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A comparative analysis of single 
cell small RNA sequencing data 
reveals heterogeneous isomiR 
expression and regulation
Christopher Michael Smith & Gyorgy Hutvagner*

MicroRNAs (miRNAs) are non-coding small RNAs which play a critical role in the regulation of 
gene expression in cells. It is known that miRNAs are often expressed as multiple isoforms, called 
isomiRs, which may have alternative regulatory functions. Despite the recent development of several 
single cell small RNA sequencing protocols, these methods have not been leveraged to investigate 
isomiR expression and regulation to better understand their role on a single cell level. Here we 
integrate sequencing data from three independent studies and find substantial differences in isomiR 
composition that suggest that cell autonomous mechanisms may drive isomiR processing. We also 
find evidence of altered regulatory functions of different classes of isomiRs, when compared to 
their respective wild-type miRNA, which supports a biological role for many of the isomiRs that are 
expressed.

In recent years, technological developments in sequencing, microfluidics and automation have made it possible to 
collect genomic and whole transcriptomic data from many thousands of cells within a single experiment. Single 
cell RNA sequencing (scRNA-seq) has revealed extensive heterogeneity in cellular gene expression that traditional 
approaches such as bulk sequencing could not resolve1. Small RNA sequencing, which captures small non-coding 
RNAs typically missed by standard RNA sequencing, such as microRNAs (miRNAs), PIWI-interacting RNAs 
(piRNAs), tRNA-derived fragments (tRFs), rRNA-fragments (rRFs) and small nucleolar RNAs (snoRNAs), has 
more recently been developed for single cell analysis2.

One of the most well-known classes of small RNAs are miRNAs, which play a key role in regulating gene 
expression through post-transcriptional mechanisms that either suppress or degrade other RNAs3,4. MiRNA 
regulation of other RNAs is sequence-specific, facilitated by complementary base pairing between the miRNA 
and binding sites on their targets. Perfect matching between the seed region, which is the first 2 to 7 or 8 bases of 
the miRNA from its 5′ end, is typically necessary and in some cases sufficient for gene regulation5. This property 
enables each miRNA to regulate a unique set of targets, and many miRNAs can influence entire gene networks 
through the regulation of hundreds or even thousands of genes6.

IsomiRs are miRNA isoforms which can differ from the wild-type miRNA by as little as one nucleotide7. 
Typically, isomiRs are described or categorized with respect to their difference to a ‘canonical’ miRNA sequence 
that is somewhat arbitrarily defined by what is most commonly expressed across tissues8. Variations can occur 
at the 5′ or 3′ ends of the miRNA where bases can be added or subtracted, or anywhere within the sequence, 
including the seed region9. 3′ variations are also often distinguished in terms of whether they match their precur-
sor RNA/originating gene sequence or not, as different sequences can be generated during miRNA biogenesis 
from proteins such as Drosha and Dicer, or by additional factors which can introduce new bases to the 3′ end. 
A number of studies have shown that many different types of isomiRs can be expressed concurrently and are 
often more highly expressed than their canonical counterparts10,11. There is evidence that different lengths and 
changes to bases at the 3′ end can alter a miRNAs regulatory activity or stability, whereas shortening or extend-
ing the 5′ end of a miRNA is presumed to affect target recognition due to a shift in the seed sequence7. However, 
few studies have investigated the impact that isomiRs have on gene regulation in humans and their relevance in 
broader contexts such as tissue function and disease remain poorly understood10,12.

To our knowledge no study has used single cell small RNA sequencing to investigate isomiR expression or 
regulation on a single cell level13. In this study we analyzed and compared data from three different single cell 
small RNA sequencing experiments and methodologies and found significant differences in isomiR composition 
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in each study. We observed that isomiR expression was generally similar across individual cells from the same 
cell culture, however this was not reflected in the Hepatocellular Carcinoma cells sourced from a clinical sample, 
suggesting that isomiR expression may be highly heterogeneous within the tumor microenvironment and the 
function of isomiRs may not be fully captured in cell line models. We also attempted to predict isomiR function-
ality by examining changes in miRNA-targeted transcriptomes, which indicated some isomiRs show different 
affinities towards their canonical targets and may have distinct functions in single cells.

Results
miRNA and IsomiR abundance is highly variable across cell types in the three single cell small 
RNA‑seq protocols.  To assess miRNA and isomiR expression in different single cell sequencing protocols 
we analyzed 9 cell types from 3 different studies (Fig. 1A–C and Table 1). This included the seven cell types 
sequenced in the Small-seq study2, which after quality control and filtering included 139 cells from three glio-
blastoma primary cell cultures, 35 cells from the U87 glioblastoma cell line, 48 cells from the human embryonic 
kidney cell line HEK293FT, and 107 naïve and 95 primed human embryonic stem cells (Table 1). Additionally, 
we included the 19 K562 leukemia cells from Wang et al.’s miRNA/mRNA Co-sequencing study (Co-seq)14 and 
32 hepatocellular carcinoma (HCC) cells isolated from a resected tumor sample and sequenced in the Holo-
seq study15. Using miRNA expression, we calculated the Spearman correlation between all pairs of cells and 
clustered them using hierarchical clustering. We found that individual cells from the same cell type typically 
clustered together, except for several of the glioblastoma cell types which formed mixed clusters likely owing 
to their similar miRNA profiles. Using the same methodology for read mapping and miRNA annotation for 
all samples, we found that cells from the Small-seq protocol had a higher number of unique miRNAs. This was 
despite a larger number of total reads being sequenced from the Co-seq and Holo-seq protocols. However, the 
cells from the Co-seq and Holo-seq protocols had a higher number of unique isomiRs than most of the other 
cell types in the Small-seq protocol.

Figure 1.   An overview of the small RNA sequencing samples that were analyzed. (A) Heatmap showing 
hierarchical clustering using Spearman correlation of miRNA expression between all samples. (B) Number 
of unique miRNAs detected in each cell type. (C) Number of unique isomiRs detected in each cell type. (D) 
Analysis of total miRNA and isomiR length distribution profiles. Distribution of miRNA lengths considering all 
miRNAs (left) and canonical miRNAs only (right; according to miRbase). For canonical miRNAs, percentages 
are relative to total miRNA reads. Includes glioblastoma cell lines JM3, JM4, KS4, U87 (Small-seq protocol), 
embryonic kidney cells (HEK293FT), naïve embryonic (nES), primed embryonic stem cells (pES; Small-seq 
protocol), K562 cells (Co-seq protocol) and hepatocellular carcinoma cells (HCC; Holo-seq protocol).
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Cell types from each protocol had characteristic miRNA lengths (Fig. 1D) and expression levels (Supple-
mentary Fig. 1). Most of the cell types from the Small-seq study had strong peaks at 22 nt, except for the primed 
embryonic stem cells which had a high number of 22nt and 23nt miRNAs. A significant proportion of miRNAs, 
averaged across cell types, in both the Small-seq glioblastoma (42.7–53.7%) and embryonic stem (37.9–52.6%) 
cell types were annotated as canonical. This was in stark contrast to the Holo-seq and Co-seq protocols where 
the majority of miRNAs in the HCC and K562 cells were isomiRs, with canonical miRNAs only representing 
5.9% and 5.6% of all miRNAs respectively. It is worth noting that miRNA expression for some of the cell types, 
including the HCC and K562 cells, were dominated by a small number of miRNAs which would have skewed 
the overall lengths in favor of those miRNA profiles (Supplementary Fig. 1). As the HCC and K562 cell types 
were sequenced using different protocols from independent labs, it is difficult to know how well the significant 
differences in isomiR abundance reflect cell specific differences in miRNA processing, maturation, or turnover, 
and how much is due to technical reasons such as experimental artifacts. Notably, when we compared the single 
cell data to bulk RNA-seq data from other studies (Supplementary Figs. 2–4), we found the bulk data had length 
distributions which resembled a more typical 22–23 nt peak in both HCC tumor samples and K562 cells as 
opposed to the dual peaks observed in the HCC and K562 single cell data (Supplementary Fig. 2).

We then separated isomiRs by their 5′ and 3′ templated locations and calculated the proportion of isomiRs 
(averaged across single cells in each cell type) starting or ending at each position +/− 3 nucleotides (nts) around 
the canonical ends (Fig. 2A). Additionally, we included the isomiRs with adenine or uridine bases added to the 
3′ end (Fig. 2A) as many studies have shown isomiRs with these additions are more common and can lead to 
changes in miRNA stability or target recognition16–18. 5′ variants which extended the isomiR from the canonical 
site were almost completely absent in all cells. 5′ variants shorter than the canonical site were also rare, par-
ticularly in the Small-seq derived cells, with the exception of primed embryonic stem cells which had a notable 
amount of isomiRs shortened at the 5′ end by 3 nucleotides (13.0%). However, for the K562 cells, there was a 
high number of 5′ variants predominantly 1 nt shorter than the canonical site (61.7%), with smaller amounts of 
2 and 3 nt shortened isomiRs (4.7% and 8.7% respectively).

With 3′ variants, all cells from the Small-seq and Co-seq protocols showed very similar 3′ templated isomiR 
profiles according to position, with a strong peak at the canonical site and sharp decline in proportions for the 
surrounding 1–2 nts. However, HCC cells had nearly equivalent abundances of miRNAs with 3′ canonical sites as 
well as those shortened or extended by 1 nucleotide. Non-templated 3′ variants containing adenine and/or uridine 
were present at low levels (12.8–24.2%) in all cell types except K562 cells, where more than half the isomiRs had 
an untemplated addition (58.2%), most with at least one non-templated adenine (48.8%).

To investigate potential cell-specific mechanisms involved in isomiR expression and processing we labelled 
isomiRs according to several categories that describe sequence alterations likely to be driven by distinct 
mechanisms7. We then calculated the proportions of every cell’s miRNAs possessing each isomiR alteration 
(Fig. 2B). Here, we defined the following isomiR categories: canonical (identical sequence to the miRbase anno-
tated miRNA), 5′ variants (altered sequence on the 5′ end, still matching the precursor miRNA sequence), 3′ 
templated (altered 3′ sequence, but still matching the precursor sequence), 3′ non-templated (altered 3′ sequence 
with bases not matching its precursor), or substitutions (single nucleotide differences compared to the canonical 
sequence, excluding 5′ and 3′ ends). Note that each isomiR may contain several sequence alterations and therefore 
contribute to multiple isomiR categories.

Cells from the Small-seq protocol generally showed similar proportions of isomiR categories, with 3′ tem-
plated variants (34.8–50.9%) being the dominant isomiR type (Fig. 2B). Minor differences were observed between 

Table 1.   General features of the single cell small RNA datasets. Number of cells and average mapping values 
are according to the mapping and filtering methodology used in this study.

Cell type Cell origin Culture type/source Study/protocol
No. of cells included 
(this study)

Average No. reads 
mapped to miRNAs 
(% of Total Reads)

Avg No. UMIs 
Mapped to miRNAs

Matched RNA-seq 
data

JM3 Glioblastoma Primary Cell 
Culture

Faridani et al.2 
(Small-seq) 37 6576.46 (0.21%) 2607.30 No

JM4 Glioblastoma Primary Cell 
Culture

Faridani et al.2 
(Small-seq) 42 27,847.19 (0.67%) 7064.76 No

KS4 Glioblastoma Primary Cell 
Culture

Faridani et al.2 
(Small-seq) 60 14,208.52 (0.41%) 4218.68 No

U87 Glioblastoma Primary Cell 
Culture

Faridani et al.2 
(Small-seq) 35 7819.03 (0.18%) 2321.09 No

Naïve Embryonic 
Stem Cells

Embryonic Stem 
Cells Cell Line Faridani et al.2 

(Small-seq) 107 43,382.87 (1.03%) 6223.42 No

Primed Embryonic 
Stem Cells

Embryonic Stem 
Cells Cell Line Faridani et al.2 

(Small-seq) 95 20,866.96 (0.56%) 3319.39 No

HEK293FT Embryonic Kidney 
Cells Cell Line Faridani et al.2 

(Small-seq) 48 8390.38 (0.24%) 2908.21 No

K562 Leukemia Cell Line Wang et al.14 (Co-
seq) 19 25,090.95 (0.38%) N/A Yes

Hepatocellular Car-
cinoma (HCC)

Hepatocellular 
Carcinoma Tumor Xiao et al.15 (Holo-

seq) 32 31,651.66 (0.38%) N/A Yes
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cell types which were statistically significant for nearly all categories in this protocol. The majority of miRNAs 
from the Co-seq K562 cells were 5′ variants (76.1%), with a high proportion of 3′ non-templated variants (58.2%) 
and similar levels of 3′ templated variants (34.2%) to the Small-seq cells. On the other hand, HCC cells from 
the Holo-seq protocol produced predominantly 3′ templated (67.3%) and 5′ variants (27.3%), and there was a 
large increase in variability among single cells across all categories which may reflect the heterogeneity of cells 
sourced from a tumor sample compared to cell lines or primary cell cultures.

The Small-seq protocol incorporates unique molecular identifiers (UMIs), which tag small RNAs with a 
unique sequence prior to PCR amplification. UMIs are often used to improve the accuracy of RNA quantification 
as they can reduce cDNA amplification bias by removing duplicates19,20. This enabled us to measure what effect 
UMI deduplication had on read lengths and the abundance of each type of isomiR (Supplementary Figs. 5–8). 
A consistent shift in proportions was evident across nearly all isomiR categories and cell types, with a decrease 
in canonical miRNAs relative to isomiRs after UMI deduplication (Supplementary Fig. 5). Conversely, most 
isomiR categories had a minor increase in representation, with the largest changes occurring in the naïve and 
primed embryonic stem cells. For example, in the naïve embryonic stem cells the relative abundance of 5′ altered 
isomiRs was increased from 10.2 to 17.5% after UMI deduplication, which may have significant implications as 5′ 
modifications are generally believed to alter a miRNAs’ regulatory targets. Interestingly, UMI deduplication led 
to a relative decrease in 3′ templated extensions ( +) in the naïve embryonic cells despite increases in all other cell 
types. Overall, this data indicates that biases introduced during PCR can not only affect miRNA quantification 
but also the relative abundance of specific isomiRs.

IsomiR processing is likely regulated by cell autonomous mechanisms.  We then re-analyzed 
isomiRs by their 5′ and 3′ templated locations and adenine/uridine additions, but this time separating isomiRs 
by their miRNA gene (Fig. 3). We found that different miRNAs exhibited unique patterns of isomiR expression 
both at the 5′ and 3′ ends.

Expression levels of 3′ templated variants were clearly different between miRNAs from the same cell type 
(Fig. 3). We did not identify high levels of 5′ variants in any of the Small-seq cells (glioblastoma or embryonic 
stem cells) when looking at highly expressed miRNAs (Fig. 3). While non-canonical 5′ variants were pervasive 
in nearly all miRNAs in HCC cells, K562 cells showed a mixture of some miRNAs being heavily modified at 

Figure 2.   Comparison of relative isomiR expression in each cell type. (A) Shows the relative templated 
proportion of miRNAs according to their 5′ end (blue) or 3′ end (green) templated (T) locations, as well as 
proportions of miRNAs with non-templated (UT) Adenine (red; A) or Uridine (red; U) additions. (B) Box plots 
constructed from single cell data, showing percentage of total miRNAs belonging to each isomiR category. ES 
Embryonic stem cell.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2834  | https://doi.org/10.1038/s41598-022-06876-3

www.nature.com/scientificreports/

the 5′ end and others not modified at all, suggesting this feature is not likely to be a consequence of cell-wide 
miRNA degradation.

3′ non-templated additions were generally rare in the most highly expressed miRNAs (Fig. 3). One exception 
was miR-92a-3p, where in K562 cells, 60.8% of miR-92-3p had at least one non-templated adenine and 20.9% 
with at least one uridine. This coincided with a high overall expression of the miRNA (76.3%) and suggests 
adenine additions may contribute to the stabilization of miR-92a-3p in K562 cells which would be consistent 
with previous studies16. Adenine and relatively lower levels of uridine additions were observed in all cell types 
for miR-92a-3p, albeit to a lesser extent than K562 cells.

Overall, we observed that the profiles of the relative abundance of different 5′ and 3′ variants were unique 
to each miRNA, and it appears that both 5′ and 3′ processing may be driven by mechanisms that distinguish 
between miRNA species.

Several of the miRNA species were expressed across different cell types, which allowed us to compare how 
isomiR expression profiles might vary in different biological contexts (Fig. 3 and Supplementary Fig. 9). Again, we 
observed a high degree of similarity between glioblastoma and embryonic stem cells from the Small-seq protocol, 
however there were clear examples of miRNAs with very different abundances of their respective isomiRs in the 
K562 and HCC cells. When comparing let-7a-5p between cell types, all cells except K562 cells predominantly 
expressed this miRNA matching the 3′ position of the canonical form (73.6–93.7% versus 43.8% in K562 cells), 
with K562 cells showing a gradual decrease in expression from the canonical position to the shortened 3 nt posi-
tion that is consistent with degradation of this particular miRNA. This apparent degradation was not evident 
across many other miRNAs in the K562 cells which suggests this miRNA may have been specifically targeted.

The major differences between cell types in relative isomiR abundance of certain miRNA species suggests 
cell autonomous mechanisms may be involved in miRNA processing and isomiR expression. However, there 
was minimal evidence of this when comparing cells from the same cell type (Supplementary Fig. 9), and most 
of the variation of isomiR abundance within cell types can be explained by differences in miRNA expression, 
transcriptional stochasticity, and experimental variance.

IsomiR processing alters regulation of their canonical targets.  The combination of miRNA and 
mRNA expression data available for the K562 and HCC cells provided us with an opportunity to estimate 
how different isomiR types could affect regulation of their predicted canonical targets. For this, we generated 
predicted target lists for the most highly expressed miRNAs using miRNAtap, a tool which aggregates target 
predictions from multiple sources21. Using expression data from each cell, miRNA expression was correlated 
against expression of each of the miRNAs predicted targets. As a negative control, correlation between each 
miRNA’s expression and expression of each transcript not predicted to be targeted by the respective miRNA was 
determined. For each miRNA we also calculated the correlation between expression of isomiRs in each isomiR 
category and the miRNAs predicted canonical targets, calculated by taking the normalized count of reads map-

Figure 3.   Comparison of 5′ and 3′ isomiRs in miRNAs that are highly expressed across multiple cell types. 
Shows the relative templated nucleotide position of miRNAs (averaged) at the 5′ end (blue) or 3′ end (green), 
with respect to the canonical miRNA (according to miRbase). Non-templated additions for Adenine and 
Uridine are also shown (red). Expression levels (purple) are shown below as percent of total miRNA expression 
on a log scale. miRNAs with absent plots were either not expressed or did not pass filter criteria. 3′UT: 3′ Non-
templated addition. ES Embryonic stem cell.
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ping to a given miRNA that contained that particular isomiR type. IsomiR categories included—Canonical, 5′ 
Variant, 3′ Templated, 3′ Non-templated adenine (A), 3′ Non-templated uridine (U) and Substitutions. Results 
were displayed as a cumulative distribution of all miRNA-gene correlations (Figs. 4, 5). A higher proportion of 
negatively correlated genes in the target gene set compared to the negative control (non-targets) would cause the 
line to shift to the left and would suggest that the miRNA was effectively downregulating its targets.

We observed that the relationship between miRNA expression and expression of its predicted canonical tar-
gets varied between miRNAs in both cell types (Figs. 4, 5). As was shown in the original Co-seq study, in K562 
cells (Fig. 4) there was a stronger negative correlation of the dominantly expressed miR-92a-3p with predicted 
canonical targets (total) when compared to its correlation with all other transcripts (non-targets)14. In contrast, 
correlation of other highly expressed miRNAs such as miR-146b-5p, miR-10a-5p, miR-191-5p, miR-423-5p and 
miR-182-5p with their predicted canonical targets (total) were not found to be significantly different to their 
correlation with all other transcripts (non-targets). In the HCC cells (Fig. 5), several highly expressed miRNAs 
were more negatively correlated with their predicted targets compared to non-targets, including miR-122-5p, 
miR-34a-5p and miR-206. Conversely, miR-148a-5p, let-7i-5p, and let-7b-5p were more positively correlated. The 
results suggest that despite high expression in these cells, many miRNAs may exert a weak or absent regulatory 
effect on the expression levels of their predicted canonical targets.

When analyzing correlations between expression of canonical miRNAs or each isomiR category with the 
expression level of the miRNA’s predicted canonical targets it was clear that there were differences in certain 
isomiR categories for several miRNAs. This was most evident in the K562 cell line where canonical miR-92a-3p 
and its isomiRs with 5′ Variant or 3′ Templated changes had a negative correlation with its predicted targets. 
Contrasting this, miR-92a-3p with Non-templated (Adenine) or Non-templated (Uridine) additions were posi-
tively correlated (Fig. 4). Interestingly, with miR-146b-5p, 5′ variants had the strongest negative correlation 
with predicted canonical targets compared to the other isomiR categories, including canonical miRNAs which 
was not significantly different to non-targets. We did not observe any consistency in the shift in correlations of 
particular isomiR categories when comparing different miRNAs, indicating that the effect of isomiR types on 
gene regulation is miRNA specific.

Discussion
Our analysis of miRNA and isomiR expression in single cell small RNA sequencing data highlighted major 
differences in the way isomiRs are expressed in different cells. When comparing cell types, one must be careful 
about concluding that differences in the representation of isomiR types is due to alterations in miRNA processing 
machinery. It is clear that even within the same cell, each miRNA is uniquely processed, meaning that changes 
in miRNA expression alone can lead to an overrepresentation of certain isomiR types. This is most evident in 

Figure 4.   Correlation of expression levels between canonical miRNAs or isomiR categories and the canonical 
miRNAs predicted targets (mRNAs) in K562 Leukemia cells. In the same miRNA, isomiR categories vary 
significantly in correlation strength and direction, suggesting these modifications lead to differences in 
regulatory activity. The 6 highest expressed miRNAs are shown excluding those with low isomiR abundance. 
For each miRNA, an aggregated list of predicted target mRNAs was collected using miRNAtap and expression 
of targets was correlated against normalized counts for each isomiR category. Percent of total reads for each 
isomiR category are shown (averaged across all K562 cells). Non-targets included all remaining mRNAs which 
were not predicted as a target for that miRNA. Significant differences between each category and Non-targets 
were calculated using the Kolmogorov–Smirnov test (p value < 0.05) and are indicated with a blue (positive 
correlation) or red (negative correlation) asterisk. TR: Total Reads (mapped to miRNAs).
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the K562 cells where miR-92a-3p dominates miRNA expression. Therefore, it is important that any analysis of 
isomiR processing not be generalized without considering individual miRNAs. Even within the same cell types, 
we found variations in the types of isomiRs present in single cells. This was more tightly regulated in cell lines 
and primary cultures. The high degree of heterogeneity observed in the resected HCC tumor cells suggests that in 
their native environment, isomiR expression may be far more diverse and potentially also driven by cell-extrinsic 
factors present in the surrounding microenvironment.

Besides the three studies which each generated and published sequencing data from their own methods, we 
are not aware of any other studies which have used these methods. Since both the Co-seq and Holo-seq studies 
only sequenced one human cell type each, and there were no shared cell types across studies, we were unable to 
ascertain how much of these differences were due to biological or experimental factors. However, we did observe 
similar trends between the human HCC and mouse embryonic cells from the Holo-seq study, including a low 
expression of canonical miRNAs and high expression of 5’ isomiRs which clearly distinguished these cells from 
all of the cell types sequenced in the Small-seq study (Supplementary Fig. 10). Although different protocols 
were used in each study, many of the principles of small RNA capture and library preparation were identical. All 
protocols utilized a 3′ ligation step involving a pre-adenylated DNA oligonucleotide, followed by 5′ ligation of 
an RNA oligonucleotide for small RNA capture. The RNA/DNA-joined molecule was then reverse transcribed 
and amplified. Therefore, we do not think that the library preparation and sequencing methods can explain the 
substantial differences in isomiR types across studies. However, we cannot rule out different sample preparation 
procedures as a potential factor.

There are several challenges that we had to consider when analyzing isomiRs in single cell sequencing data. 
This included the low number of reads which mapped to miRNAs for each cell, as a high proportion of reads tend 
to map to ribosomal RNA or do not even map to the human genome. Additionally, the presence of sequencing 
artefacts introduced during library amplification, as well as biases in ligation efficiencies, can introduce spurious 
isomiRs or favor isomiRs with certain bases on their 5′ or 3′ ends22–24. Low read counts are a typical problem in 
all single cell sequencing studies, however miRNAs in small RNA-seq often represent an even smaller proportion 
of total reads than messenger RNAs in RNA-seq. This issue can be further compounded with isomiR studies 
which separate a miRNA’s reads into individual isomiRs, creating a large number of isomiRs with extremely low 
counts. This was a particular concern with our analysis of isomiR types and their function of targeting predicted 
canonical targets, however evidence of altered target regulation by different isomiRs was still present when con-
sidering canonical miRNAs and isomiRs with high expression. Therefore, we believe this sufficiently supports 
the cell autonomous production and function of isomiRs.

Even if present at low frequencies, sequencing artefacts are a particular concern in isomiR studies, as single 
base alterations can completely redefine an isomiR’s type and interpreted function. Implementing UMI’s into the 
sequencing library can assist with more accurate measurements of expression levels and enable more confidence 

Figure 5.   Correlation of expression levels between canonical miRNAs or isomiR categories and the canonical 
miRNAs predicted targets (mRNAs) in Hepatocellular Carcinoma (HCC) cells. In the same miRNA, isomiR 
categories vary significantly in correlation strength and direction, suggesting these modifications lead to 
differences in regulatory activity. The 6 highest expressed miRNAs are shown excluding those with low isomiR 
abundance. For each miRNA, an aggregated list of predicted target mRNAs was collected using miRNAtap 
and expression of targets was correlated against normalized counts for each isomiR category. Percent of total 
reads for each isomiR category are shown (averaged across all HCC cells). Non-targets included all remaining 
mRNAs which were not predicted as a target for that miRNA. Significant differences between each category and 
Non-targets were calculated using the Kolmogorov–Smirnov test (p value < 0.05) and are indicated with a blue 
(positive correlation) or red (negative correlation) asterisk. TR: Total Reads (mapped to miRNAs).
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in isomiR classification20,25. Additionally, ligation biases can be reduced by incorporating random bases at the 
ends of the adapters which are ligated to RNAs, or on splints which can be introduced to facilitate ligation 
between adapters and small RNAs26.

Previous studies have already investigated the potential for isomiRs to classify cancers with a high degree 
of success27,28. However, these studies only considered cell-normalized expression or the presence/absence of 
isomiRs. Additional information may be encoded in the relative abundance of isomiRs, that is isomiRs nor-
malized to the number of reads in a cell mapping to their parent miRNA gene. We propose that this approach 
retains key information about how the cells may be processing each miRNA that may be diluted when normal-
izing against all other reads or miRNAs. Future studies may be able to leverage this extra layer of information to 
improve the accuracy of cancer classification.

Methods
Data collection.  Raw single cell small RNA sequencing data was obtained from the Gene Expression Omni-
bus (GEO) database under accessions ids GSE812872 (glioblastoma and embryonic cells), GSE11407114 (leuke-
mia cells) and the Genome Sequence Archive (Beijing Institute of Genomics) under accession ID CRA00113315 
(hepatocellular carcinoma cells). Bulk small RNA sequencing data was obtained from the GEO database under 
accession ids GSE14168729 (leukemia cells), GSE7690330 and GSE16634831 (hepatocellular carcinoma).

Sequencing data processing.  For samples derived from the Small-seq protocol, UMI sequences were 
removed prior to any adapter removal and appended to the read headers. Adapters were then removed using 
cutadapt (v2.7) with a minimum overlap of 1 nt and maximum error rate of 0.1 between reads and adapter 
sequences. After UMI and adapter removal, reads shorter than 15 nucleotides were excluded.

In order to identify duplicate reads for the UMI deduplication comparison, reads were aligned to the human 
genome (hg38) using bowtie (v1.2.3) with the following parameters: -n 2 -e 120 -l 20 --best. Human-aligned reads 
were subsequently deduplicated with umitools (v1.0.0) with default settings. Unless specified, all comparisons 
of isomiR expression between cells were done without deduplication.

miRNA mapping and annotation.  Processed reads were aligned to miRbase (v22) annotated precursor 
miRNAs using miraligner (v3.4), with the following parameters: -sub 1 -trim 3 -add 3. Reads which successfully 
aligned to a miRNA were also annotated with any variations to the miRbase defined mature sequence.

The following isomiR categories were defined: Canonical—miRNAs with a perfect match to the miRbase 
mature sequence, 5′ Variant—miRNAs differing at the 5′ end with respect to the miRbase mature sequence, 
3′ Templated—miRNAs deviating in length to the miRbase mature sequence but still matching the precursor 
miRNA sequence, 3′ Non-templated—miRNAs which did not match the precursor miRNA sequence at the 3′ end, 
and Substitution—miRNAs containing a maximum of 1 mismatch to the miRbase mature sequence, excluding 
variations at the 5′ or 3′ ends. Categories were then assigned any alignments which contained their respective 
isomiR type and were used for measuring their proportions relative to the total number of annotated miRNAs. 
Cells containing less than 1000 reads mapping to miRNAs (prior to any UMI deduplication) were excluded from 
further analysis. Figures were generated with the R packages ggplot2 and pheatmap32.

Correlation of miRNA and IsomiR expression with predicted targets.  For building miRNA pre-
dicted target lists, the miRNAtap (v1.20) package was used to aggregate targets across the five supported algo-
rithms (DIANA, Miranda, PicTar, TargetScan and miRDB) using the ‘minimum’ method and only considering 
targets predicted by 2 or more algorithms. The Pearson correlation between miRNA and gene expression across 
all cells was calculated and used for plotting each miRNA with its targets.
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