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Abstract

To infer the subclonality of rhabdomyosarcoma (RMS) and predict the temporal order of ge-
netic events for the tumorigenic process, and to identify novel drivers, we applied a system-
atic method that takes into account germline and somatic alterations in 44 tumor-normal
RMS pairs using deep whole-genome sequencing. Intriguingly, we find that loss of hetero-
zygosity of 11p15.5 and mutations in RAS pathway genes occur early in the evolutionary
history of the PAX-fusion-negative-RMS (PFN-RMS) subtype. We discover several early
mutations in non-RAS mutated samples and predict them to be drivers in PFN-RMS includ-
ing recurrent mutation of PKN1. In contrast, we find that PAX-fusion-positive (PFP) subtype
tumors have undergone whole-genome duplication in the late stage of cancer evolutionary
history and have acquired fewer mutations and subclones than PFN-RMS. Moreover we
predict that the PAX3-FOXO1 fusion event occurs earlier than the whole genome duplica-
tion. Our findings provide information critical to the understanding of tumorigenesis of RMS.

Author Summary

To decipher the dynamic mutational process and identify the causative genomic events in
rhabdomyosarcoma (RMS), we developed a systematic method that incorporates multiple
types of genomic information to estimate normal cell contamination, tumor clonality, and
a timeline of somatic events that occurred prior to the tumor presentation. Our results
demonstrate two distinct evolutionary paths resulting in PAX-fusion-negative-rhabdo-
myosarcoma (PFN-RMS) and PAX-fusion-positive-rhabdomyosarcoma (PFP-RMS): (1)
In PFN-RMS, genomic loss of heterozygosity on chromosome 11p15.5 and non-synony-
mous mutations in RAS pathway and cell cycle genes (FGFR4, KRAS, NRAS, HRAS and
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CCDN1), as well as several genes not previously known to be drivers of RMS, including
PKNI, CUL2, and TTK, occurs early in the evolutionary history of tumor; (2) In contrast,
the PAX gene fusion event in PFP-RMS tumors is an early detectable event which consis-
tently occurs prior to a whole genome duplication event. These findings provide new in-
sights into the biology and molecular events that initiate RMS tumorigenesis and may help
identify actionable drivers for targeted therapies.

Introduction

Cancer development is driven by dynamic mutational processes and selective pressures which
allow a tumor to adapt over time from the initiating oncogenic lesion towards clinical presenta-
tion [1-4]. High coverage, next-generation sequencing technologies have provided an unprece-
dented view of the mutational landscape of whole cancer genomes and demonstrated that
cancer genomes have typically acquired thousands of somatic alterations by the time they are
clinically detected [5-8]. Although a majority of these alterations do not have clear biological
consequences, some alterations are recurrently found; implicating them as critical events in
that tumor’s evolution. Subsequently, external factors such as the tumor microenvironment
and therapy can confer selective advantages that allow successful clones to eventually supersede
one another [1,2]. Two of the major findings of next generation sequencing studies are that bi-
opsies taken at the time of tumor presentation already contain a significant amount of genetic
heterogeneity [5,6] and importantly that often a rare subclone in the primary tumor subse-
quently becomes the founding clone of a metastatic or relapse tumor [5,6,9,10]. The remark-
able accuracy and read coverage depth of whole genome sequencing technology now enables
the inference of intra-tumor heterogeneity and cancer evolutionary history that is encrypted in
its mutational profile [2,9,11-14]. The study of the evolutionary history of a cancer provides in-
sight into which mutations are cancer-driving from the numerous passenger mutations and
sheds light on the mechanism of tumorigenesis.

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood. Despite
a growing understanding of the molecular mechanism underlying RMS, the disease continues
to have significant mortality and morbidity especially when the tumor is metastatic or recur-
rent [15-17]. RMS tumors can be subdivided into two major subtypes: PAX fusion positive
(PFP) and fusion negative (PFN), characterized by the presence or absence of a oncogenic fu-
sion between the PAX3 or PAX7 and FOXO1 genes [18]. Fusion positive tumors tend to occur
in adolescence and are associated with an adverse outcome. Fusion negative tumors typically
occur at a younger age and have been associated with significant aneuploidy, loss of heterozy-
gosity (LOH) at chromosome 11p15.5 [19] and mutations of NRAS, KRAS, HRAS [20],
PIK3CA, CTNNBI [21,22] and FGFR4 [22]. We have recently reported that PFP- and
PEN-RMS have distinct landscapes of somatic genomic alterations that activate a common mo-
lecular pathway [23]. Another effort, using high coverage targeted re-sequencing of two re-
lapsed fusion negative tumors, showed that indeed RMS relapse tumors are derived from a
minor subclone discovered in the primary tumor [24].

In this study, we decipher for the first time, the evolutionary history of RMS using high cov-
erage whole-genome sequencing of 44 primary tumors with their matched normal samples.
We applied a framework of algorithms that enabled the prediction of the sequential order of
mutational events and subclonality using chronological molecular information encoded in so-
matic mutations and allelic copy number (including copy number changes and allelic imbal-
ance). The major inputs to our method include the variant allele fraction (VAF) of somatic
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mutations, the variant allele fraction of germline single nucleotide variants in tumor samples
and somatic copy number status. We verified the accuracy of mutation detection and VAF esti-
mation by deep sequencing on independent platforms. Our framework first estimates the rate
of normal cell contamination and corrects its effect on VAF and copy number. Tumor sub-
clones with different genomic profiles are then identified using the distribution of VAF of so-
matic mutations as well as the allelic copy number status. Finally, we estimate the temporal
progression of the observed somatic events in each tumor genome based on the fact that somat-
ic mutations that occur before and after aneuploidy events will have different values of VAF.

Through our analysis, we discovered that the initiating common lesions of PEN-RMS are
the combination of loss of heterozygosity of chromosome 11p15.5 and point mutations in
members of the RAS pathway in majority of cases. In a small number of PFN-RMS tumors
where no obvious RAS pathway mutations were present, we identified alternative genes that
were mutated early in the tumors progression, indicating their potential roles in oncogenesis.
In PFP-RMS, we discover that a whole genome duplication event which results in tetraploidy
consistently occurs in the middle or late stage of the development of these tumors and that the
PAX3-FOXOL1 fusion event occurs prior to the whole genome duplication event, making it
probable that the fusion is an early event in the evolutionary history of these fusion-positive
RMS. Finally, we find that in general RMS tumors are universally composed of a dominant
clone, although each tumor contains subclonal populations with a unique mutational profile,
which may provide selective advantage to a relapse or metastatic tumor. Because we sequenced
only one tumor sample for each patient, a limitation of our study, despite a moderately high
coverage of the whole genome sequencing (average 105X), is that we may miss some subclonal
mutations and clones especially for subclonal mutations with a VAF<0.1. Nevertheless our
findings allow us to propose a developmental model of how this devastating pediatric cancer
initiates and evolves prior to presentation.

Results
Large-scale deep WGS analysis of RMS

We used data from whole-genome sequencing (WGS) of 44 primary RMS tumors (19 PAX- fu-
sion-positive, and 25 PEN tumors) with paired blood samples (providing germline status) with
an average of 105x coverage per genome base. The accuracy of somatic mutation detection has
been estimated as 93% by experiments in which 604 non-silent mutations were verified by
whole-exome sequencing and targeted sequencing on independent platforms [23]. To verify
the observed VAF of somatic mutations, we re-sequenced the somatic mutations discovered in
two RMS samples using multiplex PCR and deep sequencing (1997x coverage) with an ortholo-
gous platform. The verification rate of VAF was high by the targeted sequencing (90% accuracy
respectively, S1 Fig.). In order to accurately estimate the timing of somatic alterations and dis-
sect intra-tumor subclonality, we first estimated the portion of normal cells contaminating the
tumor sample by surveying allelic copy number status and VAF of somatic mutations across
the genome (S1 Text). The normal cell contamination rate was generally low in the 44 tumor
samples, with a range of 0-33%, a median of 16% and a standard deviation of 9% (S1 Table).
The effect of normal cell contamination was numerically corrected for in all subsequent analy-
ses so that the VAF and copy number status are purely for tumor population. The efficacy of
normal cell contamination correction is illustrated in S2-S4 Figs., where the observed non-in-
teger allelic copy number was corrected to integers and the observed VAF distribution of so-
matic mutations was corrected to the expected distribution, e.g. VAF = 0.5 for heterozygous
mutations on chromosomes without aneuploidy.
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Subclonality analysis

Multiple studies have shown that subclones exist in individuals with cancer which may become
a major clone at relapse or progression and this phenomenon has been reported in two fusion
negative RMS tumors [24]. To identify those events which may provide resistance to therapy
and allow recurrence, we searched for genomic alterations that specifically were confined to
the subclonal population. Subclonal copy number alteration events and mutational events were
identified using an in-silico method (for which the workflow is shown in S5 Fig.). Fifty point
mutations were identified where the variant’s allele frequency was greater than 10% from the
expected full clonal allele frequency (S2 Table). Included in this gene list were 7 COSMIC
genes including ABL1, BUBIB, CDK12, ERBB2, IGF2, KDR, and SMARCA4. Gene ontology
showed enrichment for genes involved in cell adhesion (GO:0007155 p = 0.002), negative regu-
lation DNA repair (GO:0006281, p = 0.05) and cell migration (GO:0030335 p = 0.026). Across
the population, several chromosomal events were recurrently found in the subclonal popula-
tion, including gain of chromosomes, 5, 8, 11, 13, 14, 18 and 19 (S1 Table).

We illustrate our method in more detail using one PAX-fusion negative RMS tumor
(RMS2110). Genome wide, this tumor had 3,889 somatic mutations including oncogenic muta-
tion KRAS G13D and FGFR4 V550L [23]. Using the procedure described in the previous sec-
tion, we estimated that this sample had 12% normal cell contamination (S1 Table). Copy
number analysis showed that RMS2110 had large-segment allelic imbalance (including copy
neutral LOH) and copy number alteration on eleven chromosomes (Fig. 1A).We employed the
combination of somatic mutations, allelic imbalance and copy number alterations to dissect
tumor clones that have unique genomic profiles. First, VAF of somatic mutations was deter-
mined to find subclonal mutations, based on the fact that a subclonal mutation (present only
in a part of the tumor cells) usually has lower VAF than full-clonal mutations (present in all
tumor cells) [2]. A typical scenario is on chromosomes without aneuploidy or allelic imbalance,
where heterozygous full-clonal mutations have VAF equal to 0.5 while subclonal mutations
have VAF<O0.5. Analysis of RMS2110 showed that more than half of the chromosomes are
without aneuploidy or allelic imbalance (Fig. 1A and 1B). On these chromosomes, a small por-
tion of somatic mutations have observed VAF significantly lower than others indicating the
presence of subclones (Fig. 1C, where there are two distinct VAF clusters, one is centered on
VAF = 0.5 and the other is centered on VAF = 0.2; for individual chromosomes see Fig. 1D).
Using a clustering algorithm with cluster-number-selection procedure (S1 Text) we can identi-
ty subclonal mutations as those with lower VAF. Given the depth of sequencing coverage, we
estimated that we could detect subclonal mutations with VAF as low as 0.1 (S6 Fig.). Second,
allelic copy number status is used to detect subclonal copy number alterations, based on the
fact that subclones of different copy number will result in a non-integer allelic copy number
for the whole tumor sample. The joint status of total copy number and lesser allele fraction
(LAF—the ratio between the less allelic copy number and total copy number, estimated by
germline single nucleotide variants, see Methods) reflects whether the allelic copy number is an
integer—whether the observed allelic copy number (red dots) is on the expected position (blue
crosses) in Fig. 1D. Therefore our approach predicts the subclonal copy number alterations
and the fraction of tumor cells possessing these changes (S1 Text).

We thus predict that the subclonal somatic mutations made up only 5% of all the somatic
mutations in RMS2110 tumor. Subclonal copy number alterations were detected on chromo-
somes 5, 7, 8, 12, 13, 17 and 20.

The method was then applied to all the 44 RMS tumors. Looking across all 44 genomes re-
vealed that a dominant clonal lineage was present in each tumor sample (Fig. 2A). The domi-
nant clone carried a large proportion (from 81-96%) of somatic mutations regardless of PAX-
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Fig 1. Inferring evolutionary history for a typical rhabdomyosarcoma sample RMS2110. (a) A circos plot of tumor genome RMS2110 (before normal
cell contamination correction). Gene symbols indicate genes with nonsynonymous mutations. Tracks from outermost to innermost depict chromosome
banding, copy number (the height of bars denotes copy number), lesser allele fraction (the height of green bars represents the fraction of lesser allele at each
genomic location, valued 0 ~0.5), loss of heterogeneity status (each dot represents the probability of loss of heterozygosity for the adjacent segment),
intensity of heterozygous (orange bar) and homozygous single nucleotide variants (blue bar), junctions or chromosomal rearrangement (grey lines). (b)
Discrepancy between expected and observed status of allelic copy number suggests the existence of subclone(s) in tumor. Red dots denote chromosome
segments, whereas blue crosses denote statuses of copy number and lesser allele fraction that leads to an integer allelic copy number. If there are tumor
subclones with copy number status different from the major clone, the red dots will deviate from the blue crosses. (c) Observed VAF distribution of somatic
mutations on chromosomes without aneuploidy. The normal-mixture like distribution suggest the existence of a minor subclone with VAF<0.5. (d) A scatter
plot showing coverage (horizontal axis) and VAF (vertical axis) for somatic mutations (sSNV) on each chromosome.

doi:10.1371/journal.pgen.1005075.g001

fusion status of the tumor. Meanwhile, a small percentage of the cells in each tumor did display
evidence of subclonal changes (Fig. 2B). In addition, we observed more subclonal aneuploidy
events in PFN tumors (more than half of the tumors have detectable subclones) than PFP
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doi:10.1371/journal.pgen.1005075.9002

tumors (Fig. 2C). The inferred subclonal aneuploidy and mutational events were listed in S1
and S2 Tables, respectively.

Inference of the RMS cancer evolutionary history

The timing of genomic alteration events can be derived using chronological molecular infor-
mation encoded in the somatic mutations and copy number alterations, because a specific
order of genomic event will result in different VAF [2]. To explain the workflow of our method,
we again take sample RMS2110 as an example.

The majority of this cancer genome was the expected diploid status with LAF = 0.5, however
regions with aneuploidy or allelic imbalance provided the opportunity to identify the timing of
genomic events, by comparing the allelic copy number status with the VAF distribution of so-
matic mutations (S7 Fig.). For example, chromosome 9p and 11 have 2 copies with LAF of 0
(Fig. 1B), which is likely the loss of one allele followed by a duplication of the remaining allele
although we cannot formally exclude the possibility of the duplication of both alleles with
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doi:10.1371/journal.pgen.1005075.9003

subsequent loss of the 2 copies of one allele. This observation was confirmed by the fact that
most germline single nucleotide variants on chromosome 9p and 11 had VAF near 1 (Fig. 3A).
In this case, the somatic mutations occurring before the “LOH+duplication” event must be
present on both copies, with an expected VAF of 1, whereas those occurring after the “LOH+-
duplication” event would be present on only one copy, with an expected VAF of 0.5. The data
confirmed this prediction with the VAF displaying a bi-modal distribution with two peaks at
0.5 and 1, respectively (Fig. 3B). The ratio between the numbers of mutations in the two clus-
ters reflects the fraction of “molecular time” it undergoes to accumulate mutations before and
after the “LOH+duplication” event, assuming a constant accumulation rate [2]. We acknowl-
edge that the somatic mutation accumulation rate varies among small genomic segments
[5,25-27], but for chromosome-level segments used in this study, the average accumulation
rates of somatic mutation were observed to be consistent with one another (+* > 0.98, S8 Fig.).
Therefore, the molecular timing inferred for different aneuploidy events were comparable
among the segments within the same tumor sample.

This analysis was extended genome-wide and allowed the inference of the "phylogenetic
tree" of tumor RMS2110 (Fig. 3C). Somatic mutations occurring before and after chromosome
aneuploidy events had distinct VAF values, which allowed inference of the timing of two candi-
date driver mutations in this tumor, the nonsynonymous mutation of FGFR4 V550L and the
nonsynonymous mutation of KRAS codon G12. The mutation of FGFR4 V550L has a
VAF = 0.95, indicating that the mutation happened before the uniparental disomy event of
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@‘PLOS | GENETICS

Clonality and Evolutionary History of Rhabdomyosarcoma

chromosome 5, which is estimated to occur at 26% of molecular cancer lifetime (S1 Table).
Therefore FGFR4 mutation should happen between 0 to 26% of molecular time. Similarly, the
mutation of KRAS codon G12 has a VAF of 1, indicating that it occurred before the copy gain
of chromosome 12p, timed at 21% of molecular cancer lifetime. Other early events included tri-
somy of chromosome 8 which happened at 8% of the molecular cancer lifetime and uniparental
disomy of chromosomes 11 and 9p which occurred at 14% of the molecular cancer lifetime.
Note that on both copies of chromosome 9p, there is a somatic focal deletion of CDKN2A
(chr9:21981721-21952010), which is also verified by RNAseq (FPKM = 0).

Other aneuploidy events in this sample included: trisomy of chromosomes 12 and 19 which
occurred at 21% of molecular cancer lifetime; uniparental disomy of chromosomes 5, 7 and 17
which happened at 26% of molecular cancer lifetime; tetrasomy of a segment of chromosome
3q which occurred around 50% of molecular cancer lifetime; trisomy of chromosome 13 which
occurred at 77% of molecular cancer lifetime; hexasomy of 12p which happened at 85% of mo-
lecular cancer lifetime; and trisomy of chromosome 20 which occurred near the time of tumor
presentation (Fig. 3C).

This method was applied to all the 44 tumor-normal sample pairs to build the evolutionary
history of RMS (Fig. 4, S9 Fig., and S1 Table). In summary, our results showed three major
findings. First, LOH of 11p15.5 was a consistent early founding event (in average occurred at
35% of molecular cancer lifetime) in PFN-RMS. In comparison, other highly recurrent aneu-
ploidy events such as the copy gain of chromosome 8 and 2 were not consistent early occurring
events (time ranges from 1% ~ 95% and 16% ~ 96%, respectively). Second, mutations in RAS
pathway genes, including FGFR4, KRAS, NRAS and HRAS, were recurrent early events in
PEN-RMS. In addition, mutations in other genes (PKNI, CCNDI, CUL2, and TTK) occurred
early suggesting their role in tumorigenesis. Third, PFP-RMS tumors in general had much
fewer somatic alterations and few of them occurred early in the tumor’s molecular lifetime. Of
note, a whole-genome duplication event consistently occurred at the middle or late point in the
molecular lifetime of these tumors. The high recurrence suggests that this event might be cru-
cial for the presentation of this cancer subtype. We will discuss these findings in more details in
the following sections.

Loss of Heterozygosity of 11p15.5 is a common founding event in PAX
fusion negative RMS

The LOH of 11p15.5 is a critical event in fusion-negative tumors [19,28] and frequently results
from uniparental disomy and trisomy. In our study, the LOH of 11p15.5 occurred in a total of
26 RMS tumors. As previously described, there was a distinct enrichment for the event in the
PFN-RMS population (24/25 PFN samples). Of note, the remaining PFN sample had a small
deletion event (3 bps) in the 3-prime non-coding region of IGF2 of undetermined significance.
In contrast, only 2 out of 19 PFP-RMS samples had 11p15.5 LOH. The observed LOH usually
was accompanied by a copy gain (23 out of 24 PFN samples with LOH on 11p15.5) of the re-
maining allele resulting in uniparental disomy (n = 8 in PFN and n = 1 in PFP), trisomy (n = 4
in PFN), tetrasomy (n = 8 in PFN and n = 1 in PFP), or pentasomy (n = 3 PFN) (S10 Fig.).
Applying our evolution-history-inference method across the RMS population revealed that
the 11p15.5 LOH event universally occurred at an early time point in these tumors develop-
ment (S11 Fig.). In these tumors, 11p15.5 had a LAF of 0 (S12 Fig. (A)-(C)), meaning that most
germline single nucleotide variants present in the tumor, were homozygous. In contrast, the so-
matic mutations can be homozygous (before 11p15.5 copy gain) or not (after 11p15.5 copy
gain). For instance, on chromosome 11 (uniparental disomy) of sample RMS2110, the majority
of somatic mutations distributed around a VAF of 0.5 with a minority distributed around VAF
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of 1 (Fig. 3B). The cluster of somatic mutations discovered around a VAF of 0.5 indicated that
these mutations occurred after chromosomal duplication. Comparison of the relative size of
the mutations at VAF of 0.5 to those at VAF of 1 indicated that the duplication of chromosome
11 happened early in the cancer evolutionary history. On average, the “LOH-+duplication”
event of 11p15.5 occurred at 35% of molecular time of the 23 PEN-RMS tumors that had this
event. The early occurrence of 11p15.5 “LOH+duplication” event was especially prominent in
the patients diagnosed at a later age—the mean occurrence molecular time is 29% of lifetime
and the variance is 10% in >3 year old patients (S1 Table).

In contrast to the high recurrence (92%) of 11p15.5 LOH in PFN tumors, 11p15.5 LOH was
found in only 11% of our PFP tumors. Moreover, in contrast to the consistent early occurrence
in PFN tumors, the LOH event did not consistently happen at early lifetime of PFP tumors—
37% and 64% of lifetime for two PFP tumors, respectively.

Beyond 11p15.5, the LOH of chromosome 17 (6 out of 25 PFN-RMS) was identified as a re-
current alteration event, typically occurring at an early time point in the evolutionary history
of RMS. The LOH region on chromosome 17 includes two small genomic regions that encom-
pass the TP53 and NFI locus, respectively (S10 Fig.). The observed lesions occurred at an aver-
age molecular timing of 38% of cancer evolutionary history. The LOH of 9p, was present in 3
out of 25 PEN-RMS and was found to occur at an average 41% of cancer evolutionary history.
Additional accumulation of aneuploidy, such as gain of chromosome 2, 8 and 13, frequently
followed the founding events and had no consistent timing pattern.

Whole genome duplication in PAX fusion positive tumors

Unlike PFN-RMS tumors which have significant chromosomal rearrangements, PFP tumors
typically have an LAF at the expected 0.5 and a consistent copy number status across the ge-
nome. The VAF distribution of somatic mutations revealed that many samples have genome-
wide tetraploidy as evidenced by a cluster of somatic mutations with VAF around 0.25 (Fig. 2B,
PFP tumors). In total, we found similar VAF distributions in 17 out of 19 PFP tumors. While it
is possible that there were two distinct subclones each occupying 50% of tumor cells, given that
the cluster with VAF around 0.25 is consistently found across multiple tumors, tetraploidy is a
much more likely assumption. Interestingly, when we analyzed these 17 PFP cancer genomes
chromosome by chromosome, we found that the inferred tetraploidy occurred in one apparent
event (S13 Fig.). This event typically occurred around the mid-point of the molecular lifetime
of the tumor (62%+16%) (S1 Table).

In order to identify the sequential order of the PAX3-FOXO1 fusion event and the whole ge-
nome duplication event we interrogated the number of the sequencing reads across the PAX3--
FOXOL1 junction and found that the junction is duplicated. In contrary to PAX7-FOXO1,
PAX3-FOXOL1 is not known to be focally amplified [29], thus the observed duplication of
PAX3-FOXOL1 is likely due to the whole genome duplication. Our analysis demonstrated that
the PAX3-FOXO1 fusion was consistently duplicated in the whole genome duplication and
thus was likely to have occurred prior to the whole genome duplication event (S4B Fig., S3
Table).

Timing the evolutionary history of 44 RMS tumors demonstrates that
RAS pathway mutations are critical events in the development of fusion
negative RMS

In an effort to obtain a comprehensive picture of the evolutionary history of the RMS tumor ge-

nomes, we applied our method to estimate the timing of all the aneuploidy events and muta-
tional events that occurred prior to each tumor’s presentation (Fig. 4). In addition to the
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Fig 4. Summary of recurrent somatic lesions found across the 44 tumors and the estimates of their occurrence time. The heatmap denotes the
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doi:10.1371/journal.pgen.1005075.g004

recurrent and early 11p LOH event in fusion negative tumors, mutation of FGFR4, KRAS,
NRAS and HRAS frequently occurred at an early time point in the cancers evolutionary history
(S1 Table). Interestingly, many of the early-mutated genes belong to the RAS pathway (Fig. 4).
In total 13/25 fusion negative samples carried the combination of early loss of LOH of 11p15.5
and the mutation of RAS, NFI or FGFR4 which form the founding events in the evolutionary
history of these tumors.

Timing and expression analysis of all the observed somatic mutations was used to discover
potential driver mutations that occurred early during tumor development (54 Table). These
mutations included recurrent alteration in two PFN RMS of PKN1 (<30% and <42% of molec-
ular lifetime) which encodes a kinase belonging to the protein kinase C superfamily, CCDNTI at
<33% of molecular lifetime in RMS2032, CUL2 at <33% in RMS2034, PAX2 at <77% in RMS
2117, TTK at 17-78% in RMS202.

The E216K mutation of PKN1 inhibits terminal differentiation of C2C12
cells
Recurrent and early mutation of PKNI in two of the evaluated tumors led us to hypothesize

that these changes were involved in myogenic differentiation. To test our hypothesis and assess
the potential of our method in identifying driver mutations, we conducted a cell line study
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described in this section. PKNI is a member of the AGC-subfamily of serine/threonine kinases.
The protein product of the PKNI gene is composed of a C-terminal kinase domain with signifi-
cant homology to that of the protein kinase C isoforms, but a unique auto-inhibitory N-termi-
nus made up of 3 homologous stretches of anti-parallel coiled-coil folds (ACC1-3) known to
bind to Rho-family GTPases in a nucleotide-dependent manner followed by a C2-like region,
known to bind phospholipids and fatty acids. Rho-GTPase binding to the ACC regions causes
a conformational change that allows PKNI to be phosphorylated and activated by PDK1. Ac-
tive PKN1 plays a role in diverse cellular processes such as regulation of the actin cytoskeleton,
cell adhesion, vesicular transport and glucose metabolism [30]. PKN1 represses WNT/
CTNNBI signaling [31] and stimulates the ATF2 and MEF2A transcription factors via a sig-
naling pathway that involves MAP2K3/MAP2K6 and MAPK12 [32]. The observed mutations
in RMS202 (E216K) and RMS2035 (A298T) occurred prior to 30% and 42% of molecular life-
time of the tumors, respectively. Both mutations occur in the region of the third ACC domain
and could potentially interfere with regulation of the kinase activity of PKN1. To test the func-
tional consequences of the PKN1 E216K mutation, wild type and mutant PKNT viral constructs
were made and transduced into the mouse skeletal muscle precursor cell line C2C12. Using a
differentiation assay described by [33], defects in terminal differentiation, reflected in expres-
sion of myosin heavy chain (MHC) were observed with the mutated version of PKN1,

(Fig. 5A-C), suggesting that the mutant PKNI prevented the C2C12 cell differentiation. C2C12
cells expressing wild type PKNI could be induced to express MHC although cell fusion, as de-
termined by the number of nuclei per MHC positive cell, was significantly inhibited. Since
PKNI is known to regulate the activity of several transcription factors known to play a role in
myogenic differentiation, we performed expression analysis of the constructed cell lines to de-
termined differentially expressed genes among the constructs. Interestingly, gene set enrich-
ment analysis showed that YAPI target genes were induced in myoblasts and skeletal muscle
genes were repressed in myotubes (Fig. 5D) when the PKNI1 mutation was present.

Discussion

While a growing number of studies have used next generation sequencing to examine the evo-
lutionary development of adult tumors [2,9,13], this study is the first application of whole-ge-
nome sequencing to the study of a pediatric solid tumor’s subclonality and evolutionary
history. The implication from adult studies is that progression of a tumor cell follows a long
course, with subsequent lineages of cells acquiring mutations until a particular alteration allows
expansion of one clone; ultimately leading to clinical detection. Studies of multiple cancer
types including melanoma [34] and colon [35] have shown that even potent oncogenic muta-
tions may be relatively quiescent and thus remain in an undetected premalignant state until re-
leased by an additional genetic hit. The patients in our study had a median age at diagnosis of
6.5 years, indicating that the tumors in these children were developed over a relatively short
time course, perhaps hinting at the relative potency of the observed somatic changes. Despite a
shorter window of development, our study shows that the basic pattern of sequential mutation
accumulation is maintained.

Given that similar analyses of adult tumors find the presence of a dominant clone [2], we
anticipated that RMS tumors might have a similar finding. Our results show that a dominant
clone accounts for more than 80% of cancer cells in a typical tumor sample and genome wide
carries many hundreds or even thousands of accumulated point mutations. Even with our ge-
nome-wide sequencing and deep coverage, the subclones are frequently observed only at the
limits of detection. Admittedly, our study may miss part of the subclonal mutations due to the
limit of coverage and the complex nature of genomic subclonality, especially for subclonal
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and mutant PKN1. (d) Gene set enrichment analysis (GSEA) of gene expression profiles demonstrated that PKN1 E216K mutant activated YAP1 target
genes as well as cancer invasion-associated genes; while repressed muscle differentiation program in the myoblasts.

doi:10.1371/journal.pgen.1005075.g005

mutations with a VAF<0.1. Nevertheless GO analysis of subclonal mutations showed enrich-
ment for potential resistance and progression pathways including cell adhesion, DNA repair
and cell migration. While our DNA extraction included relatively large tumor sections, it is
also possible that further sampling of the tumor may yield additional subclonal populations as
have been appreciated in the study of distant metastases [10]. Even with these constraints, we
can conclude that one clone typically dominates these samples, and the majority of tumor cells
share most of the detectable genomic alterations. In addition, our findings indicate that a sig-
nificant proportion of the clonal heterogeneity in RMS is found in gain or loss of copy number,
mirroring similar findings in a study of pediatric acute lymphoblastic leukemia [36]. Future ef-
forts will be needed to determine if these alterations might play a role in defining a "cancer
stem cell" which resists the selective pressures of the microenvironment and therapy to survive
as a recurrence or metastatic lesion.

From the analyses described here, we can begin to understand the dynamics of RMS devel-
opment. LOH of 11p15.5 has long been described as recurrent feature of several pediatric con-
ditions including the overgrowth phenotype of Beckwith-Wiedemann Syndrome [37], Wilms
tumor [38] and embryonal RMS. The proposed mechanism for oncogenesis of this lesion is
loss of imprinting control over the IGF2 locus resulting in over-expression of this developmen-
tally regulated growth factor. In this study, we find that not only is this lesion highly recurrent
(>90%), it also appears to be the key early landmark in the evolution of fusion-negative tu-
mors. The discovery of a somatic mutation of IGF2 within a fusion negative sample that does
not harbor LOH of 11p15.5 (RMS2037) provides additional support to the role of dysregula-
tion of IGF2 in PEN-RMS. In evolutionary terms, the presence of 11p15.5 LOH defines the
“most recent common ancestor” when combined with a mutation in a gene in the RAS path-
way (NRAS, KRAS, HRAS, FGFR4). While the progression we describe in this study indicates a
possible common sequence of events (S1 Table), in some tumors it is equally as likely that the
oncogenic mutation of a RAS pathway gene is the founding lesion. This corroborates the find-
ing that patient’s with Costello Syndrome (HRAS germline mutation) [39], Noonan Syndrome
(NRAS, KRAS, PTPN11 germline mutations) [40] and Neurofibromatosis (NFI germline muta-
tion) [41] all have increased risk of developing fusion-negative RMS. Interestingly, while RMS
is certainly described in patients with Beckwith-Wiedemann Syndrome (germline uniparental
disomy of 11p15.5), these patients appear to have a higher relative risk of developing Wilms’
tumor and hepatoblastoma than RMS [42]. Regardless of which lesion comes first, the combi-
nation of LOH of 11p15.5 with a RAS pathway mutation appears to set a clone on the course
towards developing a fusion negative RMS tumor (Fig. 6A).

By examining other mutations that occur early in the molecular history of fusion negative
tumors, especially those tumors that had no mutation in a candidate “RAS” pathway member,
it is possible to nominate other potential founding lesions. In this analysis, mutation of PKNI
stands out as both recurrent (occurring in tumor RMS202 and RMS2035) and occurring early
in the evolutionary history of these tumors (<30% and <42% respectively). PKN1 is a member
of the protein kinase C family and has been implicated as a repressor of WNT/CTNNBI signal-
ing [43], a mediator of insulin signaling to the actin cytoskeleton [44] and an activator of
MEF2A dependent transcription [32]. The observed mutations (E216K and A298T) occurred
within the third ACC domain and may relieve N-terminal auto-inhibition of PKNI kinase ac-
tivity (S14 Fig.). Our functional assessments of the PKNI mutation demonstrated that the ob-
served mutation can inhibit terminal differentiation of skeletal muscle in a dominant-negative
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fashion. Gene expression analysis of PKN1 E216K expressing C2C12 cells grown in low serum
media reveals that this differentiation block occurs as a result of repression of skeletal muscle
specific genes and genes with MEF2A binding sites in the promoter. Expression of MEF2 pro-
teins is induced by myogenin during normal skeletal muscle differentiation, and MEF2 factors,
in complex with other transcriptional activators, are known to play a role of in myogenic differ-
entiation [45]. One possible explanation for these results is that PKN1-dependent signaling
leads to replacement of MEF2A at skeletal muscle specific genes with a transcriptional repres-
sor. The identity of this transcriptional repressor is not yet known.

GSEA analysis of PKN1 E216K expressing C2C12 myoblasts reveals that the gene expres-
sion signature of these cells is enriched for a YAP gene signature. The YAP gene signature is
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composed of genes activated by YAP overexpression in human mammary cells, mouse liver tis-
sues and immortalized mouse fibroblasts, and thus represents a list of evolutionary YAP target
genes [46]. YAP1 has recently been identified as a potent ERMS oncogenic driver, and YAP1--
TEAD complexes repress expression of genes important for myogenic differentiation, in part
by impinging upon the binding of myogenic transcription factors including MEF2 [47]. In-
triguingly, YAP1 is able to functionally compensate for oncogenic KRAS in colorectal and pan-
creatic cancer mouse models [48,49], which is consistent with the fact that RAS mutation and
PKNI mutation are mutually exclusive in the set of ERMS tumors presented here. The mecha-
nism by which PKNI1 leads to increased YAPI activity is currently unknown.

With whole genome sequencing from a single biopsy, we were unable to reliably estimate
the molecular timing of some of the recurrent genetic lesions observed in RMS. These events
include mutations in PIK3CA, FBXW?7, NF1, and BCOR, and the focal amplification of MDM2,
CDK4, and MYCN. Moreover, somatic events such as the copy gain of chromosomes 2, 8 and
13 were estimated to occur in an inconsistent temporal pattern among RMS patients (occurring
at multiple time points throughout the evolutionary history). Certainly, the recurrence of these
lesions in multiple large sample sets speaks to their importance, however since they can occur
either early or late in the cancers evolutionary history they do not represent the initiating lesion
in the tumor but rather modifiers of the tumor as it grows towards presentation.

Early flow cytometry studies to evaluate DNA content [50] and cytogenetic analysis [51] in
ARMS noted the frequent presence of tetraploidy. We find evidence that fusion positive tumors
demonstrate a very high recurrence of a whole genome duplication event that results in a tetra-
ploid genome. In general, the duplication event occurs around the midpoint of the tumor’s evo-
lutionary history and prior to additional accumulation of aneuploidy (Fig. 6B). The
mechanism of a cell moving from a diploid state to a tetraploid state can be due to a cytokinesis
failure, a cell fusion event or mitotic slippage and it has long been speculated that tetraploidy is
an intermediate in cancer progression [52]. This is born out in at least one premalignant state
(Barrett’s esophagus), where tetraploidy represents an early intermediate as the cancer precur-
sor develops towards esophageal adenocarcinoma [53]. Further experimental evidence of a tet-
raploidy intermediate state is demonstrated in TP53 null mouse mammary cells where
tetraploid but not diploid cells promote tumorigenesis in nude mice [54]. Of note, in the
mouse model of PEP ARMS both the increase in allelic copy number of the PAX3-FOXOI fu-
sion and the loss of TP53 or CDKN2A were found to be a critical component in increasing the
penetrance of the phenotype [55]. Given the role of loss of TP53 in allowing a permissive envi-
ronment for the tetraploid cell to escape cell cycle arrest, this is consistent with our findings. It
is interesting to speculate that in our tumor series the whole genome duplication event is an at-
tempt by the tumor to increase the allelic dose of the PAX fusion. Another intriguing possibility
is that the whole genome duplication event alters the telomere length and activates telomerase;
a critical cooperating genetic event in the temporal sequence that produces alveolar rhabdo-
myosarcoma from human myoblasts [56].

In conclusion, based on deep whole genome sequencing, we developed a systematic method
to infer the evolutionary history and identify the causative lesions of this pediatric solid tumor.
From our data, we provide a model for how these tumors develop. Our results demonstrate
two distinct evolutionary paths resulting in a convergent phenotype of this soft tissue cancer:

1) genomic loss of heterozygosity on 11p15.5, nonsynonymous mutations on RAS pathway
and cell cycle genes, including FGFR4, KRAS, NRAS, HRAS and CCDNI1, as well as several
other genes, including CUL2, TTK and PKN1, occur early in the evolution history of
PFN-RMS; 2) recurrent whole genome duplication occurs in the middle or late stage of the tu-
mors evolution in the PAX-fusion positive RMS tumors. PAX3-FOXO1 fusion occurs before
the whole genome duplication event. Intriguingly, a recent report of the clonal evolution in two
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cases of relapsed fusion-negative RMS tumors after chemotherapy and radiation demonstrated
that recurrent tumors are derived from the founding tumor’s minor clone [24]. Nevertheless
given that survival following relapse is 30% [57], our findings that LOH of 11p15.5 and muta-
tion of RAS genes form the “trunk” of the fusion negative RMS tumors has important thera-
peutic implications; at least in theory it is preferable for treatment to target mutations that are
present in all of the tumor cells. In addition, while further biologic validation is required, our
analysis identifies candidate lesions that may underpin the ability of the minor clone to survive
therapy and proliferate during relapse or metastasis. Thus given clonal evolution and heteroge-
neity, our data suggests that future efforts to understand the emergence of resistant clones
should include deep sequencing analysis on all patients at presentation and relapse. These ef-
forts will add to the growing understanding of the biology of RMS and identify actionable ge-
netic aberrations for targeted therapies.

Methods
Patient samples

All patient sample collection was approved by the institutional review board of the participat-
ing facility. All de-linked and de-identified patient sample information was collected under the
approved institutional review board of the National Cancer Institute protocol 10-C-0086. Sam-
ples were assembled from collections at the Pediatric Oncology Branch of the National Cancer
Institute, Children’s Oncology Group, and the Tumor Bank at The Children’s Hospital at
Westmead (New South Wales, Australia). All tumors were collected at initial diagnosis and
prior to any therapy with the exception of samples NCI0040 and NCI0080 which were collect-
ed at relapse. Samples were de-identified and histologic diagnosis and clinical information
were compiled. Quality control genotyping for the whole genome samples was performed to
ensure the match of tumor normal pairs.

Whole genome sequencing

Approximately 6 micrograms of DNA was sequenced using the paired end sequencing method
of Complete Genomics. Data analysis was accomplished using CGA tools package v2.0 as well
as a number of in house tools described in [23].

Targeted resequencing

A custom panel of oligonucleotides designed to incorporate somatic single nucleotide variants
discovered in samples RMS2110 and RMS2107 was generated using Ion Ampliseq designer
software. 150 base pair amplicon libraries were generated using multiplex PCR according to
the Ion Torrent Ampliseq Library 2.0 kit. Individual samples were barcoded and the generated
libraries were sequenced using a 318 chip on a Personal Genome Machine (Life Technologies).
Compiled reads were mapped to Hgl9 and the expected variants were analyzed for coverage
and VAF. The targeted sequencing has a depth of 1997x. We used it to verify the VAF estimates
of somatic mutations across whole genome of two samples. The result shows VAF estimation
accuracy is as high as 90% (S1 Fig.).

SNP array

Mlumina Omni 2.5M (97 paired plus 30 unmatched tumors) or 5M (10 paired samples) were
performed according to the standard procedure from the manufacturer (Illumina, San Diego,
CA) at the National Cancer, Cancer Genomics Research Laboratory. The data were previously
reported in [23].
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Whole transcriptome sequencing

PolyA selected RNA libraries were prepared for RNA sequencing on Illumina HiSeq2000. 100
bases long paired-end reads were assessed for quality and reads were mapped using CASAVA
(Ilumina, San Diego, CA). The generated fastq files were analyzed by TopHat2 [58] and Cuf-
flinks [59] The data were previously reported in [23].

Somatic mutation calling

We used the somatic score from Complete Genomics (CG), a highly sensitive and specific so-
matic mutation-calling criteria [23,60,61], combined with principles previously used [25,62] to
detect somatic signal nucleotide variants (SNVs). The somatic score is designed by systemati-
cally considering sequencing error, mapping error and read count and has been validated as an
effective criterion by our previous studies as well as studies from other groups [23,61,63]. To
ensure sensitivity and specificity of mutation calling, we set the somatic score cutoff as >0,
with a set of additional filters for removing system artifacts and mapping errors, to select so-
matic mutations, based on the verification results from an independent sequencing platform
[23]. By SOLiD whole exome sequencing (35x coverage) and Ion Torrent Ampliseq targeted se-
quencing (300x coverage) on 30 RMS tumor-normal sample pairs sequenced by CG, we veri-
fied that our filtering removes 99% of false positives while maintaining 80% of true positives
[23] in CG’s comprehensive somatic mutation pool (called in a loose criterion to be as inclusive
as possible) [23,60], which is premium given the less somatic mutations in pediatric tumors

3.

Copy number profiling

For the 44 matched tumor and normal sample pairs with whole genome sequencing, we used
somatic copy number segmentation profile provided by Complete Genomics, with customized
corrections. For a larger cohort, with 120 matched tumor and normal sample pairs measured
by SNP array, we used the copy number profile provided by NEXUS copy number analysis.

In copy number profiling, an important quantity, lesser allele fraction (LAF), is estimated to
represent the fraction of copies coming from each parental allele. Along with total copy num-
ber, LAF tells us the allelic copy number status. LAF is defined as the ratio between the copy
number of the lesser allele (with fewer copies than the other allele) versus the total copy num-
ber. For example, a trisomic chromosome with allelic type “AAB” has LAF equal to 1/3. LAF is
estimated based on germline heterozygous single nucleotide variants that are present in cancer
genome. For each genomic segment of tumor sample, sites that have heterozygous single nucle-
otide variants in matched normal samples were selected and LAF was estimated by the ratio be-
tween the read count of lesser allele and the total read count for these sites.

Statistical analyses

In order to study the evolutionary history of RMS, we performed an integrated statistical analy-
sis, using information including germline single-nucleotide variants, somatic mutations (sin-
gle-nucleotide variants), somatic copy number alterations (CNA) and junctions (mapped
breaking points), to estimate the normal cell contamination, intra-tumor heterogeneity (due to
subclones) and the timing of somatic variants. The methods are detailed in the S1 Text.

Cell lines and retroviral constructs

Mouse myoblast cell line C2C12 was obtained as a generous gift from Dr. Marc Landanyi. The
cells genotype was performed by the NCI Core Genotyping facility and the cell line was
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confirmed to be myocoplasm negative. All cell culture was performed in DMEM supplemented
with 10% FBS. The differentiation assay was performed using 2% horse serum (Life Technolo-
gies) as previously described [33]. For retrovirus production, the pBabe vector system
(Addgene) was used.

Retrovirus construction and transduction of C2C12 cells

Plasmids encoding human PKNI cDNA was purchased from Addgene, and constructs were
subcloned into pBABE containing a N-terminal HA tag. A cDNA encoding the PKN1 E216K
mutant was generated using the GeneART Site-Directed Mutagenesis kit (Life Technologies)
and was subcloned into pBabe. The generated mutation was confirmed by Sanger sequencing.
Retroviruses were generated by contransfection of pBabe constructs with pCL-10A1 into 293T
cells (American Type Culture Collection (ATCC), CRL-3216) subsequently used to infect the
C2CI12 cell line as previously described; infected cells were selected with 2 ug/ml puromycin
(Life Technologies).

Immunofluorescence

Cells grown on Nunc chamber slides were fixed with 4% paraformaldehyde and permeabilized
in PBS containing 0.5% Triton X-100 and blocked in Block-Aid (Life Technologies) for 1 h at
room temperature. Cells were then incubated with MF20 monoclonal antibody (DSHB) against
MHC (1:40 dilution;) overnight at 4 degrees. Secondary antibody Alexa Fluor 488-conjugated
secondary antibody (1:200 dilution; Life Technologies) for 1 h at room temperature. Cells were
mounted with ProLong Gold antifade reagent with DAPI (4,6-diamidino-2-phenylindole; Life
Technologies).

Immunoblotting

Cells were lysed in M-PER lysis buffer (Pierce Biotechnology). Lysates were denatured in 4x
sample buffer at 70°C for 10 min, resolved on 4-12% NuPAGE gels (Life Technologies) and
transferred onto PVDF (polyvinylidene fluoride) membranes. Membranes were blocked in 5%
nonfat milk in TBST buffer (TBS with Tween-20) for 1 h at room temperature and probed
with primary anti-HA antibody obtained from Covance (1:2,000 dilution). Bound antibodies
were detected with peroxidase-labeled horse antibody to mouse IgG and visualized using en-
hanced chemiluminescence reagents (ThermoScientific).

Expression analysis

Total cellular RNA was isolated using the RN Aeasy mini kit (Qiagen). Cellular RNA (250ng)
was in vitro transcribed, fragmented, hybridized and applied to Affymetrix Mouse 430A arrays
according to the standard operating procedure of the Laboratory of Molecular Technology
core facility (http://atp.ncifcrf.gov/genetics-and-genomics/laboratory-of-molecular-
technology) and the manufacturer’s instructions (Affymetrix, Santa Clara, CA). For gene set
enrichment analysis (GSEA), the normalized gene expression data were z-scored and ranked
according to absolute fold-change expression over the control. GSEA analysis (http://www.
broadinstitute.org/gsea/index.jsp) was performed using default parameter settings.

Supporting Information

§1 Text. Supporting text including supplemental methods.
(DOCX)
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S1 Fig. Verification of somatic calls and VAF using Ion Torrent targeted sequencing with
1997x coverage. (a) Verification accuracy: the accuracy is calculated as 1 — |V — v|/v, where V
is the VAF estimated by WGS and v is the VAF estimated by targeted deeper sequencing
(1997x coverage). Green bar shows the average accuracy among the somatic mutations and
whisker shows the variance. We perform the verification on two samples, and the average accu-
racy is 0.9. This high accuracy supports our inference of variant timing and subclonality. (b)-
(c) are the scatter plots comparing the VAF estimated by WGS and the VAF verified by the tar-
geted deep sequencing for each individual sample.

(PDF)

S2 Fig. Normal cell contamination correction corrects the observed unexpected allelic copy
number status to expected status (allelic copy number is the product of LAF and total copy
number). Expected status means integer allelic copy number while unexpected status means
non-integer allelic copy number, which is a result of normal cell contamination or subclonal
copy number changes. PFN rhabdomyosarcoma samples are marked by black fonts while PFP
samples are marked by grey fonts. Blue bars show the number of chromosomes with unexpect-
ed status before normal cell contamination correction, while the red bars show how many of
these chromosomes have expected status after the correction. Most chromosomes were cor-
rected to expected status. A more detailed example is given in S3 Fig.

(PDF)

S3 Fig. An example of normal cell contamination correction. For sample RMS2051, (a) and
(c) show the VAF distribution of somatic mutations on chromosomes without aneuploidy, be-
fore and after normal cell contamination correction, respectively; (b) and (d) show the scatter
plot of copy number and LAF of each chromosome, before and after normal cell contamination
correction, respectively. Form (a), the observed VAF of somatic mutations (on chromosomes
without aneuploidy) is distributed around 0.46, less than the expected value of 0.5 when there
is no normal cell contamination. From (c), we found that the correction method has made the
VAF distributed around the expected value of 0.5. Meanwhile, the normal cell contamination
correction has changed the unexpected statuses of copy number and LAF of several chromo-
somes (represented by red dots) to expected statuses (represented by blue crosses). In this ex-
ample, unexpected status means non-integer allelic copy number which happens due to
normal cell contamination or subclonal copy number changes. For example, in (b), chromo-
some 3 and 16, the observed copy number = 2 and LAF = 0.04 indicates a non-integer copy
number of the lesser allele. After normal cell contamination correction, the two chromosomes
are with 2 copies and 0 LAF as shown in (d), indicating an integer copy number of the

lesser allele.

(PDF)

$4 Fig. Distribution of VAF of somatic mutations for 44 rhabdomyosarcoma samples. For
samples without whole genome duplication (mostly PFN rhabdomyosarcoma), we plot VAF
distribution on chromosomes with diploidy “AB”; for samples with whole genome duplication
(mostly PFP-RMS), we plot VAF distribution on chromosomes with tetrasomy “AABB”. Each
row shows 5 samples. Each row has two sub rows: the upper one shows the VAF distribution
before normal cell contamination correction and the lower one shows the distribution after
normal cell contamination. We can see that most samples have VAF centered on 0.5 in diploi-
dy chromosomes, or VAF centered on 0.5 and 0.25 on tetrasomy chromosomes. Additionally,
for some samples, we observed a small amount of mutations have VAF lower than expected.
This finding indicates that these mutations are present only on a part of tumor cells (subclonal
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mutations).
(PDF)

S5 Fig. Flow chart of the analysis method. The method is based on called copy number status
and somatic mutations. First we used copy number and LAF to infer subclonal copy number
changes. Then we use the distribution of VAF of somatic mutations to infer subclonal muta-
tions. After that, timing of the aneuploidy is done by investigating the multi-modality VAF dis-
tribution. The occurrence time of aneuploidy is used to confine the occurrence time of somatic
mutations. Finally, we summarize all the variant timing and subclonal changes to build the can-
cer evolutionary history.

(PDF)

S6 Fig. Capability of our method in detecting mutations with small VAF. Somatic mutations
in the 44 RMS samples were grouped according to their VAF (x axis). For each group, the num-
ber of mutations is denoted by green dots and total coverage at each mutation site is denoted
by the red bars.

(PDF)

S7 Fig. Illustration of analysis method. (a) Allele “A” gets duplicated at a certain time (indi-
cated by the purple box). If a mutation occurred on allele “A” before the duplication (the pink
circle), its mutant copy gets duplicated as well and thus the VAF is 2/3. On the contrary, if a
mutation occurred after the duplication (the light green circle), there is only one mutant copy
and the VAF is 1/3. The occurrence time of the duplication can be inferred by comparing the
number of mutations with VAF = 1/3 to the number of mutations with VAF = 2/3. (b) illus-
trates another example where the chromosome has an “LOH-+duplication” event.

(PDF)

S8 Fig. Robustness of cancer evolutionary history estimation. Mutation accumulation speed
is estimated when inferring the timing of genomic variants. Since our method estimates the
mutation accumulation speed for individual chromosome groups (with unique copy number,
LAF and somatic VAF distribution) independently, the consistent estimates of mutation accu-
mulation speed from different chromosome groups can be an indicator of the robustness of
our method. (a) shows that the mutations speed estimated independently from different chro-
mosome groups of sample RMS2110 are consistent—standard deviation is 0.063, <1/10 of the
mean 0.6791 (per megabase across the cancer lifespan). Such consistency is further shown in
(b), by comparing the number of mutations accumulated on each chromosomes and the length
of the chromosomes. As expected, the number of accumulated mutations is largely associated
with the length of chromosomes (coefficient of determination r* = 0.9985), indicating strong
robustness of the estimation. (c) The robustness is observed on multiple other samples which
also have multiple chromosome groups to infer the mutation speed independently. The well fit-
ted regression lines and high coefficient of determination confirm the robustness of

the method.

(PDF)

S9 Fig. Summary of evolutionary history of 44 rhabdomyosarcoma. The evolutionary histo-
ry timelines were built by inserting the timing of recurrent lesions, in percentage, into the can-
cer lifespan. The observed lesions are marked by different colors. (a) PEN samples. (b)

PEP samples.

(PDF)

S10 Fig. Loss of heterogeneity regions on chromosome 11 and 17. (a) 11p LOH regions for
rhabdomyosarcoma samples sequenced by whole genome sequencing. (b) 11p LOH regions on
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a larger cohort (totally 117 samples by WGS and Illumina SNP array; the figure only show
those samples with 11p LOH) indicate that IGF2 is the minimal intersection. (c) chromosome
17 LOH regions for rhabdomyosarcoma samples sequenced by whole genome sequencing. (d)
chromosome 17 LOH regions on the larger cohort overlap at two island regions centered
around TP53 and NF]I, respectively. (e) chromosome 11 and 17 LOH is usually accompanied
with chromosome duplication or copy gain.

(PDF)

S11 Fig. 11p15.5 LOH (coupled with copy gain) is an early event that is most recurrent in
PFN rhabdomyosarcoma. Green triangles represent the molecular time at biopsy, measured
by the number of accumulated somatic mutations; purple squares represent the molecular time
at 11p15.5 LOH event, measured by the estimated percentage of molecular time when the LOH
event happened, multiplied by the molecular time at biopsy; orange bars represent the age of
patients at biopsy.

(PDF)

$12 Fig. Circos plots of typical RMS genomes. (a)-(c) are PFN samples and (d-f) are PFP
samples. Gene symbols indicate genes with nonsynonymous mutations. Tracks from outer-
most to innermost: Somatically mutated genes, karyotype, copy number (dark blue bars), lesser
allele fraction (green bar), loss of heterogeneity indicator (dark green dots), intensity of hetero-
zygous mutations (orange bar) and homozygous mutations (blue bar), junctions or chromo-
somal rearrangement (grey lines for intra-chromosome rearrangement and orange lines for
inter-chromosome rearrangement).

(PDF)

$13 Fig. Whole genome duplication in PFP tumors. We use a PFP rhabdomyosarcoma sam-
ple NCI0040 as an example. (a) shows the VAF of somatic mutations on chromosomes with
LAF = 0.5. The VAF of somatic mutations is distributed as a bi-modal normal mixture, cen-
tered on 0.25 and 0.5, respectively. Therefore, it is likely that the chromosomes are of tetras-
omy—a mutation with 0.25 VAF is expected to have mutant on 1 out of 4 copies. It is also
possible that the mutations of 0.25 VAF come from a subclone that is present in 50% of tumor
cell; however such phenomenon occurs in 17 PFP tumors and it is unlikely that all these 17 tu-
mors have the same subclonal composition. Interestingly, by timing the tetrasomy chromo-
some by chromosome, we found that the tetrasomy duplication happens around the same time
for all the chromosomes, as shown in (b), suggesting an endoreduplication event.

(PDF)

$14 Fig. Protein and position of the PKNI mutations.
(PDF)

S1 Table. Cancer evolutionary history of 44 RMS samples. Listed are fusion status, sample
ID, age, normal cell contamination rate, occurrence time of whole genome duplication, number
of clones, occurrence time of chromosomal aneuploidy, and occurrence time of nonsynon-
ymous mutations. For aneuploidy, timing is listed followed by ploidy status, for example, "30%
aab" means at 30% molecular time the chromosome ploidy changed to the trisomy "aab". For
samples with whole genome duplication, only chromosomes with ploidy status different from
tetrasomy "aabb" were listed. For mutations, each grid shows the time interval of occurrence.
(XLSX)

S2 Table. Candidate list of somatic subclonal mutations. Annotations are listed for these
mutations. Results of gene ontology analysis were also listed.
(XLSX)
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S3 Table. Timing of PAX fusion. Inferred occurrence timing of the PAX fusion event in PEN
RMS samples is listed.
(XLSX)

$4 Table. Timing and expression of somatic mutations. Somatic mutations of which occur-
rence time are inferable are listed.
(XLSX)

S5 Table. Significantly enriched gene sets by GSEA.
(XLSX)
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