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+e free vibration characteristics of steel-concrete composite continuous beams (SCCCBs) are analyzed based on the
Euler–Bernoulli beam theory. A modified dynamic direct stiffness method has been developed, which can be used to analyze the
SCCCBs with some lumpedmasses and elastic boundary conditions.+e results obtained by the proposedmethod are exact due to
the elimination of approximated displacement and force fields in derivation. +e proposed method is verified by comparing its
results with those obtained by ANSYS software and laboratory tests. +en, the influencing factors on the reduction of natural
frequency are analyzed and discussed in detail using the proposed method. +e results show that stronger interfacial interaction
results in higher values of natural frequency as well as larger steel subbeam and thinner concrete slab. +e smaller the natural
frequency of the SCCCBs is, the more significant effect the interfacial interaction on the natural frequency is. +e reduction of
natural frequency is not affected by the different numbers of spans but the equal single-span length and various ratios of the side
span to the main span but equal total length, but it is influenced by the extra single-span length and different ratios of the side span
to the main span but equal main span length. And it is only affected by bending stiffness. Furthermore, the reasonable ratio of the
side span to the main span is 0.9∼1.0.

1. Introduction

Due to the clear advantages of larger spans, higher load-
bearing capacities, and more convenient construction, steel-
concrete composite beams (SCCBs), especially the steel-
concrete composite continuous beams (SCCCBs), are widely
applied in railway bridges with the development of the high-
speed railway. +e SCCCBs are compared with a concrete
slab in the compressive portion and a steel subbeam in the
tensile portion and connected by shear studs which can
transfer the shear force. +erefore, the overall mechanical
performance of the SCCCBs depends not only on the ma-
terial properties of steel subbeam and concrete slab but also,
to a large extent, on the connection performance of shear
studs. +e interfacial shear slip will occur between the
subcomponents owing to the flexibility of shear studs, which
can reduce the natural frequencies of SCCCBs significantly.

On the other hand, in practice, some lumped masses are
usually attached to the SCCCBs (Figure 1), which makes the
dynamic behaviors of SCCCBs more complex. +erefore, it
is important to put forward a new method to analyze the
dynamic performance of SCCCBs with some lumped
masses.

Research studies on the dynamic characteristics of
SCCBs had been well conducted. Girhammar and Pan [1]
derived the governing differential equations of motion and
presented the exact and approximate solutions of SCCBs
with four common boundary conditions, namely: case
1—clamped-free, case 2—pinned-pinned, case 3—clamped-
pinned, and case 4—clamped-clamped. Afterward, exact
dynamic and static analyses of SCCBs with consistent
boundary conditions were conducted [2, 3]. +e eigenmode
length coefficients of eigenmode n (μn) were given as follows:
μ1 � 1.675 and μn � (n − 1/2)− 1(n≥ 2) for case 1;

Hindawi
Shock and Vibration
Volume 2021, Article ID 5577276, 13 pages
https://doi.org/10.1155/2021/5577276

mailto:nzhang@bjtu.edu.cn
https://orcid.org/0000-0002-1399-5022
https://orcid.org/0000-0003-0215-2465
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5577276


μn � (n ± 0)− 1 for case 2; μn � (n + 1/4)− 1 for case 3; μn �

(n + 1/2)− 1 for case 4. +ese are of great significance to
approximately analyze the dynamic performance of SCCBs
in practice. Wu et al. [4] and Grundberg et al. [5] derived the
governing differential equations of motion for the SCCBs
with axial force and proposed an approximate simple ex-
pression to predict the fundamental frequency. Huang and
Su [6] gave the nondimensional key parameters that govern
the fundamental frequency which were a composite con-
nection parameter and a section combination parameter.
Hou et al. [7] proposed a curvature mode measurement
method to identify the shear studs damage of SCCBs. Čas
et al. [8] proposed a three-dimensional mathematical model
for analyzing the dynamic behaviors of SCCBs. It indicated
that the deformations in transverse XZ and lateral XY planes
are mutually independent. Sun et al. [9] proposed a finite
element method, which can be used to analyze the SCCBs
with variable bending stiffness in the x-direction. +e above
analyses were all based on the Euler–Bernoulli beam theory.

For analyzing the influence of rotary inertia and shear
deformations, some researchers [10–14] used the Timo-
shenko beam theory to describe the dynamic performance of
each subbeam. In particular, in the analysis models of Dilena
and Morassi [13] and Nguyen et al. [14], two subbeams
hypothetically did not have the same rotation and curvature.
For the Timoshenko beam theory, Civalek et al. [15–17] and
Laura and Gutierrez [18] proposed the differential quad-
rature (DQ) and harmonic differential quadrature (HDQ)
and discrete singular convolutionmethod (DSC), which is of
great significance to the further dynamic research of SCCBs.
Some researchers [19–24] applied higher-order beam theory
(Reddy beam theory [19–21] and Kant beam theory [22–24])
to analyze the dynamic characteristics of SCCBs. But the
amount of computation increased because there are too
many unknown parameters in those models. +e above
analysis about the effect of rotary inertia (RI) and shear
deformations (SD) on the dynamic behaviors of SCCBs
showed that SD and RI could be ignored within about 3%
error if only the first six eigenmodes were considered for
simply supported SCCBs [11, 12]. Usually, the first three
eigenmodes, particularly the first eigenmode, were the most
important in practice. +erefore, the study in this paper was
based on the Euler–Bernoulli beam theory.

All the above research articles are about the SCCBs. Up
to now, research studies on the dynamic performance of
SCCCBs are insufficient. Fang et al. [25] presented a

simplified calculation model and developed the Mode
Stiffness Matrix to investigate the dynamic characteristics of
SCCCBs. +en, using this method, the influence of span
ratios and shear connection stiffness on natural frequencies
was analyzed based on two-span SCCCBs. +e results in-
dicated that the natural frequency reduction ratios were
totally the same for two-span SCCBs with different span
ratios but uniform shear connection stiffness. However, the
research targets of Fang et al. [25] were just the two-span
SCCCBs and the cross-sectional stiffness ratio was a constant
value, which limited the general applicability of its con-
clusions. Wang et al. [26] proposed a numerically stable
dynamic stiffness matrix method to calculate the higher-
order frequencies of SCCCBs. +is method was verified by
comparing the field measurements of the dynamic responses
of a real multispan continuous composite bridge. In sum-
mary, research studies on the influencing factors upon the
natural frequencies of SCCCBs were insufficient. +erefore,
further research studies were necessary for dynamic be-
haviors of SCCCBs.

+e dynamic stiffness matrix method mentioned in [26]
was a popular and favorable finite element method, which
had recently been applied to analyze the dynamic perfor-
mance of SCCBs and SCCCBs [26–29]. +is method was
theoretically exact and useful for that with variable bending
stiffness along the x-direction, which had been confirmed in
[29]. However, on the one hand, all the above research
articles did not consider the lumpedmasses that are attached
to the beam as shown in Figure 1. On the other hand, they
proposed solutions of structures under seven common
boundary conditions, but its applicability to structures with
elastic boundary conditions was very restricted. Among
other things, there was a lack of a simple, effective calcu-
lation approach to evaluate the natural frequencies of
SCCCBs.

+is paper is an extension of the dynamic stiffness matrix
method proposed in [29]. +e purpose of this paper is to
present a modified dynamic stiffness matrix method to obtain
the exact natural frequencies of SCCCBs with lumped masses
and elastic boundary conditions based on the Euler–Bernoulli
beam theory. Utilizing the proposed modified method, a
number of influencing factors upon the natural frequencies of
SCCCBs, namely, interfacial interaction, cross-sectional
stiffness ratio, number of spans, single-span length, the ratio
of the side span to the main span, and lumped masses, are
analyzed and discussed in detail.
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Figure 1: SCCCB longitudinal and cross-sectional views.
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2. A Modified Dynamic Direct Stiffness Method

2.1. Basic Assumptions. All analyses in this paper are based
on the Euler–Bernoulli beam theory, which ignores the shear
deformation and moment of inertia. Only in-plane bending
behaviors are taken into account, excluding torsion and out-
of-plane bending behaviors. Also, the axial motion and
damping are ignored.+e two subbeams can relatively slip in
the x-direction at the interface, but they cannot separate in
the z-direction. And the initial cohesive force at the interface
between subbeams is neglected. +e above assumptions are
consistent with those presented earlier by Sun et al. [29].

As shown in Figure 1, the research object is the steel-
concrete composite beam with variable bending stiffness
along the x-direction caused by the uneven distribution of
shear studs. +e lumped masses (mi, mj, mk, mlo) usually
attached to the beam in practical engineering are also
considered. +e shear studs between the concrete slab and
steel beam are regarded as continuous and uniformly dis-
tributed in the range of L1, L2, and L3. +e shear force at the
steel-concrete interface per unit length (QL) versus shear slip
(δ) relationship is linear elastic, i.e., QL � Kiδ, where Ki (see
Figure 1) is a constant slip modulus.

2.2. Differential Equations of Motion. If we ignore the
lumped masses (mi) and consider the free-body microele-
ments of SCCCBs as shown in Figure 2, the governing
equation of motion can be written as follows [29]:

(EI)1θ,xx � Kδh � Kh
2
[θ + φ] � Kh

2 θ + υ,x􏽨 􏽩, (1)

(EI)2υ,xxxx − Ksh
2 θ,x + υ,xx􏽨 􏽩 + mυ,tt � 0, (2)

where (EI)1 � EcAch
2
2 + EsAsh

2
1 is the algebraic sum of the

bending stiffness of the two subbeam sections around the
centroid axis of the whole cross section which can be called
the slip stiffness. Ec, Es, Ac, and As are Young’s modulus and
the cross-sectional area of concrete slab and steel subbeam,
respectively. θ and υ are the slip angle and the vertical
displacement, respectively. (EI)2 � EcIc + EsIs is the alge-
braic sum of the bending stiffness around the respective
centroid axis of subbeams which can be called the bending
stiffness. m is the linear meter weight that can be assumed to
be a constant. Icand Is are the moment of inertia due to the
bending of each subbeam. h � h1 + h2 is the distance be-
tween the centroid axis of the subbeams.

Substituting equation (2) into equation (1) gives the
differential equation of governing motion for the SCCCB
without lumped masses as follows [29]:

υ,xxxx(x, t) + cυ,tt(x, t)􏽨 􏽩 − α
1

1 + β
υ,xxxxxx(x, t) + cυ,xxtt(x, t)􏼢 􏼣 � 0, (3)

where α � (EI)1/Ksh
2, β � (EI)1/(EI)2, and c � m/(EI)eq.

(EI)eq � (EI)1 + (EI)2 is the bending rigidity of the
SCCCBs when there is no slip at the interface, i.e., Ks �∞. It
can be seen from equation (3) that there are two important
parameters, namely, the composite parameter α in relation
to the partial interaction and the nondimensional section
combination parameter β in relation to the cross-sectional
stiffness ratio, which makes the motion differential equa-
tions of SCCCBs different from that corresponding to the
elementary beam theory.

Based on the research of Sun et al. [29], υ(x, t) and
θ(x, t) included in equations (1)∼(3) can be decoupled using
the method of separating variables as the following form.

υ(x, t) � ϕ(x)sin ωnt + ς( 􏼁,

θ(x, t) � ϑ(x)sin ωnt + ς( 􏼁,
􏼨 (4)

where ϕ(x) and ϑ(x) are the mode functions, respectively.
ωn are the structural natural frequencies, and ς is the initial
phase.

In addition, we can obtain the solution of equation (3).

ϕ(x) � A1 sin λ1x( 􏼁 + A2 cos λ1x( 􏼁 + A3sinh λ2x( 􏼁

+ A4cosh λ2x( 􏼁 + A5sinh λ3x( 􏼁 + A6cosh λ3x( 􏼁,

(5)

where the real constant Ai can be obtained by the boundary
conditions which lead to the natural frequencies and mode
shapes.

2.3. A Modified 6-DOF Dynamic Stiffness Element.
Figure 3 shows an SCCCB element i with two lumpedmasses
at both ends. We can see that there are six displacement
boundary conditions, namely, vertical displacement (υ),
bending angle (φ � υ,x), and slip angle (θ). +e bending
angle (φ � υ,x) is the same for the concrete slab and steel
subbeam. +e slip angle (θ) is caused by a couple of axial
forces (Nc and Ns) acting on the neutral axis of the two
subbeams. +ere are also six force boundary conditions at
both ends of the element corresponding to the six dis-
placement boundary conditions, which are shear force (V),
the algebraic sum of the subbeammoment (M1 � Ms + Mc),
and slip moment (M2 � QLh).
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Considering the lumped masses (mi and mi+1) at both
ends of the element, the six force boundary conditions can

be expressed as follows, because the moment of inertia is
ignored as described in the basic assumptions.

P1 � Vc(0, t) + Vs(0, t) + miυ,tt(0, t) � (EI)2ϕ,xxx(0) − (EI)1ϑ,xx(0) − miω
2
nϕ(0),

P2 � Mc(0, t) + Ms(0, t) � − (EI)2ϕ,xx(0),

P3 � − QL(0, t)h � (EI)1ϑ,x(0),

P4 � Vc Li, t( 􏼁 + Vs Li, t( 􏼁 + mi+1υ,tt Li, t( 􏼁 � (EI)1θ,xx Li( 􏼁 − (EI)2ϕ,xxx Li( 􏼁 − mi+1ω
2
nϕ Li( 􏼁,

P5 � Mc Li, t( 􏼁 + Ms Li, t( 􏼁 � (EI)2ϕ,xx Li( 􏼁,

P6 � QL Li, t( 􏼁h � − (EI)1ϑ,x Li( 􏼁.
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Figure 3: Six boundary conditions of the SCCCB element.

φθ

Concrete slab

Steel beam

Mc

Nc
Vc

Vc + Vc,xdx

Nc + Nc,xdx

Ns + Ns,xdx
Ms + Ms,xdx

Vs + Vs,xdx

Mc + Mc,xdx

QL

QLM
s

Ns

dx

δ

Vs

Figure 2: Analysis model of the SCCCB microelements.

4 Shock and Vibration



Combining equations (1) and (2) yields the relationship
between themode shape function of slip angle (ϑ) and that of
vertical displacement (ϕ):

ϑ(x) �
α2

β
ϕ,xxxxx(x) − αϕ,xxx(x) −

cα2(1 + β)

β
ω2

n + 1􏼢 􏼣ϕ,x(x),

ϑ,x(x) �
α
β
ϕ,xxxx(x) − ϕ,xx(x) −

cα(1 + β)

β
ω2

nϕ(x).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

Hence, the displacement boundary conditions, namely,
vertical displacement (υ), bending angle (φ � υ,x), and slip

angle (θ), can be expressed in the following form by using
equations (5) and (7).

u �

u1

u2

u3

u4

u5

u6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Nea �

N11 N12 N13 N14 N15 N16

N21 N22 N23 N24 N25 N26

N31 N32 N33 N34 N35 N36

N41 N42 N43 N44 N45 N46

N51 N52 N53 N54 N55 N56

N61 N62 N63 N64 N65 N66

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1

A2

A3

A4

A5

A6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where N11 � N13 � N15 � 0, N12 � N14 � N16 � 1,
N21 � λ1, N23 � λ2, N25 � λ3, N22 � N24 � N26 � 0,
N31 � B1, N33 � B2, N35 � B3, N32 � N34 � N36 � 0,
N41 � sin(λ1Li), N42 � cos(λ1Li), N43 � sinh(λ2Li),
N44 � cosh(λ2Li), N45 � sinh(λ3Li), N46 � cosh(λ3Li),
N51 � λ1 cos(λ1Li), N52 � − λ1 sin(λ1Li), N53 � λ2cosh
(λ2Li), N54 � λ2sinh(λ2Li), N55 � λ3cosh(λ3Li), N56
� λ3sinh(λ3Li), N61 � B1 cos(λ1Li), N62 � − B1 sin(λ1Li),

N63 � B2cosh(λ2Li), N64 � B2sinh(λ2Li), N65 � B

3cosh(λ3Li), and N 66 � B3sinh(λ3Li). Bi (i � 1 ∼ 3) can be
found in Appendix.

Similarly, the six force boundary conditions at both ends,
namely, shear force (V), the algebraic sum of the subbeam
moment (M1 � Ms + Mc), and slip moment (M2 � QLh),
can be expressed as

Pe �

P1

P2

P3

P4

P5

P6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Mea �

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1

A2

A3

A4

A5

A6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where M11 � − (EI)2λ
3
1 − (EI)1C1λ1, M12 � M14 � M16

� − miω2
n, M13 � (EI)2λ

3
2 − (EI)1C2λ2, M15 � (EI)2λ

3
3

− (EI)1C3 λ3, M21 � M23 � M25 � 0, M22 � (EI)2λ
2
1,

M24 � − (EI)2λ
2
2, M26 � − (EI)2λ

2
3, M31 � M33 � M35 � 0,

M32 � − (EI)1C1, M34 � − (EI)1C2, M36 � − (EI)1C3,
M41 � D1 cos(λ1Li) − mi+1ω2

n sin(λ1Li), M42 � − D1 sin (λ1
Li)− mi+1ω2

n cos(λ1Li), M43 � D2cosh(λ2Li) − mi+1ω2
nsinh

(λ2Li), M44 � D2sinh(λ2Li) − mi+1ω2
ncosh(λ2Li), M45

� D3cosh (λ3Li) − mi+1ω2
nsinh(λ3Li), M46 � D3sinh(λ3Li)

− mi+1ω2
ncosh(λ3Li), M51 � − (EI)2λ

2
1 sin(λ1Li), M52 � − (

EI)2λ
2
1 cos(λ1Li), M53 � (EI)2λ

2
2sinh(λ2Li), M54 � (EI)2λ

2
2

cosh(λ2Li), M55 � (EI)2λ
2
3sinh(λ3Li), M56 � (EI)2λ

2
3cosh

(λ3Li), M61 � (EI)1C1 sin(λ1Li), M62 � (EI)1 C1 cos (λ1
Li), M63 � (EI)1C2sinh(λ2Li), M64 � (EI)1C2cosh(λ2Li),
M65 � (EI)1C3sinh(λ3Li), and M66 � (EI)1C3cosh(λ3Li).
Ci and Di (i � 1 ∼ 3) can be found in Appendix.

Combining equations (8) and (9) yields the element
dynamic stiffness matrix, i.e., Ke, as follows:

Pe � MeN
− 1
e ue � Keue. (10)
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When analyzing the natural frequency of the SCCCBs,
the overall dynamic stiffness matrix, i.e., Kg, can be assumed
in a similar process as the static direct stiffness method.

Pg � Kgug. (11)

+e elastic boundary conditions as shown in Figure 1 can
be written as follows:

V xi( 􏼁 � Kiυ xi( 􏼁,

M1(x) � KMiυ,x(x), x � 0, L,

M2(x) � KMiθ(x), x � 0, L.

⎧⎪⎪⎨

⎪⎪⎩
(12)

+ere are three typical boundary conditions usually
considered: simply supported (S), free (F), and clamped (C).
For the single-span SCCBs, four different boundary con-
ditions at both ends, namely, S-S, C-F, C-S, and C-C, are
usually used in the project, which can be written as follows
based on equation (12):

υ(0) � M1(0) � M2(0) � υ(L) � M1(L) � M2(L) � 0, for S − S,

υ(0) � υ,x(0) � θ(0) � V(L) � M1(L) � M2(L) � 0, forC − F,

υ(0) � υ,x(0) � θ(0) � υ(L) � M1(L) � M2(L) � 0, forC − S,

υ(0) � υ,x(0) � θ(0) � υ(L) � υ,x(L) � θ(L) � 0, forC − C,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

where x � 0, L is the support position along the x-direction.
For the SCCCBs, the boundary conditions can be

expressed as follows:

υ(0) � M1(0) � M2(0) � υ xi( 􏼁 � υ(L) � M1(L) � M2(L) � 0,

(14)

where x � 0, xi, L is the support position along the x-
direction.

+e solving process of natural frequencies can be con-
veniently carried out as follows:

Step 1. Substituting the boundary conditions into
equation (11) and removing the row and column with
the displacement of zero in Kg give a new global dy-
namic stiffness matrix KgN.
Step 2. Assume the natural frequency ωn.
Step 3. Substitute ωn into KgN, and make determinant
|KgN| equal zero.
Step 4. If the determinant is not equal to zero, then
adjust ωn and repeat steps 2∼3.

3. Results and Discussions

3.1. Verification of the Proposed Method

3.1.1. Example 1: Experimental Verification. +is section
focuses on the verification of the proposed method by a two-
span SCCCB in the laboratory. +e natural frequencies
obtained by the proposed method were compared with those
by ANSYS software and laboratory tests. +erefore, the
proposed method was verified.

I-section is used as a test beam as shown in Figure 4. A
concrete slab with 100mm in height and 1200mm in width
is adopted. +e density and elasticity are selected to be ρc �

24 kN/m3 andEc � 3.25 × 104 MPa, respectively.+e density
and elasticity of steel subbeam areρs � 78.5 kN/m3 and

Es � 2.06 × 105 MPa, respectively. +e shear connector has a
height of 80mm and a diameter of 16mm.+e span length is
2 × 6.0m.

+e fundamental frequencies of the test SCCCBs ob-
tained by the proposed method, the ANSYS software, and
the test in the laboratory are listed in Table 1. +e experi-
mental setup is shown in Figure 5(a). In the ANSYS Finite
Element Analysis (FEA) model (see Figure 5(c)), the con-
crete slab is simulated using the SOLID65 element, the steel
subbeam with the SHELL63 element, and the shear con-
nector using the COMBIN39 element.

+e shear-slip curve of the shear connector can be de-
fined as follows:

Q � Qu 1 − e
− βs

􏼐 􏼑
α
,

Qu � 0.5Ast

����

Ecfc

􏽱

≤ 0.7Astfstu,

⎧⎪⎨

⎪⎩
(15)

where Qu is the ultimate load of the shear connector, the
coefficients α � 0.7 and β � 0.8 were determined experi-
mentally [30], s is the slip displacement, Ast is the cross
section of the shear connector, Ec and fc are Young’s
modulus and the compressive strength of the concrete slab,
respectively, and fstu is the ultimate tensile strength of the
shear connector.

Hence, the shear connector stiffness can be obtained
using the secant of the shear-slip curve at 0.66Qu [7, 29, 31]
as shown in Figure 6. K is 2246.7MPa from 0 to 1050mm
and 11350mm to 12400mm, 1001.8MPa from 1050mm to
5350mm and 7050mm to 11350mm, and 2353.0MPa from
5350mm to 7050mm.

Table 1 shows that the eigenfrequencies of the test
SCCCBs. +e results show that for the first-order frequency,
the results obtained by the proposed method agree well with
those obtained by laboratory testing and ANSYS. In Table 1,
the relative errors to the test result are within 2%. However,
for the second-order frequency, the errors of the proposed
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method relative to the test results are 11.3%.+ese errors can
be attributed to the following reasons: neglecting the effect of
shear deformation, longitudinal uneven arrangement of the
shear connectors, division of the structural units, and
measurement errors. In a word, the modified dynamic direct
stiffness method can be used to analyze the dynamic
characteristics of the SCCCBs with variable bending stiffness
along the x-direction. And it is meaningful to further study
the effect of shear deformations on the eigenfrequency of
SCCCBs. It is worth mentioning that the research on those
aspects is in the works.

3.1.2. Example 2: Numerical Example. In this section, three
numerical models are applied to verify the proposed
method. +e cross-section dimensions and material

properties of the beam are shown in Figure 7. +e three
models are as follows:

Case 1: a simply supported SCCB, m1 � 0 kg, which are
present in the published papers [6]
Case 2: a two-span SCCCB, m1 � 15.9 kg (5% of the
weight of the beam)
Case 3: a two-span SCCCB, m1 � 31.8 kg (10% of the
weight of the beam)

In the ANSYS FEA model (see Figure 8) of example 2,
the upper and lower subbeams are all simulated using the
SOLID65 element, and the shear connector using the
COMBIN39 element.

Table 2 shows that the fundamental frequencies obtained
by analytical solution, the proposed method in this paper,
and ANSYS FEA are all about the same for simply supported
SCCB with different shear connector stiffness. +e maxi-
mum relative error between the proposed method and
ANSYS FEA is just 1.0%, which can be concluded that the
results obtained by ANSYS FEA can be used as a reference to
verify the proposed method.

Table 3 shows that the two results obtained by the
proposed method and ANSYS FEA are basically the same,
and the maximum relative error is just 0.92% for Case 2 and
Case 3. +e main reason is that the shear deformation and
moment of inertia are ignored in the proposed method. In
short, the modified dynamic direct stiffness method pro-
posed in this paper can be used to analyze the dynamic
behaviors of SCCCBs with some lumped masses.

3.2. Analysis of Influencing Factors. +is section focuses on
the analysis and discussion of the influencing factors: in-
terfacial interaction, cross-sectional stiffness ratio, number
of spans, single-span length, and the ratio of the side span to
the main span on the natural frequencies of the SCCCBs by
using the proposed method based on the numerical model as
shown in Figure 7.

Equation (3) shows that two key parameters (α andβ)
make the motion differential equations of SCCCBs differ
from those corresponding to the elementary beam theory.
+erefore, they can be used as evaluation indexes of two
influencing factors: interfacial interaction and cross-sec-
tional stiffness ratio. In engineering practice, αhas a wide
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47
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5mm8mm 8mm

8mm8mm

Figure 4: Beam geometry and dimensions (mm).

Table 1: A comparison between the eigenfrequencies.

Order Test result ANSYS FEA +e proposed method
1st 21.56 21.76 (0.93%) 21.32 (− 1.11%)
2nd 25.31 27.06 (6.9%) 28.18 (11.3%)

The secant of the shear-slip curve at 0.66Qu

0.66Qu

Q
 (k

N
)

The shear-slip curve Q-s

1 2 3 4 50
s (mm)

0

10

20

30

40

50

60

70

80

Figure 5:+e beam under experimental testing and FEAmodeling.
(a)+e test beam. (b) Test result (21.56Hz). (c) FEAmodel. (d) FEA
result.
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range of variations. When α � 0 (Ks �∞), the motion
differential equations can degenerate into that corre-
sponding to the elementary beam theory. In contrast, when
α �∞ (Ks � 0), the SCCCB degenerates into two inde-
pendent subbeams. +e values of β, usually, range from 0.7
to 5.0 for typical steel-concrete composite beams [6, 29]. In
addition, a higher value of β corresponds to a thicker
concrete slab and smaller steel subbeam and vice versa.

+e fundamental frequency ratios (ω/ωF) calculated by
equation (11) are used to evaluate the fundamental

frequency reduction of SCCCB, whereω is the fundamental
frequency of the steel-concrete partial interaction composite
beams (PCBs, Ks is finite) and ωF is that of the steel-concrete
full interaction composite beam (FCBs, Ksis infinite).

3.2.1. Interfacial Interaction and Cross-Sectional Stiffness
Ratio. +e fundamental frequencies of SCCCBs with a span
of L � 3 × 4.0m (three spans each with 4.0m) are attained by
equation (11). Hence, the influence of interfacial interaction
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Figure 6: +e shear-slip curve of a single stud (Q-s).
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Figure 7: Cross-section dimensions and material properties (mm).
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Figure 8: FEA model of example 2. (a) Case 1. (b) Case 2 and Case 3.
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(α) and cross-sectional stiffness ratio (β) on ω/ωF is pre-
sented in Figure 9.

Figure 9 shows that the fundamental frequencies of PCBs
are all smaller than those of FCBs owing to the contribution
of the flexible shear studs. However, when α � 0 (Ks �∞),
the value of ω/ωF equals 1. +is indicates that the partial
interaction between the concrete slab and steel subbeam
reduces the fundamental frequencies of SCCCBs.

For a constant value of β, the value of ω/ωF decreases
steeply even when α changes slightly at a small level.
However, it keeps a steady value at the large level. When
β � 3.0, the cut-off point is α � 25; it, gradually, drops with
the decrease of β.

For a nonzero constant value of α, the ω/ωF values show
a nonlinear growth with the decrease of β; smaller β values
lead to a larger growth trend. +is behavior indicates a
weaker influence of interfacial interaction. Ultimately, the
values of ω/ωF approach 1 which reveals that the dynamic
behaviors of SCCCB with a thin concrete slab and large steel
subbeam approach those corresponding to the elementary
beam theory with the gradual decrease of β.

3.2.2. Number of Spans and Single-Span Length.
Figure 10 shows the values of ω/ωF of SCCCB with different
span numbers and single-span length considering that the
value of β equals 2.0. In analyzing the influence of spans’
number (n), the spans are n × 4.0m (n� 1∼5), whereas in
that of the single-span length, (L), the spans are (3 × L)m
(L� 4.0∼8.0).

For the SCCCBs with different numbers of spans but
equal to the single-span length, Figure 10(a) clarifies that the
values of ω/ωF are basically the same as the fundamental
frequencies. It is the same as the general continuous beams.
ω/ωF decreases with the increase of α and maintains stable
values when α is larger than 20. +is refers to the fact that if
the fundamental frequencies of SCCCBs are basically equal,
the interfacial interaction influence is the same entirely.

For the nonzero constant value of α, the values of ω/ωF
obviously increase with the increase of the single-span length
as shown in Figure 10(b). Larger single-span length results in
lower fundamental frequencies of SCCCBs. It indicates that
smaller natural frequency leads to more influence of in-
terfacial interaction.

3.2.3. Ratio of the Side Span to the Main Span. +e values of
ω/ωF of SCCCBs with different ratios of the side span to the
main span, (η) and considering β � 2.0 are analyzed as
shown in Figure 11. As shown in Figure 11(a), the total
length of the beam equals 12.0m, and the spans are dis-
tributed based on η values: L � 3 × 4.0m when
η � 1,L � (3.85 + 4.3 + 3.85)m when η � 0.9,
L � (3.7 + 4.6 + 3.7)m when η � 0.8, L � (3.5 + 5.0 + 3.5)m
when η � 0.7, L � (3.25 + 5.5 + 3.25)mwhenη � 0.6, and
L � (3.0 + 6.0 + 3.0)m when η � 0.5. As shown in
Figure 11(b), the length of the main span equals 8.0m, and
the spans are distributed based on η values: L � 3 × 8.0m
whenη � 1, L � (7.2 + 8.0 + 7.2)m when η � 0.9, L � (6.4 +

8.0 + 6.4)m when η � 0.8, L � (5.6 + 8.0 + 5.6)m when

Table 2: A comparison of the fundamental frequencies for case 1.

K(MPa)
Fundamental frequencies (f/Hz)

ANSYS FEA (fAF) Analytical solution [3, 4] (fAS) Proposed method (fPM) Relative errors ((fPM − fAF)/fAF) × 100%

Infinite 11.94 12.06 12.06 1.0
150 11.24 11.33 11.33 0.8
100 10.95 11.04 11.04 0.8
50 10.26 10.32 10.32 0.6
30 9.60 9.65 9.65 0.5
20 9.02 9.06 9.06 0.4
10 8.06 8.08 8.08 0.2
5 7.28 7.28 7.28 0.0

Table 3: A comparison of the fundamental frequencies for Case 2 and Case 3.

K (MPa)

Fundamental frequencies (f/Hz)
Case 2 (m1 � 15.9 kg) Case 3 (m1 � 31.8 kg)

ANSYS FEA
(fAF)

Present method
(fPM)

Relative errors
((fPM − fAF)/fAF) × 100%

ANSYS FEA
(fAF)

Present method
(fPM)

Relative errors
((fPM − fAF)/fAF) × 100%

Infinite 11.38 11.48 0.88 10.82 10.92 0.92
150 10.69 10.77 0.75 10.15 10.23 0.79
100 10.42 10.5 0.77 9.88 9.96 0.81
50 9.75 9.8 0.51 9.23 9.28 0.54
30 9.12 9.16 0.44 8.63 8.67 0.46
20 8.57 8.6 0.35 8.11 8.14 0.37
10 7.66 7.67 0.13 7.26 7.27 0.14
5 6.92 6.91 − 0.14 6.56 6.55 − 0.15
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η � 0.7, L � (4.8 + 8.0 + 4.8)m whenη � 0.6, and L � (4.0 +

8.0 + 4.0)m when η � 0.5.
As shown in Figure 11(a), the values ofω/ωF are basically

the same for the SCCCB with different ratios of the side span
to the main span but equal total length. It indicates that the
support arrangement has little effect on the influence of
interfacial interaction on fundamental frequency reduction.

As shown in Figure 11(b), the values of ω/ωF exhibit
significant growth with the increase of η values for the nonzero
constant value of α. And if α≥ 0.9, the values ofω/ωF maintain
stable. It can draw a conclusion that the reasonable value of the
ratio of the side span to the main span (η) is 0.9∼1.0.

3.2.4. Lumped Mass. Based on Case 2 in example 2, the
influence of lumped masses on ω/ωF is analyzed as shown in
Figure 12. +e span length of the SCCCB is 2 × 4.0m, which
considers β � 3.0. +e values of lumped mass are
m1 � (0, 31.8, 63.6, 95.4)kg, which are (0%, 10%, 20%, 30%)

of the weight of the beam, respectively.
Figure 12 shows that ω/ωF are basically the same for the

SCCCB with different lumped masses. It reveals that the
lumped masses have almost no impact on the influence of
interfacial interaction on fundamental frequency reduction.
+e preliminary inference is due to the fact that the bending
stiffness of the SCCCB is unchanged.

1.0

0.9

0.8

0.7

0.6

0
20

40
60

80
100

1.5
2.0

2.5
3.0

4.0
5.04.5

3.5

1.0 Span number (n)

Fu
nd

am
en

ta
l f

re
qu

en
cy

 ra
tio

 (ω
/ω

F)

α (m –2)

(a)

4.0
4.5

5.0
6.0

7.07.58.0

6.5
5.5

The sin
gle span length (unit: m

m)

1.0

0.9

0.8

0.7

0.6Fu
nd

am
en

ta
l f

re
qu

en
cy

 ra
tio

 (ω
/ω

F)

α (m –2)

0
20

40
60

80
100

(b)
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4. Conclusions

In this paper, the dynamic behaviors of SCCCBs are ana-
lyzed using a modified dynamic direct stiffness method
based on Euler–Bernoulli’s beam theory. +e main advan-
tages of the proposed method are that it is suitable for the
SCCCBs with some lumped masses and variable bending
stiffness along the x-direction. And the dynamic analysis
results are accurate due to the elimination of approximated
displacement and force fields in derivation. Further, the
proposed method is verified by comparing its results with
those attained using ANSYS software and laboratory tests. In
addition, some influencing factors upon the natural fre-
quencies of the SCCCBs are discussed in detail. +e fol-
lowing conclusions are attained from this study:

(i) Stronger interfacial interaction, larger steel sub-
beam, and thinner concrete slab lead to higher
values of the natural frequency of SCCCBs. Smaller
beam natural frequency leads to a greater effect of
the interfacial interaction on the natural frequency
for SCCCBs. It is the same as the single-span SCCBs.

(ii) +e different numbers of spans but the equal single-
span length and different ratios of the side span to
the main span but equal total length have almost no
impact on the reduction of natural frequency.
However, different single-span lengths and different
ratios of the side span to the main span but equal
main span length affect the reduction of natural
frequency.
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(iii) +e reduction of natural frequency is only affected
by bending stiffness for the SCCCBs, and the
lumped masses have almost no effect on it. It is the
same as the simply supported SCCB, which can be
concluded from the analytical solution of natural
frequency [3, 4].

(iv) +e reasonable values of the ratio of the side span to
the main span (η) for SCCCBs are 0.9∼1.0. +is
conclusion is useful in the design of SCCCBs.

Appendix

B1 �
α2

β
λ51 + αλ31 −

cα2(1 + β)

β
ω2

+ 1􏼢 􏼣λ1,

B2 �
α2

β
λ52 − αλ32 −

cα2(1 + β)

β
ω2

+ 1􏼢 􏼣λ2,

B3 �
α2

β
λ53 − αλ33 −

cα2(1 + β)

β
ω2

+ 1􏼢 􏼣λ3,

(A.1)

C1 �
α
β
λ41 + λ21 −

cα(1 + β)

β
ω2

,

C2 �
α
β
λ42 − λ22 −

cα(1 + β)

β
ω2

,

C3 �
α
β
λ43 − λ23 −

cα(1 + β)

β
ω2

,

(A.2)

D1 � (EI)1C1λ1 +(EI)2λ
3
1,

D2 � (EI)1C2λ2 − (EI)2λ
3
2,

D3 � (EI)1C3λ3 − (EI)2λ
3
3.

(A.3)
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