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Summary

The unobserved components time series model with stochastic volatility has
gained much interest in econometrics, especially for the purpose of modelling
and forecasting inflation. We present a feasible simulated maximum likelihood
method for parameter estimation from a classical perspective. The method can
also be used for evaluating the marginal likelihood function in a Bayesian anal-
ysis. We show that our simulation-based method is computationally feasible,
for both univariate and multivariate models. We assess the performance of the
method in a Monte Carlo study. In an empirical study, we analyse U.S. headline
inflation using different univariate and multivariate model specifications.

1 INTRODUCTION

The unobserved components (UC) time series model decomposes a time series into a trend component driven by perma-
nent shocks and a cycle component driven by transitory shocks. For macroeconomic time series, the former typically relies
on nonstationary dynamics, whereas the latter is usually modelled through stationary dynamics. Hence, both the trend
of the time series and the deviation from it are treated as latent dynamic stochastic processes. The most basic example
is the local level model with a random walk process for the time-varying trend and a white noise process for the cycle
component; see Harvey (1989) for further details.

The UC model extended with stochastic volatility (UCSV) for both the permanent and transitory shocks, proposed and
developed by Stock and Watson (2007, 2008), has gained much interest in studies on the modelling and forecasting of
inflation. Chan (2013) compares UCSV models with different specifications for the cycle component. Other UCSV model
specifications are considered by Harvey (2011), Kim et al. (2014), Mertens and Nason (2017) and Cecchetti et al. (2017).
These studies show that forecast functions implied by UCSV models are flexible and can deliver accurate forecasts for
inflation.
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see, for example, Harvey (2011), Kim et al. (2014) and Hasenzagl et al. (2021). The multivariate UCSV (MUCSV) model
with a multivariate random walk for the trend and a vector autoregressive (VAR) process for the cycle is considered by
Mertens (2016) and Chan et al. (2018). Finally, Stock and Watson (2016) consider a factor model with SV for modelling
sectoral inflation data.

The tasks of parameter estimation and forecasting for univariate and MUCSV models are typically based on Bayesian
Markov chain Monte Carlo methods, as in Stock and Watson (2007, 2008) and Chan (2017), and possibly in combination
with particle filtering methods, as in Shephard (2015). Given the lack of analytical expressions for the likelihood func-
tion of UCSV models, the classical method of maximum likelihood does also rely on simulation-based methods. For both
Bayesian and classical approaches, the major challenge for estimation is to integrate out the UC and the SV in a numer-
ically efficient manner for the purpose of evaluating the (marginal) likelihood function. For this purpose, we develop
a simulation-based importance sampling procedure for UCSV models. We adopt this procedure to enable maximum
likelihood estimation, which is a novel development in the context of (multivariate) UCSV models.

The importance sampling method is developed and discussed in earlier work for a general class of nonlinear
non-Gaussian state space models; see, for example, Shephard and Pitt (1997), Durbin and Koopman (1997) and Richard
and Zhang (2007). The method is regularly used and illustrated for the maximum likelihood estimation of parameters in
the SV model and its extensions; see Sandmann and Koopman (1998), Koopman and Hol Uspensky (2002) and Liesenfeld
and Richard (2003), among others. A modification of the importance sampling method for the purpose of increasing com-
putational efficiency in its application to state space models is developed by Koopman et al. (2015). In our current study,
we further improve this modification in two directions, benefiting its application to both univariate and MUCSV mod-
els. Our proposed simulation-based maximum likelihood treatment of the UCSV model is illustrated in a Monte Carlo
study where we provide evidence of its accuracy and its computational efficiency in comparison with particle filtering.
The UCSV model and its multivariate extensions are further illustrated in an empirical study for the modelling and fore-
casting of U.S. headline inflation. We show that our simulation-based method is capable of handling 18 time series jointly
within a MUCSV model.

The remainder of the paper is organised as follows. Section 2 formulates the UCSV model. Section 3 develops the
simulated maximum likelihood (SML) method. Section 4 conducts the Monte Carlo study. Section 5 presents an empirical
illustration of modelling and forecasting U.S. inflation. We conclude with a discussion in Section 6.

2 UNOBSERVED COMPONENTS WITH STOCHASTIC VOLATILITY

In this section we introduce the unobserved components time series model with stochastic volatility (UCSV), and its
multivariate extension (MUCTSV), in general terms. Some specific details about the models are provided in Sections 4
and 5 where the results of our Monte Carlo and empirical studies are presented, respectively.

2.1 Univariate model specification
The UCSV model decomposes the observed univariate time series y1, … , yT into a trend component 𝜋t and a cycle
component 𝜓 t, as given by

𝑦t = 𝜋t + 𝜓t, 𝜋t = 𝜋t−1 + 𝜂t, 𝜂t ∼ NID
(
0, exp h𝜂,t

)
,

𝜓t = 𝜑𝜓t−1 + 𝜀t + 𝜗𝜀t−1, 𝜀t ∼ NID
(
0, exp h𝜀,t

)
,

(1)

for t = 1, … ,T, where 𝜋t is specified as a random walk process driven by permanent shocks 𝜂t and where 𝜓 t is specified
as a stationary autoregressive moving average (ARMA) process driven by transitory shocks 𝜀t; the coefficients 𝜑 and 𝜗 are
treated as unknown parameters. The shocks 𝜂t and 𝜀t are normally and independently (serially and mutually) distributed
(NID) with means equal to zero and variances equal to exp h𝜂,t and exp h𝜀,t, respectively. The stochastically time-varying
log variances h𝜂, t and h𝜀, t are modelled jointly by the bivariate random walk processes, as given by

h𝜂,t = h𝜂,t−1 + 𝜎𝜂𝜁𝜂,t,
h𝜀,t = h𝜀,t−1 + 𝜎𝜀𝜁𝜀,t,

(
𝜁𝜂,t
𝜁𝜀,t

)
∼ NID

(
0,
[

1 𝜌𝜂 𝜀
𝜌𝜂 𝜀 1

])
, (2)
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The multivariate extension of the UCSV model can accommodate survey data of inflation expectations to anchor the
trend component and can embed structural relations implied by the Phillips curve and Okun's law in the cycle component;



for t = 1, … ,T, where the disturbances 𝜁𝜂, t and 𝜁𝜀, t are normally distributed with zero means and unity variances; are
scaled by the strictly positive volatility-of-volatility coefficients 𝜎𝜂 and 𝜎𝜀, respectively; are serially independent; and are
mutually dependent with correlation −1 ≤ 𝜌𝜂 𝜀 ≤ 1. The coefficients 𝜎𝜂 , 𝜎𝜀 and 𝜌𝜂 𝜀 are treated as unknown parameters.

The UCSV model is originally introduced by Stock and Watson (2007) for the modelling and forecasting of U.S. inflation;
they specify the model as given by (1) and (2) with 𝜑 = 𝜗 = 0, that is, 𝜓t = 𝜀t. This model specification is also analysed
in detail by Shephard (2015). The UCSV model with 𝜓 t modelled as an ARMA process is studied by Chan (2013). Other
dynamic specifications for the components can also be considered. For example, Stock and Watson (1998) formulate an
integrated random walk process for 𝜋t, whereas Harvey (2011) adopts a stochastically evolving cyclical process for 𝜓 t.
Finally, Gordon (1990), Mertens (2016) and Chan et al. (2018) consider model extensions by including exogenous effects
and other stochastic variables in (1).

2.2 Multivariate model specification
The multivariate version of the UCSV model is obtained by considering yt as an N × 1 observation vector, that is, 𝑦t =
(𝑦1,t, … , 𝑦N,t)′, where yi, t is the ith time series variable of yt, for i = 1, … ,N. We also treat all other variables in (1) as
N × 1 vectors, while the ARMA scalar coefficients 𝜑 and 𝜗 become N × N matrices Φ and Θ, respectively, with possible
parsimonious specifications Φ = 𝜑 · IN and Θ = 𝜗 · IN , where IN is the N × N identity matrix. The vector disturbances 𝜂t
and 𝜀t in (1) are NID with zero mean vectors and variance matrices Σ𝜂,t and Σ𝜀,t, respectively. Different specifications for
the variance matrices can be considered for the MUCSV model. For example, in their analysis of sectoral inflation, Stock
and Watson (2016) adopt the MUCSV model with both the trend and cycle decomposed into common and idiosyncratic
factors. Their model can be represented as in (1) with 𝜑 = 𝜗 = 0, that is, 𝑦i,t = 𝜋i,t + 𝜀i,t, and with the decompositions

𝜋i,t = 𝜔𝜂,i𝜋
c
t + 𝜋

∗
i,t, 𝜀i,t = 𝜔𝜀,i𝜀

c
t + 𝜀

∗
i,t, (3)

where 𝜋c
t and 𝜀c

t are the common factors and 𝜋∗
i,t and 𝜀∗i,t are the idiosyncratic factors, and with time-invariant loadings

𝜔𝜂, i and 𝜔𝜀, i for the common trend and cycle, respectively, for i = 1, … ,N. The loadings are subject to the identification
restrictions 𝜔𝜂,1 = 𝜔𝜀,1 = 1. We do not consider time-varying loadings as in the analysis of Stock and Watson (2016). The
common and idiosyncratic trend factors are modelled as random walks, and we have 𝜋c

t = 𝜋c
t−1 + 𝜂

c
t and 𝜋∗

i,t = 𝜋∗
i,t−1 + 𝜂

∗
i,t,

implying that 𝜋i,t is also modelled as a random walk because from (3), we have

𝜋i,t = 𝜔𝜂,i(𝜋c
t−1 + 𝜂

c
t ) + 𝜋

∗
i,t−1 + 𝜂

∗
i,t = 𝜔𝜂,i𝜋

c
t−1 + 𝜋

∗
i,t−1 + 𝜔𝜂,i𝜂

c
t + 𝜂

∗
i,t = 𝜋i,t−1 + 𝜂i,t,

where 𝜂i,t = 𝜔𝜂,i𝜂
c
t + 𝜂

∗
i,t, for i = 1, … ,N. Hence, the shocks in the model 𝑦i,t = 𝜋i,t + 𝜀i,t of Stock and Watson (2016) are

subject to the decomposition

𝜉i,t = 𝜔𝜉,i 𝜉
c
t + 𝜉

∗
i,t, 𝜉c

t ∼ NID(0, exp hc
𝜉,t), 𝜉∗i,t ∼ NID(0, exp h∗

𝜉,i,t), 𝜉 = 𝜂, 𝜀, (4)

where hc
𝜉,t and h∗

𝜉,i,t are specified as h𝜉, t in (2) and scaled by 𝜎c
𝜉

and 𝜎∗
𝜉,i, respectively, for 𝜉 = 𝜂, 𝜀 and i = 1, … ,N. Similar to

specification (2), we allow for correlation between the two common shocks given by −1 ≤ 𝜌c
𝜂 𝜀 ≤ 1. Hence, the disturbance

variance matrices Σ𝜉,t = Var(𝜉t), for 𝜉 = 𝜂, 𝜀, are given by

Σ𝜉,t = exp(hc
𝜉,t)

[
𝜔𝜉 𝜔

′
𝜉

]
+ Ω𝜉,t, Ω𝜉,t = diag

[
exp(h∗

𝜉,1,t), … , exp(h∗
𝜉,N,t)

]
, 𝜉 = 𝜂, 𝜀, (5)

for t = 1, … ,T, with N × 1 vector 𝜔𝜉 = (𝜔𝜉,1, … , 𝜔𝜉,N)′ and where diag[a1, … , aN] is the N × N diagonal matrix
with diagonal elements a1, … , aN. The number of unknown parameters for each variance matrix is 2 × N (we have
N − 1 loadings 𝜔𝜉, i and N + 1 scalings 𝜎c

𝜉
and 𝜎∗

𝜉,i). The total number of parameters is 4N + 1, including the correlation
coefficient 𝜌c

𝜂 𝜀. Alternative MUCSV model specifications are presented in Section 5.
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3 SIMULATED MAXIMUM LIKELIHOOD ESTIMATION

We develop a parameter estimation method based on simulated maximum likelihood (SML). Conditional on these esti-
mates, similar simulation-based methods enable the signal extraction of unobserved variables such as 𝜋t,𝜓 t, h𝜂, t, and h𝜀, t.
The details are in Appendix S1.

3.1 Simulated likelihood function
Importance sampling methods are generally used for the evaluation of intractable densities. Their implementation for
the maximum likelihood estimation of parameters in standard SV models have been highly effective; for illustrations
of importance sampling in this context, see Shephard and Pitt (1997), Durbin and Koopman (1997) and Richard and
Zhang (2007), among others. Next we consider importance sampling for the UCSV models (1) and (2).

The likelihood function of the UCSV model is denoted by L(𝜃), where 𝜃 is the vector of model parameters. We collect
all stochastically time-varying processes related to the (co)variances at time t in the k × 1 vector ht, for t = 1, … ,T; for
example, for the univariate UCSV models (1) and (2), we have k = 2 and ht = (h𝜂,t, h𝜀,t)′. The complete set of (co)variance
paths is represented by the set H = {h1, … , hT}. The joint density for y is given by

p(𝑦; 𝜃) = ∫ p(𝑦,H; 𝜃)dH = ∫ p(𝑦|H; 𝜃)p(H; 𝜃)dH,

where 𝑦 = (𝑦′1, … , 𝑦′T)
′. The conditional density p(y|H; 𝜃) can be evaluated by the Kalman filter because the UCSV

model is linear and Gaussian for given trajectories in H. Hence, the Kalman filter acts as a Rao–Blackwellisation step by
analytically integrating out latent trend and cycle components in a highly computationally efficient manner; see Chen
and Liu (2000). To obtain p(y; 𝜃), or the likelihood L(𝜃), the remaining task is to numerically integrate out H, which is
of a prohibitively high dimension. For this purpose, we extend the numerically accelerated importance sampling (NAIS)
method of Koopman et al. (2015) towards (M)UCSV models, as NAIS has originally been designed for univariate SV
models. The NAIS method constructs a Gaussian importance density g(H|y; 𝜃) such that simulations of trajectories of
H can mimic simulations from p(H|y; 𝜃) accurately and computationally efficient. It follows from the developments in
Durbin and Koopman (1997) that

L(𝜃) = Lg(𝜃)𝜔(𝜃), 𝜔(𝜃) = ∫
p(𝑦|H; 𝜃)
g(𝑦|H; 𝜃)

g(H|𝑦; 𝜃)dH, (6)

where Lg(𝜃) is the Gaussian likelihood function with respect to the importance density model g(y, H; 𝜃) and 𝜔(𝜃) is the
importance weight function. An unbiased and consistent Monte Carlo estimator of 𝜔(𝜃) is given by

�̂�(𝜃) = 1
M

M∑
i=1

p(𝑦|Hi; 𝜃)
g(𝑦|Hi; 𝜃)

, Hi ∼ g(H|𝑦; 𝜃), (7)

where M is the number of simulations and where the simulations for Hi, for i = 1, … ,M, are obtained from a simulation
smoother applied to the importance density model g(y, H; 𝜃); see, for example, Durbin and Koopman (2002) and Chan
and Jeliazkov (2009). The Monte Carlo estimate of the log-likelihood function is subject to the standard log-normal bias
correction and is given by

log L̂(𝜃) = log Lg(𝜃) + log �̂�(𝜃) + ŝ(𝜃)2
𝜔∕(2M�̂�(𝜃)2), (8)

where ŝ(𝜃)2
𝜔 is the sample variance corresponding to the sample average �̂�(𝜃). In a classical analysis, the maximum like-

lihood estimate of 𝜃 is obtained via the numerical maximisation of (8). In a Bayesian analysis, the marginal likelihood is
obtained by evaluating L̂(𝜃). Appendix S1 provides more details on the importance sampling estimation method applied
to the UCSV model.

3.2 Importance density for UCSV: A twofold NAIS modification
The modification of NAIS for UCSV models consists of (i) the joint treatment of the UC part, consisting of 𝜋t and 𝜓 t
in (1), and the SV part, consisting of h𝜂, t and h𝜀, t in (2), for constructing the joint importance density g(y, H; 𝜃); (ii) the
introduction of the pruning method.
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3.2.1 Modification (i): Linear dynamic process in mean
The joint importance density g(y, H; 𝜃) = g(y|H; 𝜃)g(H; 𝜃) has two parts with g(H; 𝜃) ≡ p(H; 𝜃) representing the
dynamic Gaussian model (2), or one of its multivariate extensions, and with Gaussian observation density g(y|H; 𝜃) rep-
resenting an approximation of p(y|H; 𝜃) as implied by model (1). In addition to the latent SV processes collected in H, the
observation density also depends on the latent trend 𝜋t and cycle 𝜓 t as in (1) but both in a linear way. Conditional on H,
the linear dependence allows us to integrate out 𝜋t and 𝜓 t recursively via the prediction error decomposition applied to
the observation model (1). We obtain

p(𝑦|H; 𝜃) =
T∏

t=1
p(𝑦t|𝑦1, … , 𝑦t−1,H; 𝜃) =

T∏
t=1

p(vt|H; 𝜃), (9)

where vt ≡ vt(H; 𝜃) ∼ NID(0,Ft) is the prediction error with its variance Ft ≡ Ft(H; 𝜃); both are obtained from the
Kalman filter; see Durbin and Koopman (2012, Chapter 7). For the construction of the Gaussian importance density
g(H|v; 𝜃) =

∏T
t=1 g(ht|v; 𝜃) in (7), where v = (v′1, … , v′T)

′, we consider the linear Gaussian model g(v|H; 𝜃)g(H; 𝜃) ≡
p(H; 𝜃)

∏T
t=1 g(vt|H; 𝜃), where ht is the mean for the observation density g(vt|H; 𝜃), for all t. Given the linear and Gaussian

structures, we can apply a simulation smoother to generate draws from g(H|v; 𝜃).
The main step for the construction of an importance density is to find an expression for g(v|H; 𝜃) =

∏T
t=1 g(vt|H; 𝜃) such

that density g(H|v; 𝜃) fits p(H|v; 𝜃) as close as possible, in terms of some distance measure. For this purpose, we formulate
the observation density as

g(vt|H; 𝜃) = exp
(

rt + b′
tht −

1
2

h′
tCtht

)
, t = 1, … ,T, (10)

where rt is an integrating constant and k × 1 vector bt and k × k matrix Ct are functions of v and 𝜃. The importance
sampling parameters are bt ≡ bt(v; 𝜃) and Ct ≡ Ct(v; 𝜃) as they interact with ht in (10), for all t. It can be shown that the
Gaussian importance observation density (10) is implied by the model

v+t = ht + 𝜖+t , 𝜖+t ∼ N(0,C−1
t ), t = 1, … ,T, (11)

where v+t = C−1
t bt such that v+t ≡ v+t (v; 𝜃); it follows that g(v+t |ht; 𝜃) ≡ g(vt|H; 𝜃), for all t.

We obtain optimal importance sampling parameters by solving the same minimum squared error criterion as adopted
by Richard and Zhang (2007). We solve

min
bt ,Ct ∫ 𝜆2

t (vt, ht; 𝜃)𝜔t(vt, ht; 𝜃)g(ht|v; 𝜃)dht, 𝜔t(vt, ht; 𝜃) =
p(vt|H; 𝜃)
g(v+t |ht; 𝜃)

, (12)

where 𝜆t(vt, ht; 𝜃) = log𝜔t(vt,H; 𝜃) = log p(vt|H; 𝜃)−rt−b′
tht+ 1

2
h′

tCtht, for t = 1, … ,T. Instead of using Monte Carlo sim-
ulation to evaluate the integral as done by Richard and Zhang (2007), we adopt the NAIS method of Koopman et al. (2015)
that utilises fast numerical integration by means of high precision Gauss–Hermite quadrature. When ht is univariate, or
k = 1, the minimisation of (12) reduces to

min
bt ,Ct

K∑
𝑗=1

wt𝑗 𝜆
2
t (vt, h̃t𝑗 ; 𝜃), wt𝑗 = w∗(z𝑗) exp(z2

𝑗 ∕2)𝜔t(vt, h̃t𝑗 ; 𝜃)∕
√

2𝜋, (13)

with K tabulated abscissae or Gauss–Hermite nodes zj and associated weights w∗(zj), and h̃t𝑗 = ĥt +
√

V tz𝑗 for 𝑗 =
1, … ,K, where ĥt and Vt are the state estimate and its corresponding variance obtained from Kalman smoother applied to
importance model (11). Given that v+t in (11) relies on variables bt and Ct that need to be optimised, the minimisation (13) is
achieved through iteration. Starting with bt = 1 and Ct = 1 for all t, the minimisation (13) is solved for each t by a weighted
least square (WLS) with K ‘dependent’ variables log p(v+t |ht𝑗 ; 𝜃), ‘explanatory’ variables h̃t𝑗 and h̃2

t𝑗 , and weights wtj, for
𝑗 = 1, … ,K. The WLS estimates update bt and Ct, which are used for the next iteration. Convergence of this process is
usually achieved within a small number of iterations. Moreover, due to common Gauss–Hermite nodes throughout, only
one matrix inversion is needed for all WLS calculations. We typically use K = 10 nodes. We discuss more computational
details in Appendix S1.
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FIGURE 1 Two-dimensional Gauss–Hermite grid. Top left: Gauss–Hermite grid leads to a rectangular set of function evaluations. Top
right: effect of pruning. Bottom left: set of function evaluations due to correlation. Bottom right: effect of pruning when correlation is present
[Colour figure can be viewed at wileyonlinelibrary.com]

3.2.2 Modification (ii): Multiple latent effects in variance
The multiplicity of the integration in (12) is determined by k, the dimensionality of time-varying processes related to
(co)variances of the MUCSV model. For example in (2), integration takes the form

∫ x(ht)dht = ∫ ∫ x(h𝜂,t, h𝜀,t)dh𝜂,tdh𝜀,t,

where x(ht) can be any function of ht; for example, x(ht) = 𝜆2
t (𝑦t, ht; 𝜃) in (12). The numerical burden of integration

increases exponentially with k. To manage the curse of dimensionality in the computations, we modify the NAIS method
by using a basic pruning device. The top left panel of Figure 1 presents the Gauss–Hermite grid that results in a rectangular
set of function evaluations at the nodes (z𝑗1 , z𝑗2 ) for 𝑗1, 𝑗2 = 1, … ,K. The pruning cuts off many node combinations that
lead to near-zero likelihood values as they are located far in the tails of the bivariate normal distribution. We set the
threshold

𝜏K ∶= w∗(z1) · w∗
(

z⌊ K+1
2

⌋
)
∕K,

where ⌊a⌋ is the largest integer smaller than a. By dropping all grid points that correspond to weights smaller than 𝜏K,
we obtain the approximation

∫ x(ht)dht ≈
K∑
𝑗1=1

K∑
𝑗2=1

1{w∗(z𝑗1 )w
∗(z𝑗2 )≥𝜏K}wt𝑗1 wt𝑗2 x

(
h̃t𝑗1 , h̃t𝑗2

)
,

with indicator function 1{b} that takes the value 1 when b is true and 0 otherwise. The effect of pruning is presented in
the top right panel of Figure 1.

Because H is a draw from g(H|v+1 , … , v+T ; 𝜃) with respect to the model (11), elements in ĥt are correlated. When the
function inputs are correlated, the rectangular Gauss–Hermite grid becomes a parallelogram as obtained from a rotated
plane as in the bottom graphs of Figure 1. It is shown in Jäckel (2005) that pruning remains valid after such rotations.
Alternatively, a grid can be constructed using sparse techniques as in Gerstner and Griebel (1998). These efficiency efforts
may come with the cost of g(·) being a less accurate approximation of p(·), leading to a higher sampling variance for
the importance weight function 𝜔(·) in (6). However, despite this variance increase and efficiency loss, the importance
sampling method itself remains valid.

These NAIS modifications are specifically applicable for MUCSV models, also when many (co)variance processes are
present. In a broad range of model specifications, the importance density can be constructed in two consecutive steps.
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In the first step, we treat the MUCSV model as a set of N separate equations and establish for each series its importance
density and the corresponding trend and cycle estimates. In the second step, we adopt the univariate treatment of a
multivariate state space model as described in Durbin and Koopman (2012, Chapter 6), to obtain the joint importance
density that accounts of the covariance structures. Such treatments for MUCSV models are described in Appendix S1.

4 MONTE CARLO EVIDENCE

We present the results of two Monte Carlo studies for the univariate UCSV model. First, we assess the accuracy of param-
eter estimation based on SML for different finite sample sizes. Second, we compare the computational efficiency of our
proposed SML methods with three particle filter (PF) methods.

4.1 Performance of SML estimation
We first study asymptotic and finite sample properties of estimates obtained via the proposed SML method. We consider
the UCSV models (1) and (2) with 𝜑 = 𝜗 = 0, such that 𝜓t = 𝜀t. The data generation process (DGP) reduces to the
Stock and Watson (2007) model 𝑦t = 𝜋t + exp(h𝜀,t∕2)𝜀t with random walk state 𝜋t+1 = 𝜋t + exp(h𝜂,t∕2)𝜂t. For z = 𝜀, 𝜂 and
t = 2, … ,T, log-volatility processes are given by hz,t+1 = 𝛼z+𝜙zhz,t+𝜎z𝜁z,t and for t = 1, hz,t ∼ N

(
𝛼z

1−𝜙z ,

𝜎2
z

1−𝜙2
z

)
. All four dis-

turbances are mutually and serially independent standard normal variates. The true parameter values in the simulations
are presented in Table 1. We simulate 1000 time series for each sample size T = 100, 300, 1000. In our SML estimation
procedure, we use K = 10 Gauss–Hermite nodes for obtaining the importance density and M = 200 importance samples
to compute the log-likelihood function. The key estimation results are presented in Table 1. The results for other DGPs
can be delivered upon request.

Overall, the estimation accuracy increases as T increases, as is seen by the decreasing sample standard deviation of the
1000 estimates for each DGP. The downward estimation bias for 𝜎𝜂 for T = 100 is related to the ‘pile-up’ problem that
Stock and Watson (1998) attribute to small sample size. This issue is mitigated for T = 300, where the 𝜎𝜂 estimate is close
to its true value. Under the column Asymptotics in Table 1, the sample average of standard errors of simulated time series
with T = 1000 is shown. This provides a heuristic diagnostic that supports the validity of asymptotic properties of SML
estimates as it is close to the sample standard deviation of estimates for T = 300 or T = 1000. Furthermore, the negligible
Monte Carlo numerical standard deviations suggest that the SML estimates are stable and insensitive to random seeds
used in the estimation. Given the SML estimates, the residual diagnostic test statistics for normality, serial correlation
and heteroskedasticity (Durbin & Koopman, 2012, Section 2.12.1) can be computed using standardised prediction errors,
which are obtained from the PF; see Doucet et al. (2001). We conclude that UCSV models with their parameter estimates
from SML capture the dynamic properties in the simulated data well. We also present low fractions of rejections for

True Estimated parameters by SML
T = 100 T = 300 T = 1000 Asymptotics

𝛼𝜀 −0.1 0.23 (0.16) −0.06 (0.04) −0.12 (0.04) 0.01 [0.0010]
𝛼𝜂 −0.2 −6.21 (4.77) −0.16 (0.07) −0.17 (0.04) 0.03 [0.0021]
𝜙𝜀 0.9 0.67 (0.28) 0.93 (0.10) 0.91 (0.07) 0.08 [0.0000]
𝜙𝜂 0.9 0.99 (0.03) 0.84 (0.13) 0.90 (0.11) 0.06 [0.0003]
𝜎𝜀 0.3 0.47 (0.34) 0.41 (0.18) 0.32 (0.14) 0.16 [0.0008]
𝜎𝜂 0.2 0.08 (0.06) 0.18 (0.03) 0.21 (0.03) 0.04 [0.0016]
Normality 0.18 0.04 0.04 –
Ljung–Box 0.08 0.11 0.06 –
Heteroskedasticity 0.10 0.00 0.00 –
Tail index 4.81 (2.47) 8.74 (1.61) 8.63 (1.21) 2.69 [0.1610]
Variance existence 0.37 0.02 0.00 –

Note: We report sample average of estimates with sample standard deviation in parentheses for 𝜎z, z = 𝜋, 𝑦

across 1000 replications, for three sample sizes. In the last column under Asymptotics, the sample average of
standard errors is reported, and within the square bracket are the Monte Carlo numerical standard deviations
based on 30 different random seeds. The fraction of rejections of residual tests (normality, autocorrelation and
heteroskedasticity) at the 5% level is also reported, using one-step ahead standardised prediction errors produced
by the particle filter. Estimated tail index and fraction of rejection for the existence of variance of importance
weights are also reported. Abbreviations: SML, simulated maximum likelihood; UCSV, unobserved components
model extended with stochastic volatility.

TABLE 1 Results for Monte Carlo
study UCSV model
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the diagnostic residual tests among the 1000 replications. It is not surprising that the strong evidence of correct model
specification is somewhat weaker for T = 100.

To ensure the properties of asymptotic normality for the SML estimates, the distribution of the importance weights
must have bounded second moments; see Geweke (1989). The tail index of a distribution indicates the lower bound of
bounded moments. We consider the distribution of the importance weights, evaluated at the SML estimate of 𝜃, and
estimate its tail index using a method of moments as proposed by Dekkers et al. (1989). We report the sample average and
standard deviation of these tail index estimates over the 1000 Monte Carlo simulations. We also report the rejection rate
of a likelihood-based test for the existence of the second moment as proposed by Koopman et al. (2009). We can conclude
from the reported results that our proposed importance sampling procedure ensures the existence of a variance for the
importance weights, when the sample size is reasonably large, say T ≥ 300. For cases where this evidence is less strong,
and the variance of weights is possibly unbounded, Chan et al. (2017) have developed methods for the bias correction of
importance sampling.

4.2 Comparisons with particle filters
Sequential Monte Carlo methods such as the particle filter (PF) are used for solving signal extraction problems related to
general Markov processes of which the UCSV models (1) and (2) are an example; see Doucet et al. (2001). By applying
the prediction error decomposition to the UCSV model, the PF is also capable of computing an unbiased estimate of its
likelihood function L̂(𝜃) in (8). The PF can therefore be regarded as an alternative to the importance sampling algorithm
based on (6) in our proposed SML method. Given the construction of the PF, and its randomness through the recur-
sive updating, it is not designed for the numerical maximisation of L̂(𝜃) with respect to 𝜃; see Malik and Pitt (2011) and
Kantas et al. (2015). However, the evaluation of the likelihood L̂(𝜃) has also other purposes. For example, it can be used
within the particle Markov chain Monte Carlo method where parameter inference is based on p(𝜃|Y) ∝ p(Y|𝜃)p0(𝜃),
see Andrieu et al. (2010) and Shephard (2015); and within a Bayesian model comparison where the marginal likelihood
p(Y ) = ∫ p(Y |𝜃)p0(𝜃)d𝜃 is computed, see Shephard and Pitt (1997), Chen and Liu (2000) and Chan (2017); in both exam-
ples, p0(𝜃) denotes the prior density of 𝜃. The PF replaces p(Y|𝜃) with its Monte Carlo estimate L̂(𝜃) by sequentially
integrating out the latent time-varying processes related to the (co)variances in H via p(Y |𝜃) = ∫ p(Y |H; 𝜃)p(H; 𝜃)dH.
Our importance sampling algorithm can also be implemented in these cases with the notable distinction of integrating
out H simultaneously instead of sequentially over time.

The accuracy and efficiency of the methods used in a Bayesian analysis depend on the estimation method for L̂(𝜃).
Hence, it is of interest to compare the PF with our importance sampling algorithm used in the proposed SML method
for evaluating likelihood function. Here, we consider the bootstrap filter (BF), the auxiliary PF (APF) of Pitt and
Shephard (1999) and the tempered PF (TPF) of Herbst and Schorfheide (2019). We use the same 1000 generated time
series with sample size T = 300 as above. The number of particles is set to M = 1000 and M = 5000, a much larger num-
ber than the number in SML where we set M = 50 and M = 100. All computations are carried out by the object-oriented
matrix language Ox of Doornik (2007) and the library of state space functions SsfPack of Koopman et al. (2008) on a
quad-core desktop. Table 2 summarises a selection of our main results. We can conclude that the performance of SML is
competitive in comparison to PF, even when the number of simulations is as small as M = 50: (i) the sample variance
of the 1000 values of log L̂(�̂�) is small; and (ii) the tail indices of the importance weight distributions suggest that the
simulation methods are well-behaved. More evidence is presented in Appendix S1.

The BF method shows the worst performance with a large log-likelihood variance and a possibly unbounded second
moment for the importance weight distribution. The APF and TPF methods mitigate this by reducing the variance and

TABLE 2 Likelihood estimation
comparisons for UCSV models

Method SML BF APF TPF
No. simulations or particles 50 200 1000 5000 1000 5000 1000 5000
Var(log L̂(�̂�)) 14.86 14.84 73.94 52.2 48.07 29.49 44.65 18.76
Tail index 10.48 10.74 1.34 2.61 3.65 5.94 5.06 11.65
Average run time (in seconds) 0.08 0.09 1.14 3.18 4.84 15.00 1.78 6.68

Note: We report the sample average of variances and tail indexes of log-likelihood evaluated at the SML estimates
�̂� across 1000 simulated series with T = 300. Sample average of run time for estimating log-likelihood relative to
the proposed SML method with M = 50 simulations used in estimation is also reported. The acronyms BF, APF
and TPF denote bootstrap filter, auxiliary particle filter and tempered particle filter, respectively. Abbreviations:
SML, simulated maximum likelihood; UCSV, unobserved components model extended with stochastic volatility.
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ensuring the existence of a second moment. However, their computational costs have increased due to more function
evaluations taking place in the forward weight resampling for APF and in the tempering iterations for TPF. The computing
time for SML is much smaller than the three competing PF methods. Although PF methods are more general, and we
only consider small-scale cases in the Monte Carlo study, we can conclude that the importance sampling algorithm can
provide a fast and accurate alternative to the PF, whether it us used for SML or in a Bayesian analysis.

5 EMPIRICAL ILLUSTRATION: U.S. INFLATION FORECASTING

To illustrate our importance sampling method in an empirical study, we consider UCSV and MUCSV models for the
analysis of quarterly U.S. headline inflation. In case of the MUCSV models, we adopt an additional set of 17 U.S. sectoral
inflation variables that can be grouped into the sectors of durable goods, non-durable goods and services; see Appendix S1
for details. All time series range from 1960Q1 up to 2017Q2, with T = 230. We consider the univariate UCSV models (1)
and (2), plus the restricted cases of 𝜗 = 0 (UCSV-AR), 𝜑 = 0 (UCSV-MA) and 𝜑 = 𝜗 = 0 (UCSV-SW). The UCSV-SW
specification reduces to the local level model with SV as considered by Stock and Watson (2007) for forecasting inflation.

For the MUCSV models, we analyse the observation vector 𝑦t = (𝑦1,t, 𝑦2,t, … , 𝑦18,t) with headline inflation y1, t and
sectoral inflation variables y2, t, … , y18, t, that is, N = 18. The details of the MUCSV model are provided in Section 2.2,
which imply that 𝑦1,t = 𝜋c

t +𝜋
∗
1,t +𝜀i,t and 𝑦i,t = 𝜔𝜂,i𝜋

c
t +𝜋

∗
i,t +𝜀i,t, for i = 2, … , 18. Hence, we define U.S. trend inflation as

𝜋c
t +𝜋

∗
1,t. We consider three different specifications for the variance matrices Σ𝜉, t, with 𝜉 = 𝜂, 𝜖, in (5). The specification in

Section 2.2 is labelled as MUCSV-SW. The equicorrelation specification MUCSV-EC is given by Σ𝜉,t = Ω
1
2
𝜉,tR𝜉,tΩ

1
2
𝜉,t, where

diagonal variance matrix Ω𝜉,t is defined in (5) and correlation matrix R𝜉 t has ones on the diagonal while the off-diagonal
elements are equal to 𝜌𝜉,t = (exp(−h𝜌

𝜉,t) + 1)−1 where h𝜌
𝜉,t is specified as in Equation (2) with its scaling parameter denoted

by 𝜎𝜌
𝜉

and its correlation coefficient denoted by 𝜌𝜌𝜂 𝜀.
The dynamic factor specification MUCSV-DF allows the permanent or the transitory shocks, or both, to be a linear com-

bination of a small set of 1 ≤ r < N common factors. In case of the permanent shock, we have 𝜂t = Λ𝜂𝜂𝑓t with N × r factor
loading matrixΛ𝜂 , r × 1 disturbance vector 𝜂𝑓t ∼ N(0,Ω𝑓

𝜂,t) and r × r variance matrix Ω𝑓

𝜂,t = diag[exp(h𝑓
𝜂,1,t), … , exp(h𝑓

𝜂,r,t)].
It follows thatΣ𝜂,t = Λ𝜂Ω𝑓

𝜂,tΛ
′
𝜂 . In effect, the observation and trend components in (1) can be expressed as a dynamic factor

model given by 𝑦t = Λ𝜂𝜋𝑓t +𝜓t with the r × 1 vector of dynamic factors modelled as 𝜋𝑓t = 𝜋
𝑓

t−1 + 𝜂
𝑓

t , for t = 1, … ,T. The
identification of the parameters in the MUCSV-DF specification is enforced by imposing a unity lower triangular structure
for the loading matrix Λ𝜂 . We finally allow for a single correlation coefficient 𝜌1

𝜂 𝜀 between the log-volatility innovations
for the transitory shock driving the first cycle component (variable of interest) and for the permanent shock driving the
first factor.

The UCSV and MUCSV model specifications are reviewed in Table 3 with their properties provided in Appendix S1.
The number of unknown parameters are given as a function of N and r in the last column of Table 3.

5.1 In-sample results
Table 4 presents a selection of our estimation results for the full sample. The estimates of the scaling parameters 𝜎𝜂 and
𝜎𝜀 for the permanent and transitory volatilities in (2), respectively, and of the correlation coefficient 𝜌𝜂 𝜀 are provided. For
all models, the estimated permanent scaling is smaller compared with its transitory counterpart, whereas the estimated
correlation is positive and significant for the univariate models and for the MUCSV-EC specification. Hence, the shock
in headline inflation has both an immediate and a more lasting impact on the uncertainty in measuring and forecasting
inflation. We further report the in-sample root mean squared error (RMSE) and mean predictive likelihood score (MPLS)
statistics that reflect in-sample point and density fits of Geweke and Amisano (2011), respectively. These goodness-of-fit
statistics are based on the one-step ahead prediction errors for U.S. headline inflation, which are computed by the Kalman
filter, conditional on the time-varying importance sampling estimates of the latent variables in the variances of UCSV
models and in the variance matrices of the MUCSV models. The MPLS values are lowest for the multivariate models,
whereas the RMSE values are slightly lower for the univariate models. We may conclude that the overall fit for U.S.
headline inflation is best for MUCSV models; similar findings are reported in Stock and Watson (2016). Interestingly, the
MUCSV-EC specification shows a good performance delivering the highest MPLS among all models and lowest RMSE
among multivariate models. Similar to Chan (2013), we also find that the RMSE among the univariate models is lowest
for specifications with a moving average term in the inflation cycle component𝜓 t in (1) with 𝜗 ≠ 0. The in-sample RMSE
and MPLS statistics for a UC model without SV are equal to 0.31 and −0.71 (not reported), respectively. These statistics
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indicate that the SV part is important for modelling the dynamic properties of inflation; see Stock and Watson (2007).
The estimated tail indices of the importance weights provide evidence that the SML method yields estimates with valid
asymptotic properties. We can conclude that the reported indices imply the existence of a bounded second moment for
the importance weight distribution; see Geweke (1989).

The importance sampling estimates of the trend component in U.S. headline inflation from our seven models, that is 𝜋t
from the four UCSV models and 𝜋c

t + 𝜋
∗
1,t from the three MUCSV models, are presented in the two panels of Figure 2. In

the first panel, we present the seven estimates of the trend, together with the quarterly observations for headline inflation.
In the second panel, we present the seven estimates of the trend, together with the 95% confidence interval obtained
from the UCSV-SW model. The models with persistence in the inflation cycle 𝜓 t, such as the UCSV model with a full
dynamic specification for 𝜓 t, deliver trend inflation estimates that are smoother. Overall, the seven estimates of the trend
component in headline inflation show a similar gradual decline of inflation since the 1980s.

The importance sampling estimates of permanent volatility exp(h𝜂,t ∕2) and transitory volatility exp(h𝜀,t ∕2) are pre-
sented in Figure 3. For the MUCSV models, the two volatility processes are displayed for U.S. headline inflation only.
We observe a persistent gradual decline in permanent volatility from the 1980s. This is mainly due to the Great Modera-
tion that took place after the oil crises in the 1970s and the start of the Volcker-Greenspan monetary policy regime from
the early 1980s. The transitory volatility estimates remain low until the financial crisis around 2008. During the finan-
cial crisis, the transitory volatility estimates show a two- to three-fold increase in a relatively short period. The estimates
from the MUCSV-EC and -DF models present the highest increases. This high-volatility period is short-lived: the tran-
sitory volatility estimates have returned to their mid-1980 levels after 2010. The permanent volatility estimates are not
affected by the financial crisis. Similar findings for U.S. headline inflation have been reported by Shephard (2015), Stock
and Watson (2016) and Kleppe (2019).

5.2 Out-of-sample results
The results from our out-of-sample forecasting study are based on an expanding window exercise, starting from 1990Q1
until 2017Q2 minus h forecast horizons, for h = 1, 4, 8,12 quarters. For each model and each horizon h, we re-estimate the
parameters using the SML method, and we obtain 106 − h forecast errors. When all sets of forecast errors are computed,
we compute the out-of-sample RMSE and MPLS values. In Table 5, we report these RMSE and MPLS values relative to
their corresponding values for the UCSV-SW model: RMSE as a ratio and MPLS as a difference. On the basis of both

TABLE 3 Summary of UCSV
and MUCSV models

Acronym N 𝚺𝜼, t 𝚺𝜺, t Parameters #(N, r)
UCSV = 1 exp h𝜂,t exp h𝜀,t 𝜎𝜂 , 𝜎𝜀, 𝜌𝜂 𝜀 3
MUCSV
SW > 1 exp(hc

𝜂,t)
[
𝜔𝜂 𝜔

′
𝜂

]
+ Ω𝜂,t exp(hc

𝜀,t)
[
𝜔𝜀𝜔

′
𝜀

]
+ Ω𝜀,t 𝜔𝜂 , 𝜔𝜀 2(N − 1)

𝜎c
𝜂 , 𝜎c

𝜀, 𝜌c
𝜂 𝜀 3

𝜎∗𝜂 , 𝜎∗𝜀 2N

EC > 1 Ω
1
2
𝜂,tR𝜂,tΩ

1
2
𝜂,t Ω

1
2
𝜀,tR𝜀,tΩ

1
2
𝜀,t 𝜎∗𝜂 , 𝜎∗𝜀 2N

𝜎
𝜌
𝜂 , 𝜎𝜌𝜀 , 𝜌𝜌𝜂 𝜀 3

DF > 1 Λ𝜂Ω𝑓

𝜂,tΛ
′
𝜂 Ω𝜀, t Λ𝜂 r(N − r)

r(r − 1)∕2

𝜎
𝑓
𝜂 , 𝜎∗𝜀 , 𝜌1

𝜂 𝜀 r + N + 1

Note: We consider the univariate UCSV models (1) and (2) and its multivariate MUCSV model of Section 2.2 for
N × 1 observation vector yt and the shocks 𝜂t ∼ NID(0,Σ𝜂,t) and 𝜀t ∼ NID(0,Σ𝜀,t). We report the acronym of the
model, the specifications of the two variance matrices, the parameter vector and its dimension. For the MUCSV-SW
model, the variance matrices correspond to Equation (5), the parameter 𝜎c

𝜉
scales the volatility of the common shock,

and 𝜎∗
𝜉

does it for the idiosyncratic shocks, with 𝜉 = 𝜂, 𝜀. For the MUCSV-EC model, the diagonal variance matrix
Ω𝜉,t relies on the volatility scale parameters in 𝜎∗

𝜉
, and similarly, the correlation matrix R𝜉, t relies on 𝜎𝜌

𝜉
, for 𝜉 = 𝜂, 𝜀.

For the MUCSV-DF model, the r × r diagonal variance matrix Ω𝑓

𝜂,t relies on the volatility scale parameters in 𝜎𝑓𝜂 ,
and the N × N diagonal variance matrix Ω𝜀, t relies on the volatility scale parameters in 𝜎∗𝜀 . The scalar log-volatility
correlation coefficients in the MUCSV models are represented by 𝜌x

𝜂 𝜀, for x = c, 𝜌, 1. Finally, #(N, r) denotes the
number of parameters as a function of N and r, where r is the number of factors in MUCSV-DF. In case N = 18 and
r = 3, we have 73, 39 and 70 parameters for the MUCSV specifications SW, EC and DF, respectively. In addition, we
restrict coefficient matrices with unknown parameters as 𝜑 = 𝜑∗Ik and 𝜗 = 𝜗∗Ik, with scalar coefficients 𝜑∗ and
𝜗∗, where k = N for SW and EC and k = r for DF. Abbreviations: MUCSV, multivariate UCSV; UCSV, unobserved
components model extended with stochastic volatility.
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UCSV-SW -AR -MA UCSV MUCSV-SW -EC -DF
𝜎𝜂 0.09 0.17 0.21 0.14 0.11, 0.24 0.18 0.13
𝜎𝜀 0.34 0.35 0.38 0.33 0.23, 0.27 0.35 0.17
𝜌𝜂 𝜀 0.46 0.37 0.41 0.38 0.14 0.57 0.02
RMSE 0.27 0.25 0.21 0.21 0.25 0.22 0.23
MPLS −0.50 −0.48 −0.44 −0.43 −0.38 −0.35 −0.40
Tail index 12.76 14.24 10.78 11.26 5.46 7.93 3.20

Note: We report scaling parameters 𝜎𝜂 and 𝜎𝜀 and correlation coefficient 𝜌𝜂 𝜀 for the UCSV models (1)
and (2). For the MUCSV model, the specifications are in provided in Table 3. In case of SW, we present
the scale parameters for both the common shock and the idiosyncratic shock in U.S. headline inflation
(correlation coefficient is only for the common shock). In case of EC, we present 𝜎𝜌𝜂 , 𝜎𝜌𝜀 and 𝜌𝜌𝜂 𝜀. In case
of DF, we present 𝜎𝑓𝜂 , 𝜎∗𝜀 and 𝜌1

𝜂 𝜀. We further report (i) the in-sample RMSE of one-step ahead prediction
errors for U.S. headline inflation, obtained from the Kalman filter conditional on SV components for each
model; (ii) the mean predictive likelihood score (MPLS) based on the same prediction errors; (iii) the esti-
mated tail index for the importance sampling weights, evaluated at the SML estimates. The in-sample
RMSE and MPLS can be regarded as goodness-of-fit statistics. The estimated tail index is indicative of
the number of moments that exists for the importance weight distribution; see Section 4.1. Abbrevia-
tions: RMSE, root mean squared error; UCSV, unobserved components model extended with stochastic
volatility.

TABLE 4 UCSV model parameter
estimation results

FIGURE 2 Estimates of U.S. trend
inflation. We present importance
sampling estimates of trend inflation
obtained from unobserved components
model extended with stochastic
volatility (UCSV) (𝜋t) and multivariate
UCSV (MUCSV) (𝜋c

t + 𝜋
∗
1,t) models. The

first panel shows the observed
annualised inflation from 1960Q1 to
2017Q2, together with the range of the
seven trend inflation estimates. The
second panel presents the seven trend
inflation estimates together with the
95% confidence interval from the
UCSV-SW model (dotted lines), in
annualised terms [Colour figure can be
viewed at wileyonlinelibrary.com]

RMSE and MPLS, we can conclude that the UCSV models tend to perform better than MUCSV models for shorter fore-
cast horizons. In particular, the forecast performance improves more by including moving average dynamics rather than
including autoregressive dynamics. This finding confirms the results reported by Chan (2013). The MUCSV models show
a better performance in forecast precision for longer horizons. The superior performance of MUCSV-EC model is con-
vincing when we focus on the density forecasts in this study. We can conclude from the reported results that time-varying
correlations across inflation sectors, for both trend and cycle components, are important for the modelling of predictive
densities.
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FIGURE 3 Estimates of the stochastic volatility processes. We present the importance sampling estimates of permanent and transitory
volatility for the U.S. headline inflation time series, from unobserved components model extended with stochastic volatility (UCSV) and
multivariate UCSV (MUCSV) model [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Point and density forecast performance of
UCSV models

UCSV MUCSV
h SW AR MA ARMA SW EC DF

RMSE 1 1 0.95 0.90 0.90 0.93 0.97 0.97
4 1 0.96 0.93 0.93 0.95 0.95 1.06
8 1 0.97 0.95 0.95 0.94 0.95 1.05

12 1 0.98 0.96 0.96 0.94 0.95 1.02
MPLS 1 0 0.28 0.34 0.34 −0.06 0.27 0.14

4 0 0.29 0.31 0.34 −0.02 0.26 −0.04
8 0 0.21 0.20 0.22 0.00 0.24 0.10

12 0 0.01 0.06 0.07 0.02 0.09 0.03

Note: The point and density forecast precisions are measured by the out-of-sample root mean
squared error (RMSE) and mean predictive likelihood score (MPLS) statistics, respectively,
for forecast horizon h = 1, 4, 8,12 quarters. The values reported are relative to those from
the UCSV-SW model, with RMSE as a ratio and MPLS as a difference. A small RMSE value
and a large MPLS value suggest superior performance. The forecasts are obtained from an
expanding window starting from 1990Q1; for each window, parameters are re-estimated. The
values in bold indicate superior performance over all models. Abbreviations: ARMA, autore-
gressive moving average; MUCSV, multivariate UCSV; UCSV, unobserved components model
extended with stochastic volatility.

6 CONCLUSION
An SML estimation method for MUCSV is developed. The proposed method relies on the conditional linear and Gaussian
specification of the model. Conditional on the SV part, the Kalman filter can be adopted to evaluate the conditional
likelihood function. To obtain the full likelihood function, we need to integrate out the SV processes using a computation-
ally efficient importance sampling method. The feasibility of the method is partly due to the use of pruned multivariate
Gauss–Hermite quadrature. In a Monte Carlo study, we have provided evidence that our proposed method ensures the
existence of variance for importance weights, implying a valid likelihood-based inference procedure. In the empirical
study, we have shown the relevance of the SV part of the model for the analysis and forecasting of U.S. headline inflation.
We further have shown that the SML method for high-dimensional multivariate models is feasible. An interesting avenue
for future research is to extend the model further with more time-varying features.
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