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Abstract—Existing deraining approaches represent rain
streaks with different rain layers and then separate the layers
from the background image. However, because of the complexity
of real-world rain, such as various densities, shapes and directions
of rain streaks, it is very difficult to decompose a rain image into
clean background and rain layers. In this paper, we develop a
novel single image deraining method based on residual multiscale
pyramid to mitigate the difficulty of rain image decomposition.
To be specific, we progressively remove rain streaks in a coarse-
to-fine fashion, where heavy rain is first removed in coarse-
resolution levels and then light rain is eliminated in fine-
resolution levels. Furthermore, based on the observation that
residuals between a restored image and its corresponding rain
image give critical clues of rain streaks, we regard the residuals
as an attention map to remove rains in the consecutive finer-level
image. To achieve a powerful yet compact deraining framework,
we construct our network by recurrent layers and remove rain
with the same network in different pyramid levels. In addition,
we design a multiscale kernel selection network (MSKSN) to
facilitate our single network to remove rain streaks at different
levels. In this manner, we reduce 81% of the model parameters
without decreasing deraining performance compared to our
prior work [1]. Extensive experimental results on widely-used
benchmarks show that our approach achieves superior deraining
performance compared to the state-of-the-art.

Index Terms—Single image deraining, multiscale, residual
attention, kernel selection

I. INTRODUCTION

RAIN streaks often result in image quality degradation,
such as blurriness and heavy occlusion, as shown in

Fig. 1. They also severely deteriorate the performance of many
outdoor surveillance systems, such as object detection [2] and
tracking [3]. Therefore, removal of rain streaks from a single
image is important for various outdoor vision-based applica-
tions. Previous single-image based deraining methods [4–9]
often remove rain via discriminative representation learning of
rain streaks and background details. However, these methods
may fail to deal with real-world rain due to its complexity such
as overlappings between rain streaks and complex background
texture.
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Fig. 1: Left: Two real-world images degraded by rain streaks.
Right: Our approach removes rain streaks and significantly
improves visibility. Zoom in for a better look at the restoration
quality.

Thanks to the powerful feature representation ability of
convolutional neural networks (CNN), deep learning based
deraining methods [10–16] have been proposed and achieved
promising performance. Those methods usually aim to decom-
pose rain into several layers which contain different types (e.g.
directions and shapes) of rain streaks. Thus, those approaches
mainly focus on learning representations of different rain
layers and then remove them from a rain image. However,
previous works have the following shortcomings:
(1) In real-world scenarios, it is often very challenging to as-

certain the accurate number of the rain layers accounting
for different types of rain streaks, (e.g., different shapes,
directions, and densities). Inaccurate estimation of the
number of layers will result in removing rain streaks
incompletely or excessively.

(2) Rain streaks with different densities might be in the same
image and different rain layers always overlap with each
other. It is suggested by [15] that different models should
be used to handle different densities of rain (i.e., heavy,
medium, and light rain streaks). However, building a
model which can accurately identify the rain densities
is difficult. Thus, previous methods might inadequately
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remove rain streaks or excessively smooth background
details.

To tackle the above issues, this paper proposes a novel de-
raining method based on multiscale pyramid. In particular, rain
streaks are removed while background details are constructed
in a coarse-to-fine fashion. In this way, we decompose the
image into different levels of pyramid, and remove the heavy
streaks first in the coarse level. As the resolutions in the
pyramid increase, background details are gradually recovered
while lighter rain is removed. In other words, the structure
in the coarse level is recovered first and then fine details
are recovered in higher resolutions. Therefore, the density of
the rain is unnecessary to be explicitly estimated, avoiding
inadequate- or over-removal of rain. Since the residual be-
tween the recovered and original rain images in fine level
mainly contains the missing details and removed rain streaks,
the residual can be regarded as an input attention map to
provide cues for recovering the missing background texture.
Based on the weights of the attention map, our network is
able to identify the regions with rain and the densities of the
rain streaks, which guides us to remove rain in a coarse-to-
fine fasion. The proposed method can effectively reduce the
influence of excessively or insufficiently removing rain from
a single image.

In our previous work [1], we used different sub-network
structure and residual based attention maps to remove rain
streaks in each level of a pyramid. While being effective in
handling various scales of rain, the network has a large number
of parameters (∼6,426K in total) and might not be deployed
easily in some practical applications. Moreover, those sub-
networks need to be trained sequentially. In other words, when
the network in the coarse level converges, we start to train
the network in the finer level. In this paper, we propose a
more compact yet powerful network (∼1,218K parameters).
To facilitate removing rain at different pyramid levels (stages)
while sharing the same network weights, we further design a
multi-scale kernel selection block, which extracts rain layers
at different scales adaptively. In this fashion, we achieve
a lightweight deraining network while improving the rain
removal performance.

All in all, our main contributions are summarized as follows:

(1) A novel deraining framework based on residual multi-
scale is proposed to remove rain streaks from background
images. To the best of our knowledge, this is the first
attempt to tackle the deraining problem from coarse-to-
fine perspective.

(2) The residual between the reconstructed image and orig-
inal rain image is fully exploited and regarded as an
attention map, which provides rain density and intensity
information and assists rain streak recognition and back-
ground recovery.

(3) Thanks to our residual embedded pyramid framework,
our method leaves out the procedure of estimating rain
densities and then avoids the artifacts of incomplete or
excessive rain removal caused by inaccurate estimation.

(4) Recurrent layers are designed to construct a light-weight
network, and employ the same network structure to

remove rain at each level of the pyramid. Thus, we
significantly reduce the model parameters. Moreover, a
multiscale kernel selection block is proposed to further
boost the performance of the rain layer extraction for our
single deraining network.

This work is an extension of our prior work [1]. In
that work, following the multiscale pyramid framework, the
deraining is decomposed into three stages, whose network
structures are different due to the increasing resolutions. In
the first stage, the deraining model is constructed by the
autoencoder which consists of convolutional layers. In the
second stage, the network architecture is implemented by
residual blocks based autoencoder to recover more background
details. In the third stage, dense blocks are used to extract more
features and recover the finest details. Moreover, different
loss functions, i.e., an Euclidean loss function, a perceptual
loss function, and a similarity loss function, are employed in
different deraining stages separately. The deraining models in
the different levels are trained stage by stage. In this paper,
we have made the following substantial improvements in
comparison to our previous version: (i) Considering the scales
of rain streaks are different across the pyramid levels, we
propose a multiscale kernel selection block to tackle different
scales of rain. Our presented blocks improve the effectiveness
of rain streak removal. (ii) We re-design our proposed network
architecture to allow sharing parameters within each pyramid
level via a recurrent mechanism. By incorporating the recur-
rent mechanism, we reduce 81% of the network parameters
without reducing the qualitative and quantitative performance.
(iii) Different from our preliminary work, where three distinct
models are trained stage by stage, we further improve our
training efficiency by training our single model in an end-to-
end manner. This is also a direct benefit from our new network
architecture. (iv) The experimental results demonstrate our
method achieves superior performance compared to state-of-
the-art methods on popular widely-used benchmarks.

II. RELATED WORK

In the past decades, many methods have been developed
to remove rain streaks. According to the type of inputs, we
group deraining methods into two categories: video-based and
single-image rain streak removal methods.

A. Video based Deraining Methods

The methods removing rain streaks based on video use
the spatio-temporal relations among frames to detect and
remove rain streaks in a video. Garg and Nayar [17] develop
a correlation model to capture rain dynamics and build a
motion blur model based on physics, with which the rain
in videos are removed. Chen et al. [18] propose a low-rank
appearance model to capture the spatio-temporally correlated
rain streaks from natural image frames. Jiang et al. [19]
observe that rain drops are sparse and smooth along rain
directions while rain-free video contents are smooth in the
directions perpendicular to rain streaks. Taking these intrinsic
characteristics into consideration, they design a video based
rain-removal model. Wei et al. [20] encode rain streaks in a
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stochastic manner and remove rain streaks by modeling rain
streak layers, moving objects and static background in a video.

Ren et al. [21] divide rain streaks in a video into two cat-
egories: sparse and dense ones. They formulate the detection
of moving objects and sparse rain as a multi-label Markov
Random Fields, and assume dense rain follows a Gaussian
distribution. Then, the rain is removed from videos by matrix
decomposition. [22] takes super-pixels as basic processing
units to remove rain and design a convolutional network to
address blur artifacts. Liu et al. [23] build a deraining model by
integrating rain classification, rain removal with spatial texture
and background image recovery with temporal coherence.
Liu et al. [24] design a hybrid rain model to depict rain
streaks and occlusions, and use a recurrent mechanism in
temporal dimension for feature fusion and residual learning for
reconstruction. Although we also employ the residual recurrent
network, we stress that it is quite different from [24]. In our
method, the recurrent mechanism is used in spatial and feature
domains while the residual is regarded as the attention map in
the different deraining stages. Morevoer, state-of-the-art video-
based deraining methods [25–28] highly rely on the temporal
consistency of video contents, which does not exist in a single
image.

B. Single Image based Deraining Methods

For the single image based deraining task, Kang and Fu
[5] decompose a raw rain image into high-frequency and low-
frequency layers, and then employ sparse coding to remove
rain streaks in the high-frequency layer. Luo et al. [7] propose
a dictionary learning based algorithm to restore a clean image
from a rain image. Li et al. [6] propose Gaussian mixture
models (GMMs) to model rain streaks and background sep-
arately, and their presented models are also able to address
multiple orientations and scales of the rain streaks. Regarding
rain streaks have obvious line patterns, Chang et al. [4]
present a low-rank image decomposition framework for rain
streaks removal. Zhu et al. [8] alternatingly remove rain layers
and background details from an input rain image. Deng et
al. [9] propose an efficient method to remove rain streaks
from an input rain image by taking the intrinsic structural and
directional knowledge of rain streaks into account.

Very recently, Fu et al. [10, 11] decompose an input image
into a low-frequency layer and a high-frequency detail layer
and then remove rain from the detail layer via a CNN.
However, those methods may fail to remove heavy rain when
thick rain streaks cannot be well separated from image details
by a guided filter. Inspired by the decomposition idea, Fu
et al. [29] exploit a Gaussian-Laplacian pyramid for rain
removal in a single image. Unlike their method, this paper
also exploits the residual deduced from a prior stage as an
attention map to facilitate rain removal. Li et al. [30] train
Siamese sub-networks to handle rain streaks in different scales
following a recurrent way. Yang et al. [14] present a recurrent
contextualized dilated network for joint rain detection and
removal. Li et al. [12] learn the weight of each rain layers
by the operation of squeeze-and-excitation context aggregation
[31], and then remove rain based on the weighted rain layers.

Zhang et al. [15] first classify the rain level of an input rain
image, and then remove rain in accordance with the classifi-
cation results. Wang et al. [13] design a two-round and four-
directional RNN [32] to extract rain and contextual features,
and a direction-aware attention mechanism to remove rain
streaks. Hu et al. [33] remove rain streaks in an input image
by designing a depth-guided attention mechanism. Yang et
al. [34] use parallel convolutional layers with multiscale kernel
sizes and squeeze-and-excitation aggregation to construct a
recurrent enhancement network, progressively removing rain
streaks from images.

Although above methods achieve good progress, there still
exist some limitations. As those methods represent rain by
learning different rain layers and then separate them from the
background image, they often rely on the accuracy of rain
layer estimation. However, rain layers may not represent rain
accurately due to the intrinsic overlapping among different rain
streaks. Moreover, rain streaks may exhibit various densities in
an image. Thus, using a single-scale model may not effectively
remove different densities of rain. Therefore, the performance
improvements of prior methods tend to saturate.

III. PROPOSED METHOD

Our proposed deraining network is realized under a mul-
tiscale pyramid framework, inspired by [35]. The processing
of each level of the pyramid is taken as a stage. We intend
to remove rain streaks with different densities at different
stages (see Fig. 2). In this way, heavy rain in low-resolution
images can be removed more easily than that in original
high-resolution versions, easing the procedure of rain removal
from a single image. Besides, our network fully explores
the residual between our restored rain-free image and its
corresponding rain image. Specifically, the residuals provide
the information about missing background details as well as
the regions with rain, and thus allows our network to pay more
attention to those regions. To achieve light-weight deraining
network, we exploit recurrent layers in our network. Different
from our previous conference version [1], we employ the same
network structure containing recurrent layers to remove rain
streaks at all the stages. Thus, our method obtains a compact
model. We further design a multiscale kernel selection block
(MKSB) to choose kernel sizes adaptively. MKSB allows us to
apply a single network in different stages without decreasing
the deraining performance. The rain image formulation and
our proposed multiscale recurrent residual deraining network
are presented as follows.

A. Rain Image Formulation

A rain image I is generally defined as

I = B +

N∑
i=1

Ri, (1)

where B represents a clean background image, Ri indicates
the i-th rain layer, and N denotes the number of rain layers.
However, there often exists overlap among rain streaks in
real-world scenes. It is difficult to separate the rain streaks
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Fig. 2: Illustration of our proposed pipeline. Our network removes rain and recovers background details in a coarse-to-fine
manner. I is an input rain image. Mm,m = 1, 2, 3 denotes the deraining metwork in the m-th stage. ↓n and ↑n indicate
downsampling and upsampling an image by a factor of n×. Lloss is the loss function in each stage.

into individual layers. In addtion, the inaccurate estimation
of the rain layer number often affects the performance of
removal. Instead of rain layer estimation and separation, we
introduce a recurrent residual multiscale pyramid framework
that gradually removes rain streaks by multiple stages.

B. Residual Multiscale Pyramid Framework

Since various rain steaks may exist in an image at the
same time and might not be separated into isolated layers,
we propose a residual multiscale deraining framework without
estimating densities of rain explicitly. As illustrated in Fig. 2,
a 3-level image pyramid is constructed, by which rain streaks
with heavy to light densities are removed and background
details are recovered gradually.

A downsampling operation based on the aggressive scaling
factor removes severe rain streaks while reserving the image
structure. As seen in Fig. 3a, for an input rain image, back-
ground details and light rain streaks are invisible in the low-
resolution level. Stage 1 removes heavy rain and recovers the
background structure in the coarse level. As illustrated in Fig.
2, we downsample a rain image I by factor 8×, namely b,
and then upsample b with factor 2×, denoted as b↑2. After
that we downsample the same rain image I with factor 4×,
denoted as I↓4. The residual between b↑2 and I↓4, namely
r1, is calculated as the attention map in the first stage. Fig.
3d shows an example of r1. As shown in Fig. 3d, r1 retains
information of regions contaminated by heavy rain as well as
background structure. The residual r1 is used as an attention
map for heavy rain streaks removal and background structure
recovery in stage 1.

Similarly, in stage 2, the deraining result of stage 1, namely
b0, is processed by upsamping with factor 2×, denoted as

b0↑2. The residual between b0↑2 and I↓2 is denoted as r2.
An example of the r2 is shown in Fig. 3e. We construct b0↑2
and r2 as an image pair, and then feed this pair of images to
the deraining model in stage 2, namely M2, for medium rain
removal and background details recovery.

In the last stage, the result from stage 2 is upsampled and
denoted as b2↑2, and residual between I and b2↑2 is calculated
as an attention map r3 in the original resolution level. As
visible in Fig. 3f, light rain streaks which are not visible in
the former two stages and fine image details appear in the
attention map r3. r3 and b2↑2 as an image pair are fed into the
deraining model in stage 3, denoted as M3, to obtain the final
deraining result. Since the former two stages have removed
the severe and medium rain streaks, we focus on removing
light rain and recovering fine background details in this stage.

The procedure of our deraining method is expressed as
follows:

yn = fn(yn−1↑2 ⊕ (I↓23−n − yn−1↑2)), (2)

where n represents the n-th deraining stage and n ∈ {1, 2, 3}.
yn is the deraining result of the stage n, fn is the deraining
function, and yn−1 is the deraining result of the previous stage.
⊕ denotes concatenation operation, I is the rain image, I↓n
indicates downsampling I by the factor of n×, and yn−1↑n
is the operation of upsampling the deraining result from the
previous stage by the factor of n×. Note that, y0 is initiated
as I↓8.

Fig. 3 demonstrates an example of the input rain images and
the residual attention maps in the three stages. As illustrated
in Fig. 3c, finer background details and light rain streaks
mainly appear in the high-resolution image. Fig. 3a and Fig.
3b show that as the resolutions of the images decrease,
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Visualization of the input rain images and the residual
attention maps in the three stages. (a), (b), and (c) are the rain
images in the first, second, and third stages. (d), (e), and (f)
are the residual attention maps in the first, second, and third
stages, respectively.

heavy rain becomes mild and the structure of background
is easily recognized. Therefore, it is much easier to remove
heavy rains and restore the background structure in the low-
resolution images. Benefiting from our mutliscale framework
and residual attention guided mechanism, our method removes
rain streaks while retaining fine background details.

C. Recurrent Mechanism

In our preliminary work [1], we design three different
deraining networks for different stages, and as the resolution of
the recovered image increases, the parameters of each network
increase dramatically. Note that those three networks need to
be trained in a stage-wise manner, which leads to the following
two drawbacks: (i) The training of those three networks is not
efficient. (ii) The network cannot be deployed easily in the
practical application due to the large parameter size of the
three networks.

To improve our training efficiency and achieve a compact
model, we re-design and apply the rain removal networks with
the same structure containing recurrent layers at different pyra-
mid levels. In particular, we first employ a Conv-LeakyReLU
layer to transform images into feature space. We then introduce
a feature extraction block, named Multiscale Kernel Selection
Block (MKSB), to further extract rain features. To recover an
RGB image from the image features, we adopt a convolutional
layer afterwards. The architecture of our deraining network is
illustrated in Fig. 4a.

D. Multiscale Kernel Selection Networks

Considering the types (e.g., densities, sizes and shapes) of
rain streaks varies among the pyramid levels, we introduce
Multiscale Kernel Selection Blocks (MKSB) to perform rain
feature extraction in different pyramid levels adaptively. In this
way, our single network can be applied to the multiple stages
without decreasing the deraining performance.

As shown in Fig. 4b, MKSB first extracts input features
by using two Conv-LeakyReLU layers. Then, two parallel
convolutional branches are exploited to further extract features

with different receptive fields, i.e., one with a kernel size of
3×3 pixels and the other with a kernel size of 5×5 pixels.
We then propose an attention module to enable our MKSB to
incorporate different receptive fields. Specifically, we firstly
merge the features from those two branches via an element-
wise summation. Then, we apply global average-pooling to
generate a channel-wise global representation, denoted by s.
Inspired by [12], a fully-connected layer fz is used to generate
a compact feature importance weight, namely z, along the
feature channels for the adaptive selections. Furthermore,
two soft attentions across channels, denoted as w1 and w2,
respectively, are employed to select different spatial scales
adaptively via two fully-connected layers f1 and f2. Note that,
the summation of the n-th elements in w1 and w2 equals 1.
At last, the features are re-weighted by the attention weights
generated from different kernels. In this manner, rain features
can be extracted adaptively in different stages.

Our MKSB facilitates our deraining network to capture rain
streaks in different scales. Fig. 4b illustrates the architecture
of our MKSB. Note that, as illustrated in Fig. 4a, we employ
multiple MKSBs to capture rain layers and the stacked MKSBs
may lead to a heavy-weight network. Therefore, we applied the
recurrent mechanism to the stacked MKSBs. In this manner,
the parameters of MKSBs are shared and thus we achieve a
light-weight deraining network.

E. Training Loss Function

We construct a 3-level pyramid in our method. In each
stage, we employ three loss functions, including a pixel-wise
intensity similarity loss L2, a perceptual loss [36] Lp, and a
loss Ls (SSIM), to train the deraining model. The pixel-wise
intensity similarity loss is expressed as:

L2 =
1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

‖M(Xc,w,h)−Bc,w,h‖2, (3)

where X is the input image of each stage. At each stage,
we concatenate the upsampled derained result from previous
stage and the residual attention as our input X . C, W , and H
correspond to the channel number, width, and height of the
image respectively. M(X) denotes the output rain-free image,
and B indicates the corresponding ground-truth.

Aside from the pixel-wise intensity similarity loss, we apply
a perceptual loss [36] to decrease global discrepancy between
the features of generated rain-free images and those of their
corresponding ground-truths. The perceptual loss is written as:

Lp =
1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

‖Ψ(M(Xc,w,h))−Ψ(Bc,w,h)‖2,

(4)
where Ψ represents a pre-trained feature extraction model [36,
37]. In our method, the feature maps from Relu2 2 in VGG16
is utilized.

Similar to [38], the loss Ls (SSIM) can be used to measure
the structure similarity between a restored image and its
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(a) MSKSN

(b) MKSB

Fig. 4: (a) The architecture of the proposed multiscale kernel selection networks (MSKSN). (b) The structure of the multiscale
kernel selection block (MKSB). K denotes the convolutional kernel size, C represents the number of the feature map channels,
fz , f1, and f2 are fully-connected layers.

ground-truth image, expressed as:

Ls = 1− 1

CWH

C∑
c=1

W∑
w=1

H∑
h=1

SSIM(M(Xc,w,h), Bc,w,h),

(5)
In Eqn. (5), SSIM of two image patches v and t is defined

SSIM =
(2uvut + c1)(2σvt + C2)

(uv2 + ut2 + C1)(σv2 + σt2 + C1)
, (6)

where uv and ut represent the average intensities of patch v
and t, respectively. σ2

v and σ2
t denote the variances of their

corresponding patches, and σvt is the covariance between v
and t. We set the patch size to 11×11 pixels.

The loss of our deraining model in each stage is written as:

Lloss = aL2 + bLp + cLs, (7)

where a, b, and c are weights for different loss functions.
In the pyramid, each stage has the corresponding clean

and rain images. Overall, the total objective of our proposed
method is written as:

L =
∑

m∈{1,2,3}

Lm
loss, (8)

where m represents the m-th stage. This multi-stage supervi-
sion guides the network to remove rain streaks and reconstruct
clean images in a coarse-to-fine fashion. Note that, for our new
network architecture, we do not need to train the network until
converge in the coarse level and then switch to finer-level ones.

F. Implementation Details

In all our experiments, we establish a 3-level image pyra-
mid. In the pyramid, a higher level corresponds to lower-
resolution images. Each level is a downsampled version of its
previous level by factor 2×. The residual maps are obtained
by subtracting the upsampled derained images from the cor-
responding rain images. In the MKSB, the kernel size of the
two parallel branches are 3×3 and 5×5 pixels respectively,
and the channel number of the first fully-connected layer is
32. The downsampled rain-free images are employed as the
supervision signals, and we employ the Adam optimizer [39]
to train our network. In the loss function, we set a, b, and
c as 1, 0.01, and 0.1, respectively. The decay rates for the
first and second moment estimates are set to 0.9 and 0.99,
respectively. The learning rate is initially set to 0.001, and the
batch size is set as 4. We train our network with rain and
clean image patches, and the patch size is 256×256 pixels.
After 30 epochs, the learning rate is decayed by a factor of
0.7 every 10 epochs. We will release our source codes and
training protocols for the purpose of research reproduction.

IV. EXPERIMENTS

Due to the difficulty of obtaining the pairs of rain-free
and rain images in real cases, our network is first trained on
synthetic datasets, and then evaluated on both the synthetic
and real-world rain images. Moreover, seven state-of-the-art
methods are included for comparisons: discriminative sparse
coding (DSC) [7], Gaussian mixture model (GMM) [6], DNN



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, OCTOBER 2019 7

[11], RESCAN [12], DID-MDN [15], DuRN-S [40], SPANET
[13], and LPNet[29]. For fair comparisons, we use the public
codes or models provided by the authors to produce the
deraining results.

A. Datasets and Evaluation Metric

We compare our proposed MSKSN with state-of-the-art
methods on five synthetic datasets:
• Rain1400 [11] contains 14,000 rain and clean image

pairs. They are synthesized from 1,000 clean images
with 14 kinds of different rain-streaks directions and
scales. Following the protocols in [11], we select 9,000
image pairs for training and the remaining 4,900 pairs for
evaluation.

• Rain12000 [15] contains 12,000 pairs of images for
training, where the number of images with light, medium
and heavy rain is all 4000. Moreover, 1,200 synthetic
image pairs are contained for test as well.

• Rain100H [14] has 1,800 pairs of heavy rain images for
training and 100 pairs for testing. As suggested by [14],
although some synthesized examples in Rain100H are
inconsistent with real rain images, using these data for
training can further enhance the robustness of models.

• Rain200L [41] has 1,800 pairs of light rain images for
training and 200 pairs of images for testing.

• Rain800 [16] consists of 700 rain and clean image pairs
for training and 100 pairs for testing.

Moreover, the work [14] also provides a real-world rain
dataset, denoted as Real15, which contains 15 images down-
loaded from the Internet. The collected images in the Real15
have different contents, and rain densities and directions. Since
those images do not have the corresponding ground-truth, we
evaluate the performance of our network in real cases on this
dataset.

In our experiments, Peak Signal to Noise Ratio (PSNR)
[42] and Structural Similarity (SSIM) [38] are employed
to evaluate the performance quantitatively on the synthetic
datasets. We only compare the derained images with other
methods qualitatively on the real-world dataset Real15.

B. Results on Synthetic Dataset

We compare our method with the seven state-of-the-art
methods mentioned above. DSC and GMM are sparse cod-
ing based methods. DNN, RESCAN, DID-MDN, DuRN-S,
SPANET, and LPNet are deep learning based methods.

Table I indicates the results of different methods on these
five testing sets in terms of PSNR and SSIM. As shown in
Table I, our method considerably outperforms the other meth-
ods in both PSNR and SSIM. In particular, our results achieve
0.62dB, 0.11dB, 0.51dB, 0.23dB and 0.53dB improvements in
PSNR, and achieve the improvements of 0.003, 0.013, 0.031,
0.008 and 0.028 in SSIM on these five datasets respectively
in comparison to the methods which obtain the second best
performance, apart from our preliminary work [1].

In Fig. 5, Fig. 6, and Fig. 7, we randomly provide three
qualitative comparisons with the state-of-the-art methods on
the synthetic datasets.

As shown in Fig. 5, since GMM removes rain by estimating
the rain layer and the clean background layer with patch-
based image priors and represents rain streaks based on sparse
coding, the performance is limited by the image patch as well
as the representation ability of sparse coding. Thus in the
case of heavy rain, the performance of the method degrades
seriously. Deep learning based methods, such as DNN, LPNet,
RESCAN, DID-MDN, DuRN-S, and SPANET outperform
DSC and GMM. Although those methods better remove rain
streaks, the edges of the mountain are blurred and some heavy
rain streaks are still visible in the derained results of Fig. 5.
On the contrary, our method removes heavy rain streaks while
recovering the shape of the mountain edge.

Another example on the dataset Rain800 is shown in Fig.
6. In this case, rain streaks are relatively sparse and light than
those in Fig. 5. As observed, the traditional method GMM
leaves some rain streaks in the derained result. The deep
learning based methods DNN, RESCAN, DID-MDN, DuRN-
S, and SPANET remove most of the rain streaks. However,
some artifacts remain in the derained results. Our MSKSN
removes rain streaks as well as generates a derained result in
better visual quality.

Fig. 7 shows an example on the Rain12000. In this case,
many rain streaks of different scales appear in an image. As
observed, compared to the other state-of-the-art methods, our
MSKSN successfully removes rain streaks in different scales
while reducing artifacts.

C. Results on Real-World Dataset

As real-world rain images often do not have rain-free
ground-truth, we only visually evaluate the deraining perfor-
mance on Real15. Fig. 8, Fig. 9, and Fig. 10 illustrate three
examples of the derained results of the real-world rain images.

As seen in Fig. 8, rain streaks are long, and rain streaks
of different densities tangle with each other. In Fig. 9, rain
streaks are shorter than those in Fig. 8. As observed in Fig.
8 and Fig. 9, rain streaks still remain in the derained results
of the state-of-the-art methods, while our MSKSN achieves
better visual quality with much cleaner background images.

Fig. 10 shows another derained example of a real-world
image. As illustrated in Fig. 10, some rain streaks are still
visible in other state-of-the-art methods’ derained results. In
contrast, our MSKSN removes rain more thoroughly while
recovering clearer background.

Fig. 8, Fig. 9, and Fig. 10 demonstrate that in real-world
case it is common that rain streaks of different scales and den-
sities appear simultaneously and often tangle with each other
in an image. Removing rain of different scales and densities
in a single scale may not be effective. In contrast, benefiting
from our multiscale residual based scheme, our MSKSN is
able to remove real-world rain streaks more effectively.

D. Ablation Study

In this section, all the ablation studies are conducted on the
Rain100H, Rain200L, and Rain800.
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TABLE I: Quantitative comparisons on five synthetic benchmarks. The first and second rows denote results in terms of
PSNR(dB) and SSIM, respectively.

Methods Rain1400 Rain12000 Rain100H Rain200L Rain800

DSC [7] 22.03 21.44 15.66 23.39 18.56
0.799 0.789 0.544 0.870 0.599

GMM [6] 25.64 22.75 14.26 29.11 22.27
0.836 0.835 0.423 0.880 0.741

DNN [11] 28.24 27.33 24.95 32.04 21.16
0.901 0.898 0.781 0.938 0.732

RESCAN [12] 28.57 27.42 26.45 36.64 24.09
0.891 0.885 0.846 0.975 0.841

LPNet [29] 26.16 24.87 23.73 34.26 21.97
0.860 0.853 0.811 0.954 0.812

DID-MDN [15] 27.99 27.95 17.39 25.70 21.89
0.869 0.908 0.612 0.858 0.795

DuRN-S [40] 31.30 33.21 28.19 37.23 26.33
0.919 0.925 0.894 0.972 0.871

SPANET [13] 28.08 28.64 26.49 35.18 23.46
0.926 0.911 0.912 0.983 0.862

Our preliminary [1] 30.21 29.41 28.26 37.18 26.46
0.925 0.923 0.909 0.971 0.894

Ours (MSKSN) 31.92 33.32 28.70 37.46 26.86
0.929 0.938 0.943 0.991 0.899

(a) Input image (b) Ground-truth (c) GMM [6] (d) DNN [11] (e) RESCAN [12]

(f) LPNet [29] (g) DID-MDN [15] (h) DuRN-S [40] (i) SPANET [13] (j) Ours (MSKSN)

Fig. 5: Comparisons with the state-of-the-art on the Rain100H. The input image contains severe rain streaks. MSKSN removes
rain streaks more thoroughly while the edges of the stone and the mountain are blurred by other methods.

(a) Input image (b) Ground-truth (c) GMM [6] (d) DNN [11] (e) RESCAN [12]

(f) DID-MDN [15] (g) DuRN-S [40] (h) SPANET [13] (i) Our preliminary [1] (j) Ours (MSKSN)

Fig. 6: Comparisons with the state-of-the-art on the Rain800. MSKSN removes rain streaks more thoroughly while reducing
artifacts.

1) Multiscale pyramid network: To investigate the effects
of our proposed deraining framework, we design the experi-

ments shown in Table II. (1) Removing rain with only a 1-level
pyramid network, denoted as 1-level; (2) Removing rain with
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(a) Input image (b) Ground-truth (c) GMM [6] (d) DNN [11] (e) RESCAN [12]

(f) DID-MDN [15] (g) DuRN-S [40] (h) SPANET [13] (i) Our preliminary [1] (j) Ours (MSKSN)

Fig. 7: Comparisons with the state-of-the-art on the Rain12000. MSKSN removes rain streaks more thoroughly while reducing
artifacts. The derained image quality of MSKSN is better.

(a) Input image (b) DSC [7] (c) GMM [6] (d) DNN [11] (e) RESCAN [12]

(f) DID-MDN [15] (g) DuRN-S [40] (h) SPANET [13] (i) Our preliminary [1] (j) Ours (MSKSN)

Fig. 8: Comparisons with the state-of-the-art on the Real15. In the input image, rain streaks of different scales tangle with
each other. Our MSKSN removes more rain streaks at the overlapping areas.

(a) Input image (b) DSC [7] (c) GMM [6] (d) DNN [11] (e) RESCAN [12]

(f) DID-MDN [15] (g) DuRN-S [40] (h) SPANET [13] (i) Our preliminary [1] (j) Ours (MSKSN)

Fig. 9: Comparisons with the state-of-the-art on the Real15. The visual quality of the derained result of MSKSN is better.

a 2-level pyramid network, marked as 2-level. The cases (1)
and (2) are used to demonstrate the contribution of different
image pyramid levels to the final performance.

As shown in Table II, with the help of the multiscale
pyramid framework, we attain better deraining performance
in comparison to rain removal only in original resolution.
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(a) Input image (b) DSC [7] (c) GMM [6] (d) DNN [11] (e) RESCAN [12]

(f) DID-MDN [15] (g) DuRN-S [40] (h) SPANET [13] (i) Our preliminary [1] (j) Ours (MSKSN)

Fig. 10: Comparisons with the state-of-the-art on the Rain15. The visual quality of the derained result of MSKSN is better.

(a) Input image (b) Ground-truth Inf/1 (c) 1-level 27.31/0.926 (d) 2-level 27.98/0.931 (e) 3-level 28.47/0.940

Fig. 11: Illustration of the results with and without our multiscale strategy. PSNR/SSIM scores are provided for reference.

(a) Rain image (b) Residual attention (c) Derained result (d) Ground-truth

Fig. 12: Illustraions of derained results and the residual attention maps in different stages. The rain images, the residual
attentions, the derained results, and the ground-truths corresponding to the first, second, and third stages are shown in row 3,
row 2, and row 1, respectively.

As visible in Fig. 11, compared to using a single scale
for detraining, our multiscale method significantly facilitates
removal of heavy rain. As shown in Fig. 12a and Fig. 12b,
since light rain streaks (i.e., the yellow box) become invisible

and heavy rain streaks (i.e., the blue box) are removed in
the low-resolution image, our method reduces the difficulty
of addressing rain with various densities in an image. Fig.
12c illustrates intermediate derained results and the residual
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TABLE II: Ablation study of the pyramid framework and the
residual attention.

Methods Metric Rain100H Rain200L Rain800

(1) 1-level PSNR(dB) 27.92 36.92 26.18
SSIM 0.930 0.985 0.882

(2) 2-level PSNR(dB) 28.44 37.38 26.49
SSIM 0.940 0.990 0.890

(3) 3-level-ro PSNR(dB) 20.79 22.43 19.16
SSIM 0.741 0.763 0.721

MSKSN PSNR(dB) 28.70 37.46 26.86
SSIM 0.943 0.991 0.899

(a) Input image (b) Ground-truth

(c) 3-level-ro (d) MSKSN

Fig. 13: Illustration of the results with and without residual
attention mechanism.

attention at different stages. Background image details are
gradually restored as the image resolution becomes larger.

2) Residual attention mechanism: To explore the contri-
bution of the residual attention, we conduct the experiments:
Removing rain with a 3-level multiscale pyramid without the
residual attention, denoted as 3-level-ro, on the three datasets.

As seen in Fig. 13, the image recovered by 3-level-ro is
blurred while our method restores rich background details. As
manifested in Table II, the rain removal performance decreases
dramatically without our residual attention mechanism. This
indicates that our residual attention mechanism aids in remov-
ing rain streaks significantly.

3) Kernel selection mechanism: In order to investigate the
effects of the kernel selection mechanism in our MSKSN for
the deraining task, we conduct the following experiments:
(1) Removing the branch in which the kernel size of the
convolutional layer is 3×3 in MKSB, marked as MKSB-3;
(2) Removing the branch in which the receptive field of the
convolutional layer is 5×5 in MKSB, denoted as MKSB-5;
(3) Removing both of the two branches in MKSB, denoted as
MKSB-roks. (4) In MKSB, besides the two branches, adding
another branch in which the receptive field of the convolutional
layer is 7×7, denoted as MKSB+7.

As shown in Table IV, without the two branches, the
performance of MSKSN degrades 1.09dB, 1.01dB, and 1.09dB

TABLE III: Ablation study of the recurrent mechanism.

Methods Metric Rain100H Rain200L Rain800

(1) MSKSN.1 PSNR(dB) 26.85 35.69 24.65
SSIM 0.929 0.987 0.881

(2) MSKSN.4 PSNR(dB) 28.51 37.32 26.75
SSIM 0.940 0.989 0.897

(3) MSKSN.S PSNR(dB) 29.28 37.63 26.90
SSIM 0.945 0.991 0.899

(4) MSKSN-AC PSNR(dB) 27.43 36.25 26.64
SSIM 0.933 0.980 0.884

(5) MSKSN.S-AC PSNR(dB) 28.58 37.35 26.77
SSIM 0.939 0.990 0.897

MSKSN PSNR(dB) 28.70 37.46 26.86
SSIM 0.943 0.991 0.899

TABLE IV: Ablation study of the kernel selection mechanism.

Methods Metric Rain100H Rain200L Rain800

(1) MKSB-3 PSNR(dB) 28.23 37.04 26.37
SSIM 0.936 0.986 0.897

(2) MKSB-5 PSNR(dB) 27.96 36.80 26.10
SSIM 0.936 0.984 0.896

(7) MKSB-roks PSNR(dB) 27.61 36.45 25.77
SSIM 0.934 0.982 0.896

(3) MKSB+7 PSNR(dB) 28.84 37.49 26.90
SSIM 0.944 0.991 0.899

in PSNR, and 0.009, 0.009, and 0.003 in SSIM on the RainH,
RainL, and Rain800 respectively. The experiments MKSB-
3 and MKSB-5 are the same as only assigning different
weights for the different channels of feature maps without the
kernel selection. However, since the same network structure
is employed to remove rain in the three stages, and the
sizes of rain streaks vary as the image resolution increases,
adjusting receptive field adaptively in the different stages
helps with capturing rain streaks of different scales. Thus, the
kernel selection mechanism promotes the performance of our
MSKSN significantly. With more branches, the performance
of MKSB+7 improves 0.14dB, 0.03dB, and 0.04dB in PSNR
on the RainH, RainL, and Rain800 respectively. However,
incorporating more branches will increase parameters as well
as require more GPU memory to train the model. Thus, con-
sidering the balance between the performance and efficiency,
we set the number of the branches to 2 in our MKSB.

To dissect the impacts of the kernel selective mechanism
in our MSKSN, we calculate the ratios of the weights of the
two attention vectors in MKSB. In particular, we divide the
attention weights of the branch in which the kernel size is 5×5,
by the attention weights of the branch in which the receptive
field is 3×3, and then we count the numbers that the ratios
are greater than 1 in each MKSB. Since we unfold a MKSB
5 times in a deraining network, we denote the MKSB at the
ith recurrent time as MKSBi.

Fig. 14 shows the visualizations of all MKSBs in the three
stages on the Rain200L. As illustrated in Fig. 14, in each
stage, the neurons enlarge their receptive fields as the network
becomes deeper. In particular, the neurons in the stage 1
enlarge the receptive fields faster than the neurons in the
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(a) initialization of MKSB1 (b) MKSB1 (c) MKSB2

(d) MKSB3 (e) MKSB4 (f) MKSB5

Fig. 14: Illustration of the kernel selective mechanism on the Rain200L. (a) The visualization of the number when the ratios
are greater than 1 in MKSB1 before training. (b), (c), (d), (e), and (f) are the visualizations of the number when the ratios
are greater than 1 of the five MKSBs in the three stages.

(a) Input image (b) Ground-truth

(c) MSKSN (d) MSKSN.S

Fig. 15: Illustration of the derained results of MSKSN and
MSKSN.S.

stage 2 and stage 3. The reason is that as the first stage in
our deraining network, to achieve removing heavy rain and
recovering background structure, the neurons enlarge receptive
fields to gather more information and better capture features.
In the stage 2, since the deraining network in this stage mainly
removes medium rain streaks and restores some details of
background, the neurons in the stage 2 enlarge their receptive
fields to capture the features of the medium rain, and the pace
of the increase is relatively lower than that in the stage 1.

Since the former two stages have removed the heavy and the
medium rain streaks, the goal of the last stage is to remove
light rain and recover fine details of the image. The neurons
in this stage also enlarge their receptive fields as the network
becomes deeper, and the rate of the increase in this stage is
lower than that in the previous two stages.

Overall, the kernel selective mechanism helps with our
coarse-to-fine manner and improves the deraining performance
significantly.

4) Recurrent mechanism: In our MSKSN, we recurrently
unfold a MKSB 5 times instead of piling up 5 MKSBs one
after another. To evaluate the effects of the recurrent mecha-
nism, we conduct the following experiments: (1) Recurrently
unfolding a MKSB just one time. denoted as MSKSN.1; (2)
Recurrently unfolding a MKSB 4 times, marked as MSKSN.4;
(3) Stacking 5 MKSB instead of unfolding a MKSB 5 times
in MSKSN, denoted as MSKSN.S; (4) Applying the recurrent
mechanism only across pyramid levels, marked as MSKSN.S-
AC; (5) Applying the recurrent mechanism within as well as
across pyramid levels, denoted as MSKSN-AC. In particular,
cases (1) and (2) are designed to demonstrate how the recurrent
mechanism contributes to the deraining performance. (3), (4),
and (5) are designed to reduce the parameters of our network.

As indicated in Table III, the average PSNR and SSIM
values of method MSKSN is slightly lower than MSKSN.S
on the three datasets. However, MSKSN decreases 78% of the
model parameters compared to MSKSN.S. Fig. 15 indicates
that the derained result of MSKSN and the result of MSKSN.S
are visually comparable.
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TABLE V: Impacts of different loss functions. The first
and second rows denote results in PSNR(dB) and SSIM,
respectively.

Methods Rain100H Rain200L Rain800

(1) L2 + L2 + L2
28.47 37.35 26.57
0.936 0.989 0.892

(2) L2Lp + L2Lp + L2Lp
28.52 37.38 26.76
0.940 0.990 0.894

(3) L2Ls + L2Ls + L2Ls
28.57 37.42 26.80
0.941 0.990 0.896

(4) MSKSN 28.70 37.46 26.86
0.943 0.991 0.899

Table III lists the quantitative evaluation values of
MSKSN.1 and MSKSN.4. As observed, more recurrent num-
bers lead to higher average PSNR and SSIM. However, a
larger recurrent number requires more GPU memory to train
the network. Thus, we set the recurrent number as 5 in our
MSKSN.

In the experiment MSKSN.S-AC, we apply the recurrent
mechanism only across differnet pyramid levels. The result
is shown in Table III. The performance of MSKSN.S-AC
is inferior than our MSKSN. MSKSN.S-AC has 47,963 pa-
rameters while MSKSN has 30,225 parameters. In MSKSN-
AC, we apply the recurrent mechanism within as well as
across pyramid levels. In this case, the model has the least
parameters of 10,075. However, the performance of MSKSC-
AC is inferior than our MSKSN.

Overall, considering the trade-off between the model size
and the performance, we choose MSKSN in which the recur-
rent number of MKSB is 5 as our proposed model.

5) Different losses: To investigate the impact of different
losses on the final deraining performance, we design experi-
ments by using different losses to train our network in Table V:
(1) only using the pixel-wise intensity similarity loss L2, (2)
using the pixel-wise intensity and perceptual losses L2 + Lp,
(3) using the pixel-wise intensity similarity loss and SSIM loss
L2 +Ls, and (4) our final losses L2 +Lp +Ls. As indicated
in Table V, the perceptual loss and SSIM loss play important
roles in improving deraining performance. Thus we employ
both of the two loss functions to train our MSKSN.

V. CONCLUSION

In this paper, we proposed a recurrent residual attention
based multiscale deraining network to realize rain streaks
removal in a coarse-to-fine fashion. By leveraging the pyramid
framework, we ease the deraining procedure and remove
different degrees of rain in different scales while recovering
background image from coarse structure to fine details. As
the residual between the upsampled rain-free image and its
corresponding rain image provides important clues to localize
regions with rain, we fully exploit it as an attention map to let
our deraining network better focus on rain regions recovery
under our pyramid framework. We also apply a recurrent
mechanism to our network architecture in each pyramid level
to achieve a compact yet powerful deraining network. Ex-

tensive qualitative and quantitative results manifest that our
proposed method achieves the state-of-the-art performance.
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