [[¬P ]] = P(SDist(State))\[[P ]] and

[[P1 ∧ P2]] = [[P1]] ∩ [[P2]]. The predicate �ψ is lifted from a state predicate by requiring that �ψ holds

on the POVD µ when ψ holds on all the states in the support of µ. For example, a particular predicate

over states is a boolean expression b with σ |= b iff [[b]]σ = true. Therefore, the predicate �b holds on

the POVD µ when b evalueates to be true under any state σ in the support of µ. The assertion P1 ⊕ P2

holds on the POVD µ if we can split µ into the sum of two POVDs such that P1 and P2 hold on each of

them. Lastly, P [f ] holds on a POVD µ only when P holds on the image of µ under f .

Definition 3.2 A sequence of assertions (Pn)n∈N∞ is u-closed, if for each increasing sequence of POVDs

(µn)n∈N such that µn |= Pn for all n ∈ N, we have limn→∞ µn |= P∞.

Definition 3.3 A judgement is a triple in the form {P} c {P ′}, where c is a command, P and P ′ are

assertions. It is valid, written |= {P} c {P ′}, if

∀µ. µ |= P ⇒ [[c]]µ |= P ′.

In Figure 4 we give the rules for an abstract proof system denoted by Sa. It extends the system

in [3] with the last three rules to handle the manipulations of quantum systems. In order to show the

soundness of Sa, we need a few technical lemmas.

Lemma 3.4 Let P be an assertion and c a command. Then |= {P [[[c]]]} c {P}.

Proof: Suppose µ is a distribution state and µ |= P [[[c]]]. By the definition of P [[[c]]], this means that

[[c]]µ |= P , which is the desired result. �

Lemma 3.5 Let σ be a classical state, ρ1, ρ2 be two quantum states, and µ1, µ2 be two POVDs. For

any command c, we have

1. [[c]](σ,ρ1+ρ2) = [[c]](σ,ρ1) + [[c]](σ,ρ2);
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{P} skip {P}
[Skip]

{P} abort {�⊥}
[Abort]

{P [[[x := a]]]} x := a {P}
[Assgn]

{P0} c0 {P1} {P1} c1 {P2}
[Seq]

{P0} c0; c1 {P2}
{P0} c {P ′0} {P1} c {P ′1}

[Split]
{P0 ⊕ P1} c {P ′0 ⊕ P ′1}

{P0 ∧�b} c0 {P ′0} {P1 ∧�¬b} c1 {P ′1}
[Cond]

{(P0 ∧�b)⊕ (P1 ∧�¬b)} if b then c0 else c1 {P ′0 ⊕ P ′1}

[Absurd]
{⊥} c {P}

P0 ⇒ P1 {P1} c {P2} P2 ⇒ P3
[Conseq]

{P0} c {P3}
∀µ. {1µ ∧ P} c {P ′}

[All]
{P} c {P ′}

uclosed((P′n)n∈N∞)

∀n. {Pn} if b then c {Pn+1} ∀n. {Pn} if b then abort {P ′n}
[While]

{P0} while b do c {P ′∞ ∧�¬b}

{P [[[q := |0〉]]]} q := |0〉 {P}
[QInit]

{P [[[U [q̄]]]]} U [q̄] {P}
[QUnit]

{P [[[x := M [q̄]]]]} x := M [q̄] {P}
[QMeas]

Figure 4: Proof rules for Sa

2. [[c]](µ1+µ2) = [[c]]µ1 + [[c]]µ2 .

Proof: The two clauses can be proved by a simultaneous induction on the structure of command c. �

Lemma 3.6 For any commands c0, c1 and distribution state µ, we have [[c0; c1]]µ = [[c1]][[c0]]µ .

Proof:
[[c1]][[c0]]µ =

∑
σ[[c1]](σ,[[c0]]µ(σ))

=
∑
σ[[c1]](σ,

∑
σ′ [[c0]](σ′,µ(σ′))(σ))

=
∑
σ

∑
σ′ [[c1]](σ,[[c0]](σ′,µ(σ′))(σ)) by Lemma 3.5(1)

=
∑
σ′
∑
σ[[c1]](σ,[[c0]](σ′,µ(σ′))(σ))

=
∑
σ′ [[c1]][[c0]](σ′,µ(σ′))

=
∑
σ′ [[c0; c1]](σ′,µ(σ′))

= [[c0; c1]]µ

�

Theorem 3.7 [Soundness] Every judgement provable using the proof system Sa is valid.

Proof: We analyze the cases one by one.

• Rule [Skip]. Suppose µ |= P for some distribution state µ. Then we have [[skip]]µ = µ and thus

[[skip]]µ |= P as required.

• Rule [Abort]. This case is easy by noting that [[abort]]µ = ε and ε |= �⊥ for any µ.

• The cases for rules [Assgn], [QInit], [QUnit], and [QMeas] follow from Lemma 3.4.

• Rule [Seq]. Suppose µ |= P0 for some distribution state µ. By the premises, both {P0} c0 {P1} and

{P1} c1 {P2} are valid. It follows that [[c0]]µ |= P1 and then [[c1]][[c0]]µ |= P2, which is [[c0; c1]]µ |= P2

by Lemma 3.6 as required.
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• Rule [Split]. Suppose µ |= P0⊕P1 for some distribution state µ. Then there exist µ0 and µ1 such that

µ = µ0 +µ1, µ0 |= P0 and µ1 |= P1. By the premises, both {P0} c0 {P ′0} and {P1} c1 {P ′1} are valid.

Therefore, we have that [[c]]µ0 |= P ′0 and [[c]]µ1 |= P ′1. By Lemma 3.5 we obtain [[c]]µ = [[c]]µ0 + [[c]]µ1 .

It follows that [[c]]µ |= P ′0 ⊕ P ′1 as required.

• Rule [Cond]. We first claim that {P0 ∧�b} if b then c0 else c1 {P ′0} is valid. To see this, suppose

µ is a POVD with µ |= P0∧�b. Obviously, we have µ |= �b and thus [[b]]σ = true for each σ ∈ dµe.
It follows that

[[if b then c0 else c1]]µ =
∑
σ[[if b then c0 else c1]](σ,µ(σ))

=
∑
σ[[c0]](σ,µ(σ))

= [[c0]]µ.

By the first premise, {P0 ∧�b} c0 {P ′0} is valid. Therefore, we have [[c0]]µ |= P ′0, and thus

[[if b then c0 else c1]]µ |= P ′0

and the above claim is proved. Similarly, we can prove that {P1 ∧�¬b} if b then c0 else c1 {P ′1}
is valid. By the soundness of [Split], it follows that

{(P0 ∧�b)⊕ (P1 ∧�¬b)} if b then c0 else c1 {P ′0 ⊕ P ′1}

is also valid.

• Rule [Absurd]. There exists no µ with µ |= ⊥. Thus, we always have ∀µ. µ |= ⊥ ⇒ [[c]]µ |= P .

• Rule [Conseq]. Let µ be a distribution state and µ |= P0. The first premise gives µ |= P1. The

second premise tells us that [[c]]µ |= P2. By the third premise, we derive that [[c]]µ |= P3. It follows

that {P0} c {P3} is valid.

• Rule [All]. Let µ be a POVD and µ |= P . It is clear that µ |= 1µ∧P . By the premise, {1µ∧P} c {P ′}
is valid. Therefore, we have [[c]]µ |= P ′, and thus {P} c {P ′} is valid.

• Rule [While]. We first observe that, for any state (σ, ρ),

[[if b then abort]](σ,ρ) =

{
ε if [[b]](σ,ρ) = true

(σ, ρ) if [[b]](σ,ρ) = false .

Thus, if a state σ′ is in the support of [[if b then abort]](σ,ρ), it must be the case that σ′ |= ¬b.
Furthermore, for any distribution state µ, if a state σ′ is in the support of [[if b then abort]]µ then

σ′ |= ¬b. It follows that, for any command c′ and distribution state µ, we have

[[c′; if b then abort]]µ |= �¬b.

By definition, [[while b do c]]µ is the limit of the sequence

([[(if b then c)n; if b then abort]]µ)n∈N

and so we have that

[[while b do c]]µ |= �¬b. (10)

By the first premise and the soundness of [Seq], it is easy to show by induction that

∀n. {P0} (if b then c)n {Pn}

is valid. By the second premise and [Seg] again, the following judgement

∀n. {P0} (if b then c)n; if b then abort {P ′n}

11



is valid. Let µ be any POVD with µ |= P0. Then

∀n. [[(if b then c)n; if b then abort]]µ |= P ′n.

By assumption, the sequence of assertions (P ′n)n∈N∞ is u-closed. Hence, we can infer that

[[while b do c]]µ |= P ′∞,

which means that the jugdement

{P0} while b do c {P ′∞} (11)

is valid. Combining (10) and (11), we finally obtain that {P0} while b do c {P ′∞ ∧�¬b} is valid.

�

Now we turn to the relative completeness of the proof system Sa. Formulas of the form 1µ will be

helpful for that purpose.

Lemma 3.8 For any distribution state µ and command c,

1µ ⇒ 1[[c]]µ [[[c]]].

Proof: Let µ′ be any distribution state.

µ′ |= 1µ ⇔ µ′ = µ

⇒ [[c]]µ′ = [[c]]µ
⇔ [[c]]µ′ |= 1[[c]]µ

⇔ µ′ |= 1[[c]]µ [[[c]]]

�

Definition 3.9 Let µ be a distribution state and b a boolean expression. The restriction µ|b of µ to b is

the distribution state such that µ|b(σ) = µ(σ) if [[b]]σ = true and 0 otherwise.

According to the definition above, it is easy to see that we can split any µ into two parts w.r.t. a boolean

expression.

Lemma 3.10 For any distribution state µ and boolean expression b, we have µ = µ|b + µ|¬b.

Proof: This is straightforward because, at each state σ in the support of µ, the boolean expression b

evaluates to either true or false. �

With Lemmas 3.10 and 3.5, it is easy to see that the denotational semantics of conditional commands

can be rewritten as follows.

[[if b then c0 else c1]]µ = [[c0]]µ|b + [[c1]]µ|¬b (12)

The following facts are also easy to show.

1µ|b ⇔ 1µ|b ∧�b
1µ ⇔ 1µ ∧ P if µ |= P

1µ ⇔ 1µ|b ⊕ 1µ|¬b
1µ1+µ2 ⇔ 1µ1 ⊕ 1µ2

(13)

Lemma 3.11 For any POVD µ, the following judgement is provable:

{1µ} c {1[[c]]µ}.
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Proof: We proceed by induction on the structure of c.

• c ≡ skip. This case is immediate as [[skip]]µ = µ and by [Skip] we have ` {1µ} c {1µ}.

• c ≡ abort. Then [[c]]µ = ε. For any POVD µ′, we note that

µ′ |= �⊥ ⇔ µ′ = ε ⇔ µ′ |= 1ε.

By rules [Abort] and [Conseq] we can infer ` {1µ} c {1ε}.

• c ≡ x := a, q := |0〉, U [q̄] or x := M [q̄]. By the corresponding rules [Assgn], [QInit], [QUnit] or

[QMeas], we have

` {1[[c]]µ [[[c]]]} c {1[[c]]µ}.

By Lemma 3.8 and rule [Conseq], we obtain that ` {1µ} c {1[[c]]µ}.

• c ≡ c0; c1. By induction, we have ` {1µ} c0 {1[[c0]]µ} and ` {1[[c0]]µ} c1 {1[[c1]][[c0]]µ
}. Using the rule

[Seq], we obtain that ` {1µ} c {1[[c1]][[c]]µ
}.

• c ≡ if b then c0 else c1. By induction, we have ` {1µ|b} c0 {1[[c0]]µ|b
}. By the first clause in (13)

and rule [Conseq], we have ` {1µ|b ∧ �b} c0 {1[[c0]]µ|b
}. Similarly, ` {1µ|¬b ∧ �¬b} c1 {1[[c1]]µ|¬b

}.
Using rule [Cond], we infer

` {(1µ|b ∧�b)⊕ (1µ|¬b ∧�¬b)} if b then c0 else c1 {1[[c0]]µ|b
⊕ 1[[c1]]µ|¬b

}.

Using (12), (13) and rule [Conseq], we finally obtain that

` {1µ} if b then c0 else c1 {1[[if b then c0 else c1]]µ}.

• c ≡ while b do c′. For each n ∈ N, let

Pn = 1[[(if b then c′)n]]µ

P ′n = 1[[(if b then c′)n;if b then abort]]µ

P ′∞ = 1limn→∞[[(if b then c′)n;if b then abort]]µ

Obviously, the sequence of assertions (P ′n)n∈N∞ is u-closed. As in the last case, we can show that

` {Pn} if b then c′ {Pn+1} by induction hypothesis and rules [Conseq], [Skip] and [Cond]. It is also

easy to see that ` {Pn} if b then abort {P ′n} for each n ∈ N. Therefore, we can use rule [While] to

infer that ` {P0} while b do c {P ′∞∧�¬b}. Using (10), the second clause of (13), and rule [Conseq],

we obtain that ` {P0} while b do c {P ′∞}, which is exactly ` {1µ} while b do c′ {1[[while b do c′]]µ}.

�

With the preparations above, we are in the position to show that the proof system Sa is relatively

complete.

Theorem 3.12 (Relative completeness) Every valid judgement is derivable in Sa.

Proof: Let {P} c {P ′} be a valid judgement. Suppose µ be any POVD. There are two possibilities:

• µ |= P . The validity of the judgement says that [[c]]µ |= P ′. By Lemma 3.11, we have that

` {1µ} c {1[[c]]µ}. By the second clause of (13) and rule [Conseq], we obtain ` {1µ∧P} c {1[[c]]µ∧P ′}.
Using [Conseq] again gives ` {1µ ∧ P} c {P ′}.

• µ 6|= P . Then it is obvious that 1µ ∧ P ⇔ ⊥. By rules [Absurd] and [Conseq], we also obtain

` {1µ ∧ P} c {P ′}.

Since µ is arbitrarily chosen, the premise of rule [All] is derivable. Therefore, we can use that rule to

obtain ` {P} c {P ′}. �
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e ::= x | 1ψ | o(e) (State expressions)

ψ ::= eBCe | FO(ψ) (State assertions)

r ::= E[e] | Ex̄∼M [q̄][e] | o(r) (Distribution expressions)

P ::= r BCr | P ⊕ P | FO(P ) (Distribution assertions)

BC ∈ {=, <, ≤} o ∈ Ops (Operations)

Figure 5: Syntax of assertions

4 A Concrete Program Logic

In this section, we present a concrete program logic. We first define the concrete syntax of assertions.

Following [3], we define a two-level assertion language in Figure 5. Formally, assertions are divided

into two categories: state assertions are formulas that describe the properties of machine states and

distribution assertions are used to describe the properties of POVDs. Distribution assertions are based

on comparison of distribution expressions, or built with first-order quantifiers and connectives, as well as

the connective ⊕ mentioned in Section 3. A distribution expression is either the expection E[e] of a state

expression e, the expectation Ex̄∼M [q̄][e] of state expression e w.r.t. the measurement M , or an operator

applied to state expressions. A state expression is either a classical variable, the characteristic function

1ψ of a state assertion ψ, or an operator applied to state expressions. Finally, a state assertion is either

a comparison of state expressions, or a first-order formula over state assertions.

For technical reasons, in this section we consider a general form of quantum measurement.

Definition 4.1 A general measurement M is a pair 〈{Mi}i∈I , l〉, where each Mi is a measurement

operator as usual, and l : I 7→ J ls a labelling function that maps each measurement outcome i to some

some label l(i).

If the state of a quantum system is specified by density operator ρ immediately before the measurement

M , then the probability with which those results with label j occur is given by

p(j) =
∑

i:l(i)=j

tr(M†iMiρ),

and the state of the system after the measurement is∑
i:l(i)=jMiρM

†
i

p(j)
.

General measurements are convenient to describe the situation where we would like to group some mea-

surement outcomes. For example, if i1, i2 ∈ I are two different outcomes, but for some reasons we would

not like to distinguish them, then we simply give them the same label by letting l(l1) = l(l2). In the

special case that l is the identity funciton Id , then the labelling function has no effect and we degenerate

to the usual notion of measurements.

The interpretation of assertions is given in Figure 6. Comparing the interpretation with that in [3],

we see that the main difference is the introduction of a distribution expression related to a quantum

measurement. The meaning of Ex̄∼M [q̄][e] is the expected Hermitian operator weighted by the value of e

after a measurement entailed by M .

Note that the formula �ψ, where ψ is a state assertion, can now be viewed as a syntactic sugar in

view of the following lemma.

Lemma 4.2 1. �ψ ⇔ E[1ψ] = E[1true]

2. �ψ ⇔ Ex̄∼M [q̄][1ψ] = Ex̄∼M [q̄][1true]

3. �ψ ⇔ �(ψ ∧ b)⊕�(ψ ∧ ¬b)
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[[x]]σ := σ(x)

[[1ψ]]σ := 1[[ψ]]σ

[[o(e)]]σ := o([[e]]σ)

[[e1 BCe2]]σ := [[e1]]σ BC[[e2]]σ
[[FO(ψ)]]σ := FO([[ψ]]σ)

[[E[e]]]µ :=
∑
σ µ(σ) · [[e]]σ

[[Ex̄∼M [q̄][e]]]µ :=
∑
σ

∑
iMiµ(σ)M†i · [[e]]σ[l(i)/x̄]

where M = 〈{Mi}i∈I , l〉
[[o(r)]]µ := o([[r]]µ)

[[r1 BCr2]]µ := [[r1]]µ BC[[r2]]µ
[[P1 ⊕ P2]]µ := ∃µ1, µ2.µ = µ1 + µ2 ∧ [[P1]]µ1

∧ [[P2]]µ2

[[FO(P )]]µ := FO([[P ]]µ)

Figure 6: Semantics of assertions

{P [a/x]} x := a {P}
[Assgn′] [QInit′]

{h(P )} q := |0〉 {P}

[QUnit′]
{gU (P )} U [q̄] {P}

[QMeas′]
{fMx,q̄(P )} x := M [q̄] {P}

Figure 7: Selected syntactic proof rules

Proof: Let us consider the first clause; the second one is similar and the third one is easier.

µ |= �ψ iff ∀σ ∈ dµe.[[ψ]]σ = true

iff
∑
σ µ(σ) · [[1ψ]]σ =

∑
σ µ(σ) · [[1true]]σ

iff [[E[1ψ]]]µ = [[E[1true]]]µ
iff µ |= (E[1ψ] = E[1true])

�

Using the concrete syntax for assertions, we propose a syntactic version of the existing proof rules

by avoiding the semantics of commands. We call the concrete proof system Sc. Specifically, we keep all

proof rules in Figure 4 but replace [Assgn], [QInit], [QUnit], and [QMeas] with the four rules in Figure 7.

In rule [QInit’] we use the notation h(P ) for a syntactic substitution. It changes all Ex̄∼M [q̄][e] in P

into Ex̄∼M ′[q̄][e] and distributes over most other syntactic constructors of assertions, where M ′ is obtained

from M = 〈{Mi}i, l〉 by constructing two measurement operators M0i,M01 for each Mi in M with the
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mapping l′ given by l′(i0) = l′(i1) = l(i). A formal definition is given below.

h(x) := x

h(1ψ) := 1h(ψ)

h(o(e)) := o(h(e))

h(e1 BCe2) := h(e1)BCh(e2)

h(FO(ψ)) := FO(h(ψ))

h(o(r)) := o(h(r)) where o ∈ Ops
h(E[e]) := Ex∼M [q][e] where M = 〈{M0,M1}, Id〉 with M0 = |0〉〈0|, M1 = |0〉〈1|,

x is fresh

h(Ex̄∼M [q̄][e]) := Ex̄∼M ′[q̄][e] where M ′ = 〈{Mi0,Mi1}i, l′〉 with Mi0 = Mi|0〉〈0|, Mi1 = Mi|0〉〈1|,
l′(i0) = l′(i1) = l(i)

h(r1 BCr2) := h(r1)BCh(r2)

h(FO(P )) := FO(h(P ))

h(P1 ⊕ P2) := h(P1)⊕ h(P2)

In rule [QUnit’] we use the notation gU (P ) for a syntactic substitution. It changes all Ex̄∼M [q̄][e] in P

into Ex̄∼M ′[q̄][e], where M = 〈{Mi}i∈I , l〉, M ′ = 〈{MiU}i∈I , l〉, and distributes over most other syntactic

constructors of assertions. A formal definition is given below.

gU (x) := x

gU (1ψ) := 1gU (ψ)

gU (o(e)) := o(gU (e))

gU (e1 BCe2) := gU (e1)BCgU (e2)

gU (FO(ψ)) := FO(gU (ψ))

gU (o(r)) := o(gU (r)) where o ∈ Ops
gU (E[e]) := Ex∼M [q̄][e] where M = 〈{M0}, Id〉 with M0 = U and x is fresh

gU (Ex̄∼M [q̄][e]) := Ex̄∼M ′[q̄][e] where M ′ = 〈{MiU}i∈I , l〉
gU (r1 BCr2) := gU (r1)BCgU (r2)

gU (FO(P )) := FO(gU (P ))

gU (P1 ⊕ P2) := gU (P1)⊕ gU (P2)

In rule [QMeas’] we use the notation fMx,q̄(P ) for a syntactic substitution. It changes all E[e] in P into

Ex∼M [q̄][e]. For the distribution expression Eȳ∼N [q̄][e], it adds an outer layer of measurement to N . A

formal definition is given below.

fMx,q̄(o(r)) := o(fMx,q̄(r)) where o ∈ Ops
fMx,q̄(E[e]) := Ex∼M [q̄][e]

fMx,q̄(Eȳ∼N [q̄′][e]) :=

{
Exȳ∼M ′[q̄∪q̄′][e] with M ′ = 〈{NjMi}ij , k′〉 and k′(ij) = (k(i), l(j)) if x 6∈ ȳ
Eȳ∼M ′[q̄∪q̄′][e] with M ′ = 〈{NjMi}ij , k′〉 and k′(ij) = l(j) if x ∈ ȳ

fMx,q̄(r1 BCr2) := fMx,q̄(r1)BCfMx,q̄(r2)

fMx,q̄(FO(P )) := FO(fMx,q̄(P ))

fMx,q̄(P1 ⊕ P2) := fMx,q̄(P1)⊕ fMx,q̄(P2)

We are going to show that the three functions h(·), gU (·) and fMx,q̄(·) behave well as they help to

transform postconditions into preconditions for three kinds of commands: initialisation, applications of

unitary operations, and measurements of quantum systems.

Lemma 4.3 The following two clauses hold.

(i) [[h(r)]]µ = [[r]][[q:=|0〉]]µ .

(ii) [[h(P )]]µ ⇒ [[P ]][[q:=|0〉]]µ .
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Proof: We prove the two statements by structural induction.

(i) There are three cases for the structure of r.

• r ≡ E[e]. We note that [[e]]σ = [[e]]σ[n/x] for any number n and fresh variable x in the sense

that x does not appear in e. Then we reason as follows.

[[h(r)]]µ = [[Ex∼M [e]]]µ where M = 〈{M0,M1}, Id〉 with M0 = |0〉〈0|, M1 = |0〉〈1|,
x is fresh

=
∑
σ(|0〉〈0|µ(σ)|0〉〈0| · [[e]]σ[0/x] + |0〉〈1|µ(σ)|1〉〈0| · [[e]]σ[1/x])

=
∑
σ(|0〉〈0|µ(σ)|0〉〈0| · [[e]]σ + |0〉〈1|µ(σ)|1〉〈0| · [[e]]σ) x is fresh

=
∑
σ(|0〉〈0|µ(σ)|0〉〈0|+ |0〉〈1|µ(σ)|1〉〈0|) · [[e]]σ

=
∑
σ[[q := |0〉]]µ(σ) · [[e]]σ

= [[E[e]]][[q:=|0〉]]µ
= [[r]][[q:=|0〉]]µ

• r ≡ Ex̄∼M [q̄][e] for some M = 〈{Mi}i, l〉. Then

[[h(r)]]µ = [[Ex̄∼M ′[q̄][e]]]µ where M ′ = 〈{Mi0,Mi1}i, l′〉 with Mi0 = Mi|0〉〈0|, Mi1 = Mi|0〉〈1|,
l′(i0) = l′(i1) = l(i)

=
∑
σ

∑
i(Mi|0〉〈0|µ(σ)|0〉〈0|M†i +Mi|0〉〈1|µ(σ)|1〉〈0|M†i ) · [[e]]σ[l(i)/x̄]

=
∑
σ

∑
i(Mi(|0〉〈0|µ(σ)|0〉〈0|+ |0〉〈1|µ(σ)|1〉〈0|)M†i · [[e]]σ[l(i)/x̄]

=
∑
σ

∑
iMi[[q := |0〉]]µ(σ)M†i · [[e]]σ[l(i)/x̄]

= [[Ex̄∼M [q̄][e]]][[q:=|0〉]]µ
= [[r]][[q:=|0〉]]µ

• r ≡ o(r1, ..., rk). The case can be proved by induction.

[[h(r)]]µ = [[o(h(r1), ..., h(rk)]]µ
= o([[h(r1)]]µ, ..., [[h(rk)]]µ)

= o([[r1]][[q:=|0〉]]µ , ..., [[rk]][[q:=|0〉]]µ)

= [[o(r1, ..., rk)]][[q:=|0〉]]µ
= [[r]][[q:=|0〉]]µ

(ii) There are three cases for the structure of P .

• P ≡ r1 BCr2. In this case, we need to use statement (iii).

[[h(P )]]µ = [[h(r1)BCh(r2)]]µ
= [[h(r1)]]µ BC[[h(r2)]]µ
= [[r1]][[q:=|0〉]]µ BC[[r2]][[q:=|0〉]]µ)

= [[r1 BCr2]][[q:=|0〉]]µ
= [[r]][[q:=|0〉]]µ

• P ≡ P1 ⊕ P2. This case is proved by induction.

[[h(P )]]µ = [[h(P1)⊕ h(P2)]]µ
= ∃µ1, µ2. µ = µ1 + µ2 ∧ [[h(P1)]]µ1

∧ [[h(P2)]]µ2

⇒ ∃µ1, µ2. [[q := |0〉]]µ = [[q := |0〉]]µ1 + [[q := |0〉]]µ2

∧[[P1]][[q:=|0〉]]µ1
∧ [[P2]][[q:=|0〉]]µ2

by Lemma 3.5

= [[P1 ⊕ P2]][[q:=|0〉]]µ
= [[r]][[q:=|0〉]]µ
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• P ≡ FO(P1, ..., Pk). Again, this case is proved by induction.

[[h(P )]]µ = [[FO(h(P1), ..., h(Pk)]]µ
= FO([[h(P1)]]µ, ..., [[h(Pk)]]µ)

= FO([[P1]][[q:=|0〉]]µ , ..., [[Pk]][[q:=|0〉]]µ)

= [[FO(P1, ..., Pk)]][[q:=|0〉]]µ
= [[P ]][[q:=|0〉]]µ

�

Lemma 4.4 The following two clauses hold.

(i) [[gU (r)]]µ = [[r]][[U [q̄]]]µ .

(ii) [[gU (P )]]µ ⇒ [[P ]][[U [q̄]]]µ .

Proof: The proof is similar to that of Lemma 4.3 except for the treatement of two cases for statement

(i).

• r ≡ E[e]. We infer that

[[gU (r)]]µ = [[Ex∼M [q̄][e]]]µ where M = 〈{M0}, Id〉 with M0 = U and x is fresh

=
∑
σ Uµ(σ)U† · [[e]]σ[0/x]

=
∑
σ Uµ(σ)U† · [[e]]σ

=
∑
σ[[U [q̄]]]µ(σ) · [[e]]σ

= [[E[e]]][[U [q̄]]]µ

= [[r]][[U [q̄]]]µ

• r ≡ Ex̄∼M [q̄][e]. Suppose M = 〈{Mi}i∈I , l〉. We reason as follows.

[[gU (r)]]µ = [[Ex̄∼M ′[q̄][e]]]µ where M ′ = 〈{MiU}i∈I , l〉
=

∑
σ

∑
iMiUµ(σ)U†M†i · [[e]]σ[l(i)/x̄]

=
∑
σ

∑
iMi[[U [q̄]]]µ(σ)M†i · [[e]]σ[l(i)/x̄]

= [[Ex̄∼M [q̄][e]]][[U [q̄]]]µ

= [[r]][[U [q̄]]]µ

�

Lemma 4.5 Let a be an arithmetic expression, σ be any state and σ′ := σ[[[a]]σ/x]. The following four

clauses hold, where x is not a bound variable in e, ψ, r and P .

(i) [[e[a/x]]]σ = [[e]]σ′

(ii) [[ψ[a/x]]]σ = [[ψ]]σ′

(iii) [[r[a/x]]]µ = [[r]][[x:=a]]µ .

(iv) [[P [a/x]]]µ ⇒ [[P ]][[x:=a]]µ .

Proof: The proof is similar to that of Lemma 4.3. As an example, we only consider one case for statement

(iii).

Suppose r ≡ Eȳ∼M [q̄][e] with M = 〈{Mi}i, l〉. There are two possibilities.

• x ∈ ȳ. In this case, x is a bound variable in r, which contradicts our assumption.
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• x 6∈ ȳ. Notice that

[[x := a]]µ(σ′) =
∑
σ

{µ(σ) | σ[[[a]]σ/x] = σ′} (14)

holds for any µ and σ′. We reason as follows.

[[r[a/x]]]µ = [[Eȳ∼M [q̄][e[a/x]]]]µ
=

∑
σ

∑
iMiµ(σ)M†i [[e[a/x]]]σ[l(i)/ȳ]

=
∑
σ

∑
iMiµ(σ)M†i [[e]]σ[l(i)/ȳ][[[a]]σ[l(i)/ȳ]/x] by statement (i)

=
∑
iMi

∑
σ µ(σ)M†i [[e]]σ[[[a]]σ/x][l(i)/ȳ]

=
∑
iMi

∑
σ′
∑
σ{µ(σ) | σ[[[a]]σ/x] = σ′}M†i [[e]]σ′[l(i)/ȳ]

=
∑
iMi

∑
σ′ [[x := a]]µ(σ′)M†i [[e]]σ′[l(i)/ȳ] by (14)

=
∑
σ′
∑
iMi[[x := a]]µ(σ′)M†i [[e]]σ′[l(i)/ȳ]

= [[Eȳ∼M [q̄][e]]][[x:=a]]µ

= [[r]][[x:=a]]µ

�

Lemma 4.6 (i) [[fMx,q̄(r)]]µ = [[r]][[x:=M [q̄]]]µ .

(ii) [[fMx,q̄(P )]]µ ⇒ [[P ]][[x:=M [q̄]]]µ .

Proof: We consider two cases for statement (i); the other cases are easier. Assume that M = 〈{Mi}i, k〉.

• r ≡ E[e]. We reason as follows.

[[fMx,q̄(r)]]µ = [[Ex∼M [q̄][e]]]µ
=

∑
σ

∑
iMiµ(σ)M†i · [[e]]σ[l(i)/x]

=
∑
σ′
∑
σ

∑
i{Miµ(σ)M†i | σ[l(i)/x] = σ′} · [[e]]σ′

=
∑
σ′
∑
σ µσ(σ′) · [[e]]σ′ where µσ(σ′) =

∑
i{Miµ(σ)M†i | σ[l(i)/x] = σ′}

= [[E[e]]]∑
σ µσ

= [[E[e]]][[x:=M [q̄]]]µ

= [[r]][[x:=M [q̄]]]µ

The second last equality holds because [[x := M [q̄]]](σ,µ(σ)) = µσ.

• r ≡ Eȳ∼N [q̄′][e]. There are two possibilities. Let us first assume that x 6∈ ȳ and N = 〈{Nj}j , l〉.

[[fMx,q̄(r)]]µ = [[Exȳ∼M ′[q̄∪q̄′][e]]]µ with M ′ = 〈{NjMi}ij , k′〉 and k′(ij) = (k(i), l(j))

=
∑
σ

∑
ij NjMiµ(σ)M†i N

†
j · [[e]]σ[k(i),l(j)/xȳ]

=
∑
σ

∑
j Nj(

∑
iMiµ(σ)M†i )N†j · [[e]]σ[k(i)/x][l(j)/ȳ]

=
∑
σ′
∑
σ

∑
j Nj(

∑
i{Miµ(σ)M†i | σ[k(i)/x] = σ′})N†j · [[e]]σ′[l(j)/ȳ]

=
∑
σ′
∑
σ

∑
j Njµσ(σ′)N†j · [[e]]σ′[l(j)/ȳ]

where µσ(σ′) =
∑
i{Miµ(σ)M†i | σ[k(i)/x] = σ′}

=
∑
σ′
∑
j Nj

∑
σ µσ(σ′)N†j · [[e]]σ′[l(j)/ȳ]

= [[Eȳ∼N [q̄′][e]]]
∑
σ µσ

= [[Eȳ∼N [q̄′][e]]][[x:=M [q̄]]]µ

= [[r]][[x:=M [q̄]]]µ

If x ∈ ȳ, the proof is similar by noting that σ[k(i)/x][l(j)/ȳ] = σ[l(j)/ȳ].

�

The next theorem states that the concrete proof system is sound.
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pc(skip, P ) := P

pc(x := a, P ) := P [a/x]

pc(c0; c1, P ) := pc(c0, pc(c1, P ))

pc(if b then c0 else c1, P ) :=

{
(pc(c0, P0) ∧�b)⊕ (pc(c1, P1) ∧�¬b) if P = P0 ⊕ P1

undefined otherwise

pc(abort, P ) :=

{
> if P = �⊥
undefined otherwise

pc(q := |0〉, P ) := h(P )

pc(U [q̄], P ) := gU (P )

pc(x := M [q̄], P ) := fMx,q̄(P )

Figure 8: Precondition calculus

Theorem 4.7 Every judgement provable in Sc is valid.

Proof: We only need to prove that the four new rules [Assgn’], [QInit’], [QUnit’] and [QMeas’] are sound,

which follows from Lemmas 4.3 - 4.6; the soundness of all other rules are already shown in Theorem 3.7.

�

Note that Sc is also relatively complete, which follows from the relative completeness of Sa.

Theorem 4.8 Every valid judgement is derivable in Sc.

Proof: The proof system Sc is the same as Sa except for the concretisation of four rules. �

We can define a precondition calculus to help with syntactic reasoning. Given an assertion P as a

postcondition and a loop-free command c, we construct an assertion as a precondition for c, written as

pc(c, P ). The computation rules for preconditions are given in Figure 8.

Theorem 4.9 Let c be a non-looping command. The following rule is derivable.

[PC]
{pc(c, P )} c {P}

Proof: We proceed by induction on the structure of c.

• c ≡ skip. Then pc(c, P ) = P and we have ` {P} c {P} by rule [Skip].

• c ≡ abort. Then pc(c, P ) is only defined for P = �⊥. In this case, we have ` {>} abort {�⊥} by

rule [Abort].

• c ≡ x := a. Then pc(c, P ) = P [a/x] and we have ` {P [a/x]} c {P} by rule [Assgn’].

• c ≡ c0; c1. Then pc(c, P ) = pc(c0, pc(c1, P )). By induction, we have ` {pc(c1, P )} c1 {P} and

` {pc(c0, pc(c1, P ))} c0 {pc(c1, P )}. By using rule [Seq], we obtain ` {pc(c0, pc(c1, P ))} c {P}.

• c ≡ if b then c0 else c1. Then pc(c, P ) is only defined for P = P0 ⊕ P1 and

pc(c, P0 ⊕ P1) = (pc(c0, P0) ∧�b)⊕ (pc(c1, P1) ∧�¬b).

By induction, we have that ` {pc(c0, P0)} c0 {P0} and ` {pc(c1, P1)} c1 {P1}. It is obvious that

pc(c0, P0) ∧ �b ⇒ pc(c0, P0). We can use rule [Conseq] to infer that ` {pc(c0, P0) ∧ �b} c0 {P0}.
Similarly, we have ` {pc(c1, P1) ∧ �¬b} c1 {P1}. By applying rule [Cond], we can obtain that

` {pc(c, P0 ⊕ P1)} c {P0 ⊕ P1}.

• c ≡ q := |0〉. A direct consequence of rule [QInit’].

• c ≡ U [q̄]. By using rule [QUnit’].

• c ≡M [q̄]. By using rule [QMeas’].

�
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Figure 9: Superdense coding

5 Example: superdense coding

In this section, we illustrate the use of the proof system Sc via the example of superdense coding.

Superdense coding was proposed by Bennett and Wiesner in 1992 [5]. It is a quantum communication

protocol allowing two classical bits to be encoded in one qubit during a transmission, so it needs only

one quantum channel. Such advantage is based on the use of a maximally entangled state, EPR state.

An EPR state can be transformed into all the four kinds of EPR states through 1-qubit operations, and

these EPR states are mutually orthogonal.

Protocol. We suppose the sender and the receiver of the communication are Alice and Bob, then the

protocol goes as follows:

1. Alice and Bob prepare an EPR state |00〉+|11〉√
2

together. Then they share the qubits, Alice holding

q0 and Bob holding q1.

2. Depending on the message Alice wants to send, she applies a gate to her qubit. If Alice wants to

send 00, she does nothing. If Alice wants to send 01, she applies the X gate. To send 10, she applies

the Z gate. To send 11, she applies both X and Z.

3. Then Alice sends the qubit q0 to Bob.

4. Bob applies a CNOT operation on q0, q1 and a Hadamard operation on q0 to remove the entangle-

ment.

5. Bob measures q0 and q1 to get the message.

After the execution of the protocol above, Bob gets the value that Alice wants to send. The protocol

exactly transmits two classical bits of information by sending one qubit from Alice to Bob. A quantum

circuit implementing the protocol is illustrated in Figure 9.

The protocol can also be described by the quantum program SC given in Figure 10, where for any

pure state |ϕ〉, we write [|ϕ〉] for its density operator |ϕ〉〈ϕ|.
According to the operational rules in Figure 2, we can derive the following sequence of transitions,

where the initial values of the four classical variables in the first configuration can be arbitrary and we
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SC ≡
1 : q0 := |0〉;
2 : q1 := |0〉;
3 : H[q0];

4 : CNOT [q0q1];

5 : if x1 = 1 then X[q0];

6 : if x0 = 1 then Z[q0];

7 : CNOT [q0q1];

8 : H[q0];

9 : y0 := M [q0];

10 : y1 := M [q1]

where M = 〈{M0,M1}, Id〉,M0 = [|0〉],M1 = [|1〉]

Figure 10: The quantum program of implementing superdense coding

use ∗ to stand for unimportant commands or the values of variables.

(SC, x0x1y0y1, [|00〉])

→ (∗, ∗, [ |0〉+|1〉√
2
|0〉])

→ (∗, ∗, [ |00〉+|11〉√
2

])

→ (∗, ∗, [Xx1
0
|00〉+|11〉√

2
])

→ (∗, ∗, [Zx0
0 Xx1

0
|00〉+|11〉√

2
])

≡


(∗, 00y0y1, [

|00〉+|11〉√
2

]) if x0 = x1 = 0

(∗, 01y0y1, [
|10〉+|01〉√

2
]) if x0 = 0, x1 = 1

(∗, 10y0y1, [
|00〉−|11〉√

2
]) if x0 = 1, x1 = 0

(∗, 11y0y1, [
|10〉−|01〉√

2
]) if x0 = x1 = 1

→


(∗, 00y0y1, [

|00〉+|10〉√
2

])

(∗, 01y0y1, [
|11〉+|01〉√

2
])

(∗, 10y0y1, [
|00〉−|10〉√

2
])

(∗, 11y0y1, [
|11〉−|01〉√

2
])

→


(∗, 00y0y1, [|00〉])
(∗, 01y0y1, [|01〉])
(∗, 10y0y1, [|10〉])
(∗, 11y0y1, [|11〉])

→


(∗, 000y1, [|00〉])
(∗, 010y1, [|01〉])
(∗, 101y1, [|10〉])
(∗, 111y1, [|11〉])

→


(nil, 0000, [|00〉])
(nil, 0101, [|01〉])
(nil, 1010, [|10〉])
(nil, 1111, [|11〉])

We observe that in each case of the four last configurations, we always have the value of x0x1 coincide
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with y0y1 as expected. Indeed, we would like to show that the judgement

{>} SC {�(x0 = y0 ∧ x1 = y1)} (15)

is provable in our concrete proof system. This can be accomplished by a sequence of derivations because

for every line of command in Figure 10 we need to prove a Hoare triple. We start from line 10 and

proceed backwards. The first six steps can be derived by using the rules [QMeas’], [QUnit’], [Cond] and

[Split], as shown in Figure 11. Continue the reasoning until line 1, we obtain the following precondition

for SC.

{(Ey0y1∼M10[q0q1][1ψ∧x0=1∧x1=1] = Ey0y1∼M10[q0q1][1true])

⊕(Ey0y1∼M9[q0q1][1ψ∧x0=1∧x1=0] = Ey0y1∼M9[q0q1][1true]) (†)
⊕(Ey0y1∼M8[q0q1][1ψ∧x0=0∧x1=1] = Ey0y1∼M8[q0q1][1true])

⊕(Ey0y1∼M7[q0q1][1ψ∧x0=0∧x1=0] = Ey0y1∼M7[q0q1][1true])},
where M10 ≡ 〈{E0000, E0001, ..., E1111}, f〉 with

E0000 ≡ E00Hq0CNOTq0q1Zq0Xq0CNOTq0q1Hq0 |0〉q1〈0| · |0〉q0〈0|,
E0001 ≡ E00Hq0CNOTq0q1Zq0Xq0CNOTq0q1Hq0 |0〉q1〈0| · |0〉q0〈1|,
E0010 ≡ E00Hq0CNOTq0q1Zq0Xq0CNOTq0q1Hq0 |0〉q1〈1| · |0〉q0〈0|,
E0011 ≡ E00Hq0CNOTq0q1Zq0Xq0CNOTq0q1Hq0 |0〉q1〈1| · |0〉q0〈1|,
E0100 ≡ E01Hq0CNOTq0q1Zq0Xq0CNOTq0q1Hq0 |0〉q1〈0| · |0〉q0〈0|,

...

E1111 ≡ E11Hq0CNOTq0q1Zq0Xq0CNOTq0q1Hq0 |0〉q1〈1| · |0〉q0〈1|,
f(00 ∗ ∗) = 00, f(01 ∗ ∗) = 01, f(10 ∗ ∗) = 10, f(11 ∗ ∗) = 11

M9 ≡ 〈{E′0000, E
′
0001, ..., E

′
1111}, f〉 with

E′0000 ≡ E00Hq0CNOTq0q1Zq0CNOTq0q1Hq0 |0〉q1〈0| · |0〉q0〈0|,
...

E′1111 ≡ E11Hq0CNOTq0q1Zq0CNOTq0q1Hq0 |0〉q1〈1| · |0〉q0〈1|
M8 ≡ 〈{E′′0000, E

′′
0001, ..., E

′′
1111}, f〉 with

E′′0000 ≡ E00Hq0CNOTq0q1Xq0CNOTq0q1Hq0 |0〉q1〈0| · |0〉q0〈0|,
...

E′′1111 ≡ E11Hq0CNOTq0q1Xq0CNOTq0q1Hq0 |0〉q1〈1| · |0〉q0〈1|
M7 ≡ 〈{E′′′0000, E

′′′
0001, ..., E

′′′
1111}, f〉 with

E′′′0000 ≡ E00Hq0CNOTq0q1CNOTq0q1Hq0 |0〉q1〈0| · |0〉q0〈0|,
...

E′′′1111 ≡ E11Hq0CNOTq0q1CNOTq0q1Hq0 |0〉q1〈1| · |0〉q0〈1|

The measurement operators in M10 look complicated. However, a simple calculation shows that

among the 16 operators only four of them are non-zero. Indeed, the simplied form of M10 is

M10 = 〈{E1100, E1101, E1110, E1111}, f〉

where

E1100 =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 E1101 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 E1110 =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 E1111 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


Similarly, the simplied form of M9 is M9 = 〈{E′1000, E

′
1001, E

′
1010, E

′
1011}, f〉, where

E′1000 =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

 E′1001 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 E′1010 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 E′1011 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0
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The simplied form of M8 is M8 = 〈{E′′0100, E
′′
0101, E

′′
0110, E

′′
0111}, f〉, where

E′′0100 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 E′′0101 =


0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 E′′0110 =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 E′′0111 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


Finally, the simplied form of M7 is M7 = 〈{E′′′0000, E

′′′
0001, E

′′′
0010, E

′′′
0011}, f〉, where

E′′′0000 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 E′′′0001 =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 E′′′0010 =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 E′′′0011 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


Write P for the assertion in (†). We have seen that

{P} SC {�ψ}. (16)

We observe that > ⇔ P . This can be seen as follows. Let

P11 ≡ (Ey0y1∼M10[q0q1][1ψ∧x0=1∧x1=1] = Ey0y1∼M10[q0q1][1true])

P10 ≡ (Ey0y1∼M9[q0q1][1ψ∧x0=1∧x1=0] = Ey0y1∼M9[q0q1][1true])

P01 ≡ (Ey0y1∼M8[q0q1][1ψ∧x0=0∧x1=1] = Ey0y1∼M8[q0q1][1true])

P00 ≡ (Ey0y1∼M7[q0q1][1ψ∧x0=0∧x1=0] = Ey0y1∼M7[q0q1][1true])

b11 ≡ x0 = 1 ∧ x1 = 1

b10 ≡ x0 = 1 ∧ x1 = 0

b01 ≡ x0 = 0 ∧ x1 = 1

b00 ≡ x0 = 0 ∧ x1 = 0

We have P = P11 ⊕ P10 ⊕ P10⊕00. For any POVD µ, it is easy to see that

µ = µ|b11
+ µ|b10

+ µ|b01
+ µ|b00

We have that µ|b11
|= P11 because

[[Ey0y1∼M10[q0q1][1ψ∧x0=1∧x1=1]]]µ|b11

=
∑
σ

∑
iEiµ|b11

(σ)M†i · 1[[ψ∧x0=1∧x1=1]]σ[f(i)/y0y1]

where i ∈ {1100, 1101, 1110, 1100}
=

∑
σ

∑
iEiµ|b11

(σ)M†i · 1[[ψ∧x0=1∧x1=1]]σ[11/y0y1]

=
∑
σ

∑
iEiµ|b11

(σ)M†i · 1
=

∑
σ

∑
iEiµ|b11

(σ)M†i · 1[[true]]σ[11/y0y1]

= [[Ey0y1∼M10[q0q1][1true]]]µ|b11

which implies [[P11]]µ|b11
= true. Similarly, we can check that µ|b10

|= P10, etc. Therefore, we obtain that

µ |= P . As µ is arbitrarily chosen, we have verified that > ⇔ P . By (16) and rule [Conseq], we finally

see that the triple {>} SC {�ψ} is provable.
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