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Abstract: Imprecision or uncertainty always exists in engineering structures. In recent years, an increasing 

emphasis is placed on quantifying structural performance by explicitly modeling uncertainties. A limited number 

of studies have been conducted on uncertain analysis of complex structures. The time history response analysis is 

extremely time-consuming to solve uncertain problems of complex structures. In this paper, a new probabilistic 

finite element method using response spectrum analysis has been developed to analyze the full-scale lattice dome 

structures with uncertain parameters. Based on the proposed method, the lattice dome structure under different 

earthquake intensity levels is investigated and the probabilistic structural demands are quantified. The results show 

that compared with the perfect dome, the mean deformations and reaction force values at the supports caused by 

earthquakes in the uncertain dome increase, the mean axial force values of the members decrease, and the 

structural demands present large uncertain intervals, indicating that the uncertain variables in the dome lead to an 

increase in the failure probability. The effect of uncertain error sources on the structural demands is discussed. 

This study provides possible applications for the probability-based performance analysis of super large-scale 

structures with uncertain parameters. 

 
Key words: large-scale dome; uncertain parameter; probability analysis; seismic performance; response spectrum 

method. 

 
1. Introduction 

In recent decades, a number of surveys have been conducted on structural failures, and it is found 
that the causes of structural failures [1-4] are, with some exceptions, attributed to human errors. A 
series of investigations [5, 6] indicated that human errors in the structural design or construction are 
responsible for most of structural failures. Usually, incorrect model assumptions or insufficient 
considerations in material behaviors, loads and actions [7] are considered to be important human errors. 
Further investigations [8, 9] also showed that a large number of inadequate considerations occurred in 
structural analysis. Fig. 1 summarizes the proportion of causes of structural failures caused by human 
errors [8]. In Fig. 1, it is found that design and construction errors are the important causes of structural 
failures. 

Ellingwood [2] pointed out that if there is no error control, structural safety is much likely to be 
affected by construction errors. Compared with perfect structures, construction errors lead to various 
types of uncertainties in a structure. In practice, structures are not perfect in many aspects, such as 
structural geometric imperfections. Imperfections in structural systems are inevitable and cannot be 
completely eliminated in construction process. When a structure is mainly subjected to compressive 
loads, geometric imperfections may become particularly dangerous because of the possibility of sudden 
collapse in the structure [10]. Furthermore, imperfections caused by human errors are characterized by 
randomness, and therefore these random imperfections should be considered in structural analysis. 



 
Fig. 1 Causes of structural failures [8] 

  The effects of geometric imperfections on the static stability of large-scale single-layer lattice domes 
have been extensively investigated [11-13]. In these studies, the linear or nonlinear bulking analysis 
(BA) methods were adopted by considering the worst imperfect shape, where an imperfection factor 
was usually assumed, and a Monte Carlo simulation was performed to consider the randomness of the 
imperfections. The random values of imperfections are controlled by the construction quality and 
human errors, and they vary within a range. Therefore, a deterministic structural analysis will not be 
sufficient to properly evaluate the structural performance. Moreover, many other uncertainties exist in 
structures, such as material parameters, section parameters, roof loads, and structural damping ratios, 
which are stochastic in the life cycle of a structure and have different degrees of impact on structural 
performance. All these aspects lead to uncertainties in a structural analysis model. However, significant 
simplifications have been made in deterministic models, and only the safety factors were used to 
consider the structural uncertainties. 
  In the seismic analysis of structures, it has been suggested [14] that uncertainties should be directly 
introduced into performance-based earthquake engineering (PBEE) research. More recently, the 
uncertain modeling of structures in PBEE research has begun to focus on the explicit consideration of 
uncertainties in many parameters, such as constitutive model parameters, shape imperfections, loads, 
damping, and ground motions, in which, as stated by Bradley [15], unlike those low-level constitutive 
model parameters, the uncertainties at the structure-level are at a high level and tend to focus on the 
specific problems and systems. Therefore, it is challenging to carry out uncertain numerical simulations 
and analyses for complex structures. The challenge is mainly reflected in two aspects: the complexity 
of numerical modeling and the time-consuming computation. 

The assessment of uncertain structures plays an important role in PBEE. Probabilistic structural 
analysis offers the unique tool to analyze uncertainties in structural designs, while probabilistic 
evaluations for large-scale structures can only be realized by computer simulations [16], which help to 
improve performance predictions and solve structural reliability problems. Various computer-aided 
tools have been developed in structural engineering, and performance-based analysis has been a 
beneficiary. 

Structural performance is commonly evaluated by time-history response analysis (THRA) and 
response spectrum analysis (RSA) methods [17]. The THRA method is time-consuming or even 
impossible when solving the probabilistic problems of uncertain structures, and it is unrealistic to use 
this method to analyze a large number of sampling structures with uncertain parameters, especially for 
super large-scale structures. At present, RSA is an important structural seismic analysis method and can 
approximately estimate the structural demands under transient dynamic loads in a quasi-static manner. 
In particular, it can solve the probabilistic problems of uncertain large-scale structures faster than 
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THRA method. In general, a limited number of studies have been performed for uncertain analysis 
problems under dynamic loading or quasi-static conditions, and they are only restricted to simple 
structures, such as the structures in the literature [17, 18]. Recently, a probabilistic assessment for 
three-dimensional frame structures under bidirectional seismic excitations was implemented using RSA 
with the complete quadratic combination (CQC) method [19]. According to the site response spectra, 
Moustafa and Mahadevan [20] developed a reliability analysis method for structures with uncertain 
parameters to avoid explicit dynamic analysis for three-dimensional structures. Generally, studies on 
complex uncertain structures are still limited. 

The single-layer lattice domes are important typical public buildings. However, the probabilistic 
structural performance analyses for large-scale single-layer lattice domes with various types of 
uncertainties have not been extensively carried out in the PBEE framework because of the structural 
shape and complexity. 

The key objectives of the paper are as follows: 
� introduce the probabilistic analysis and RSA methods into a super large-scale single-layer lattice 
dome in PBEE methodology; 
� provide modeling methods of important low-level and high-level sources of uncertainties by 
introducing stochastic fields in association with probability distributions and accounting for the 
intervals of the variables in a dome;  
� develop a probabilistic finite element code to evaluate the structural performance using the RSA 
method based on the Abaqus and Python platforms; and 
� determine the effects of the uncertain variables and analysis methods on structural failure. 

2. Modeling methods for imperfect structures 
2.1 Geometric imperfections 
Usually, geometric imperfections in a steel structure include [10, 11]: (a) global structural shape 

imperfections, (b) member shape imperfections, and (c) cross-sectional imperfections. 
(a) Global shape imperfections (structural level) 
In the finite element method, the geometry W of the dome is described by a set of nodes {𝑅! , 𝑖 =

1,…𝑁}. A nodal deviation caused by geometric imperfection is shown in Fig. 2. 
The deviation of each node can be represented by a random vector {D𝑅! = {D𝑋! ,D𝑌! ,D𝑍!}, 𝑖 =

1,…𝑁}, and each component in D𝑅! is random, which can be described by a probability density 
function (PDF). The relationship between the design position of a node {𝑅!} and its real position -𝑅!′. 
can be described by the following equation, 

-𝑅!′. = {𝑅!} + {D𝑅!}                               (1) 
For a given node, the nodal deviation value 𝐸𝑟𝑟(W!) is computed by the following equation, 

𝐸𝑟𝑟(W!) = 4D𝑋!" + D𝑌!" + D𝑍!"                          (2) 

where D𝑋!, D𝑌!, and D𝑍! are the coordinate deviations of a node in the 𝑥, 𝑦, and 𝑧 directions, 
respectively. This method has been used for uncertain analysis in the literature [14]. 



 
Fig. 2 Node deviation in three-dimensional space. 

The imperfection amplitude refers to the maximum node deviation from the design position. 
However, the nodal imperfection amplitude is bounded because of error control. For example, for a 
node with an imperfection amplitude 𝑑#$%, assuming that each component in D𝑅! has the same 
probability distribution and bound, then each component has a maximum deviation value of 𝑑#$% √3⁄  
according to Eq. (2). Thus, each component is within the range,  

−𝑑#$% √3⁄ ≤ [D𝑋! ,D𝑌! ,D𝑍! ] ≤ 𝑑#$% √3⁄                       (3) 
  For a large-span steel dome, according to the investigation findings, the imperfection amplitude of 
each component is equal to 𝑚𝑖𝑛{𝐿 1500⁄ 	𝑚, 0.04	𝑚} [21], where 𝐿 is the span length of the dome. 
In addition, it was also reported that the approximate imperfection amplitude of each component in 
D𝑅! should be set to 𝐿 500⁄ 	𝑚 [22]. According to the field tests for a large-scale dome [23], the node 
deviation amplitude of each component is approximately 0.03 m, the standard deviation is near 0.0173 
m, and the distribution of the node deviation is close to a normal distribution.  
  A Monte Carlo simulation (MCS) is performed and a series of nodes with errors are randomly 
generated, as shown in Fig. 3. Here, the node error of each component has a Gaussian distribution with 
a mean of zero, standard deviation of 0.0231 m, and bound ranging from {-0.0693 m, 0.0693 m}. Each 
actual nodal position of an imperfect dome is within a sphere with the ideal node position as the sphere 
center. 

 
Fig. 3 Node deviations for one sample 

  (b) Member imperfections (member level) 
Initial geometric imperfections include local and overall imperfections [12]. Initial local geometric 

imperfections refer to the surface imperfections of steel members. The initial overall geometric 
imperfection is the profile imperfection of the whole member along the member length, whose 
direction is random. In this paper, only the overall geometric imperfection is considered. Here, the 
initial overall member imperfection considers the initial deflection of the member, residual stresses, and 
initial eccentricity of the member. The initial deflection 𝜔&(𝑥') of a member, the deflection 𝜔"(𝑥') 
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caused by residual stresses, and the deflection 𝜔((𝑥') caused by the initial eccentricity produce a total 
equivalent imperfection 𝜔(𝑥'), as shown in Fig. 4.  

 

Fig. 4 Member imperfections 

In Fig. 4, the total equivalent imperfection can be written as, 
𝜔(𝑥') = 𝜔&(𝑥') + 𝜔"(𝑥') + 𝜔((𝑥')                        (4) 

Usually, the imperfection of a member with a length 𝑙 is described by a half wave shape [11], 

𝜔(𝑥') = 𝑒)	𝑠𝑖𝑛 L𝜋𝑥
'
𝑙N O	                            (5) 

where 𝑒) is the deflection at the mid-span. In this paper, an additional node 𝑘 with a node deviation 
of 𝑒) in the direction perpendicular to the member is added to simulate the imperfection. Here, 𝑒) is 
a variable that has a given probability distribution. Because node 𝑘 is located in a plane perpendicular 
to the 𝑥' axis, the node deviation of each component is within a circular area, and each component is 
bounded in the following range,  

−𝑒 √2⁄ ≤ [D𝑦!′ ,D𝑧!′ ] ≤ 𝑒 √2⁄                           (6) 
where D𝑦!′  and D𝑧*′ are the node deviations in the local 𝑥'𝑜'𝑦' coordinate system. Here, the node 
deviation D𝑥!′  is equal to zero. Then, the node deviations are converted to the global coordinate system. 
For global imperfections, typically, 1/1000 of the span length is used as the imperfection magnitude 𝑒) 
[24]. The imperfections will not lead to initial forces or structural stresses. In this paper, the member 
imperfection was explicitly modeled in finite element simulation. 

 
Fig. 5 Member imperfection for one sample 

  Here, an MCS simulation is performed, and the imperfection errors of a series of members are 
generated for the y¢ and z¢ directions, as shown in Fig. 5. The imperfection error of each component has 
a Gaussian distribution with a mean of zero. Here, a given member length is 𝑙=4 m, the imperfection 
amplitude is set to be 𝑙/1414 for the y¢ and z¢ directions, and the standard deviation is set to be 
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𝑙/(1414*3). The imperfection errors are within a circular area with a radius of 𝑟$ = 𝑙/1414. This 
means that each actual nodal position of the mid-span node in an imperfect member is within a circular 
area with an ideal node position as the circle center, and the circular area is perpendicular to the 
member. In current study, the length of each member is automatically calculated according to the nodal 
coordinates with deviations.  

(c) Cross-sectional imperfections (section) 
Cross-sectional imperfections refer to the change of the ideal cross-sectional shape [12]. The most 

common approach to describe cross-sectional imperfections is to consider the cross-section thickness 
as a variable [25]. A series of detailed measurements for cross-section thickness of steel pipes and 
continuous metal shells have been reported [12, 26], and it was observed that the distribution of 
thickness was generally symmetric and could be approximately characterized by a Gaussian probability 
density function; the standard deviation of the wall thickness is approximately 280 µm; however, the 
wall thickness typically has a magnitude of ±1	mm. The imperfection errors can also be generated 
using the MCS method. In addition, local imperfections for cross-sections are not considered in this 
paper. 

2.2 Other important parameters 
  The elastic modulus of steel material is also of particular interest to structural engineers. Structural 
stability also relies on this parameter. Based on the material experiments, a significant variability in the 
elastic modulus has been found for steel material [27]. According to a series of experimental studies on 
the elastic modulus [27], the elastic modulus 𝐸 can be best described by a normal distribution with a 
variation factor of 0.045.  

In deterministic analysis, roof load is typically considered to be uniformly distributed. In reality, roof 
load varies spatially in the life cycle of a structure according to expert surveys. The roof load can be 
appropriately modeled by the PDF of a Gaussian distribution [28], and it is also observed that the roof 
load value has a bound, which is neither arbitrarily large nor arbitrarily small. Many codes suggest 
[29-31] that a standard deviation factor of 0.2 to 0.3 is appropriate. However, more detailed information 
is lacking for roof loads. 

For structures subjected to earthquake ground motions, more uncertainties result from damping, 
which includes the uncertainties coming from the damping mechanism and damping ratio. This study 
does not consider the uncertainty coming from the damping mechanism and assumes the viscous 
damping mechanism. The quantification of the damping ratio in a structure depends on many factors, 
such as identification methods and estimation technologies, leading to large variability [32]. It was 
observed that the variability in damping was as high as between 30% and 80%, and generally, the 
damping ratios tend to follow a log-normal distribution [33]. Nevertheless, a simple single PDF may 
not well describe the distribution of structural damping ratios. In this study, a complex distribution is 
assumed and introduced to present the uncertain characteristics of damping ratios. Here, it is assumed 
that the mean values of the modal damping ratios follow a Gaussian distribution, and then the damping 
ratios with this mean value follow a logarithmic normal distribution, as shown in Eq. (7) 

W
x)~𝑁(𝜇, 𝜎

")
𝜇~𝐿𝑁(𝑚𝑢(x)), [𝑠𝑖𝑔𝑚𝑎(𝜎)]

")                          (7) 

where x) is the mean value of the damping ratios, µ is the mean value of x), σ is the standard 
deviation of the damping ratios, 𝑚𝑢(x))		is the mean value of the logarithmic values, and sigma(σ) 
is the standard deviation of the logarithmic values. A comparison between the normal distribution and 
the normal-lognormal distributions for the damping ratio is performed using the MCS method, and the 



 
 

sample size is 10000, as shown in Fig. 6. Here, the damping ratios have a bound of {0.01, 0.05}, a 
mean value of 0.03, and a standard deviation of 0.01. It is observed that the damping ratios following 
the normal and lognormal distributions are more discrete than those following only the normal 
distribution, and the probability of obtaining the maximum or minimum damping ratio increases in the 
normal and lognormal distributions, presenting a complex characteristic.  

Unlike the node deviations and the member imperfections, for the above variables, their uncertainties 
are assigned to the overall structure based on the sampling in this study. 

  

Fig. 6 Comparison between the lognormal distribution and the normal and lognormal distributions 
3. Numerical example 

3.1 Model and uncertain parameters 
A welded Kiewitt8 (K8) large-scale single-layer lattice dome [34] is selected as an example. The 

model is shown in Fig. 7 (a). Steel pipes have a cross-section with a size of ϕ146´5 mm. The uniform 
roof load is 150 kg/m2. The additional information can be found in the literature [34].  

 
Fig. 7 Perfect dome [34] and dome with imperfections 

 A 3-dimensional numerical model of the perfect dome was established in Abaqus. The steel 
members were modeled using beam element B31. An elastic-perfectly plastic steel material model was 
used in the study. The finite element model consists of 4225 nodes and 6272 elements. A sample dome 
with shape imperfections and member imperfections is presented in Fig. 7(b). It should be noted that to 
better present the dome with imperfections, larger values are used for the standard deviations and 
bounds of the imperfections. In RSA method, the CQC method is selected in the structural analysis, and 
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the responses under the multidirectional excitations are combined using the 40% rule [35]. The 
literature [35] provides more details for the RSA method. 

According to the previous analysis, the important variables in a dome are listed in Table 1. Each 
variable is bounded within a range. All these values listed in Table 1 are based on the literature listed 
above and related codes. Unlike the study in the literature [14], all these variables are explicitly 
modeled in current study. 

Table 1 Variables in the uncertain structure 

Variable (V) Bound Mean Standard deviation (s) Distribution 

Elastic modulus /Pa {1.9e11, 2.22e11} 2.06e11 9.27e9 

𝑉~𝑁(𝑚𝑒𝑎𝑛, 𝜎!) 

Node deviation /m {-0.069, 0.069} 0 0.0231 

Member imperfection /m {-l/1414, l/1414} 0 l/4242 

Cross section thickness /mm {-1, 1} 0.005 0.28 

Roof load /kg {1620, 1980} 1800 133.2 

Damping 
µ {0.01, 0.05} 0.03 0.01 𝑉~𝑁(𝑚𝑒𝑎𝑛, 𝜎!) 

Damping ratio {0.01, 0.05} µ 0.01 𝑽~𝑳𝑵(µ, 𝝈𝟐) 

3.2 Development of a probabilistic finite element code 

  

Fig. 8 Computing procedure for uncertain analysis 
The analysis of the uncertain structure is carried out in Abaqus Óv6.14.4 and Python Óv3.6. To run 

the simulation, the perfect model is first created and meshed in the Abaqus CAE and then saved. After 
the INP file for the perfect model is output, based on the Python scripts coded in the Python 
environment, a group of variables are generated using the MCS method according to Table 1. The 
perfect positions of the individual nodes are replaced by the imperfect node positions, and other 
variables are also assigned to the imperfect dome through Python scripts; thus, a new INP file for 
uncertain analysis is generated. The new INP file is submitted to the Abaqus solver, and the Abaqus 
solver is invoked by the Python scripts to solve the dynamic demands and generate the ODB file. Then, 
the ODB file is opened and read using Python scripts; thus, the structural demands are extracted. The 
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computations stop once the sample size is reached. Here, probability analysis is performed using 
MATLAB software based on the extracted data. This computing procedure is presented in Fig. 8. 

In this study, the computations are carried out on a single Intel(R) Xeon(R), 3.50 GHz CPU with 32 
GB of RAM memory. The total computation time taken to solve the structural demands per 5000 
sample structures is approximately 61.7 hours. 

It has been found that the THRA method [14] can only carry out structural probability analysis with 
a small number of ground motions, and the sampling size cannot be very large, otherwise, the structural 
analysis cannot be run. Compared with the THRA method, the RSA that avoids the explicit dynamic 
analysis of the uncertain structures is a quasi-static analysis method and can be directly used for larger 
scale computations with a higher sampling precision. 

3.3 Sample size 
In the MCS, the solution converges as the sample size increases. An accurate solution can be 

obtained by using a sufficiently large sample size. However, the computational cost increases with the 
increase in sample size. For the variables with bound ranges, the required sampling size is far less than 
that required in an ordinary MCS. The convergence criteria have been proposed and verified in the 
literature [14], where only a relatively small sampling size with the order of magnitude of 1´103 can 
make the solution converge. According to this method, a sampling size of 5000 is selected for each 
analysis in this paper. The sampling size is sufficient to perform the probability structural analysis. In 
this paper, although the direct MCS is used, it may obtain the accurate results in engineering, while 
those improved MCS methods may get accurate results in mathematics because the PDFs of the 
uncertain parameters used in an analysis were fitted based on the previous limited test data. In addition, 
due to the spectacular growth of computing capacity at present, it is not difficult to calculate the 
structural demands of 5000 uncertain structures.  

3.4 Dynamic characteristics of the dome 
 The first 150 mode frequencies of the perfect dome and two sample domes with the parameters in 

Table 1 are shown in Fig. 9. The frequencies generally increase linearly, and the uncertain variables of 
the dome have an obvious effect on the frequencies. The first frequencies of the three domes are 1.4051 
Hz, 1.254 Hz, and 1.3318 Hz, respectively. 

 
Fig. 9 Frequencies of the domes 

  The total response of the dome is equal to the superposition of each mode, and it is usually not 
necessary to include all high-order modes in the superposition process because the modes with the 
lower frequencies generally have the larger effect on the structural demands, while the effect of the 
higher-order modes tends to decrease. In this study, the first 150 modes are used to estimate the 
structural demands. Although the total effective mass of the 150 modes covers approximately 85% of 
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the total structural mass, for complex structures, the accuracy of the calculation for higher order modes 
using the finite element method is relatively low, and it is necessary to limit the number of vibration 
modes that are considered in RSA. 

The distributions of the 1st and 20th frequencies from 5000 sampling structures are shown in Fig. 10. 
The frequency values of the 1st and 20th modes range from approximately 1.1 Hz to 1.55 Hz and from 
1.2 Hz to 1.65 Hz, respectively. The mean frequencies are 1.357 Hz and 1.426 Hz for the 1st and 20th 
modes, respectively. For the perfect dome, the frequencies are 1.4051 Hz and 1.4759 Hz, respectively. 
The differences between the perfect dome and the sample dome are caused by the uncertain parameters 
in the sample structure. Overall, the distributions seem to be approximately normal.  

 
Fig. 10 Frequency values of the 1st and 20th modes of the sample dome 

3.5 Earthquake ground motions 
  As listed in Table 2, 10 natural seismic records are selected from the literature [17, 20] for the 
structural analysis. According to the information, the spectra can be plotted according to the 
acceleration data from the PEER Strong Ground Motion Databases. Fig. 11 shows the acceleration 
spectra and the mean spectra of these ground motions. 

Table 2 Earthquake ground motions [17, 20] 

Year Event Recording station Mw Fault distance /km 

1979 Imperial Valley-06 Chihuahua 6.5 7.3 

1976 Gazli, USSR Karakyr 6.8 5.5 

1980 Irpinia, Italy-01 Calitri 6.9 17.6 

1983 Coalinga-01 Pleasant Valley P.P bldg 6.4 8.4 

1986 N. Palm Springs Whitewater Trout Farm 6.1 6.0 

1989 Loma Prieta BRAN 6.9 10.7 

1992 Cape Mendocino Cape Mendocino 7.0 6.9 

1994 Northridge Pacoima Kagel Canyon 6.7 7.3 

1999 Chi-Chi, Taiwan TCU067 7.6 0.6 

2002 Denali, Alaska TAPS Pump Station #10 7.9 2.7 
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Fig. 11 Spectra of the natural earthquake ground motions 

 
Fig. 12 Spectra for the uncertain analysis 

  The mean spectra in Fig. 11 are used in the RSA, which are adjusted by using scaled factors to 
construct the minor, basic, major, and super earthquakes. Based on minor earthquakes, the scaled 
factors are 2.0 for basic earthquakes, 4.0 for major earthquakes, and 8.0 for super earthquakes. The 
spectra that are used for the uncertain analysis are shown in Fig. 12. According to the eigenvalue 
analysis, the periods of the perfect dome fall approximately within the range of T&+)=0.49 s to 
T&=0.71 s. 

3.6 Limit state 
In a large-scale dome, the failure of the whole structure is often characterized by sudden collapse, 

which involves the safety of the whole structure. When a dome collapses, it can no longer withstand 
external loads. A nonlinear bulking analysis that is different from the traditional pushdown analysis 
method [14] is performed to determine the limit states of the dome in current study, and it takes into 
account the effects of horizontal seismic force on vertical deformation of the structure using scale 
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factors. It includes two analysis steps: (1) Linear eigenvalue buckling analysis: the structural failure 
modes under three-dimensional ground motions are considered, where static loads are first applied to 
each node in three directions, and the load scaling factors of the three directions are approximately 1, 
0.85, and -0.5 (negative Z-axis), respectively, because it is observed in Fig. 12 that the scale factors of 
the spectrum values with periods of 0.49 s to 0.71 s are approximately 1, 0.85, and 0.5 for the X, Y, and 
Z directions, respectively; and (2) Post-buckling analysis: it is realized by means of static analysis 
using the Riks algorithm on the basis of the first step.  

 
Fig. 13 Load-deformation curves. 

Here, a statistical global deformation for the dome is adopted to determine the limit state using 
load-deformation curve. The statistical deformation of the dome is quantified by, 

∆= e∑ ∆*",
*-& /n                                 (8) 

where ∆ and ∆* are the mean vertical deformation of the dome and the vertical deformation of the 
𝑖./ node, respectively; n is the number of nodes in the dome. According to the above analysis, the 
load-deformation relationships of the perfect dome and 10 sample domes are shown in Fig. 13. It is 
observed that the global deformation first increases linearly as the applied loads increase, and then 
when a critical deformation is reached, the total reaction force at the supports suddenly decreases, the 
dome loses stability, and its deformation continues to increase. The load-deformation curve of the 
perfect dome is close to the average level of the load-deformation curves of the sample domes. 
Therefore, in this study, the critical deformation 𝑑0 of the perfect dome is determined as the ultimate 
limit state.  

However, it should be noted that the RSA involves the calculation of only the peak values of the 
structural demands. Here, statistically, it is assumed that the peak response of each node occurs at the 
same time for the RSA [20].  
4. Structural probabilistic analysis 

4.1 Distribution of the mean vertical deformation and the cumulative probability 
According to the above analysis, when the vertical mean deformation 𝑑0 of the dome with uncertain 

parameters is reached, the structure is considered to be out of service. The structural safety can be 
described by the cumulative probability curve. The cumulative probability represents the probability 
value that is less than or equal to a displacement limit, 

𝑝1 = 𝑃(𝑑 ≤ 𝑑0)                               (9) 
where 𝑑 and 𝑑0 are the mean vertical displacement and displacement limit, 𝑝1 is the probability 
value when 𝑑 ≤ 𝑑0, and 𝑃(∙) is the cumulative probability function of the displacement 𝑑. Here, the 
statistical vertical mean displacement 𝑑! of the 𝑖./ sample structure is statistically determined by the 
following equation,  
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𝑑! = e∑ ∆*",
*-& /n                              (10) 

The cumulative probability curves of the sample structures under minor, basic, major, and super 
earthquakes are shown in Fig. 14. Each cumulative probability curve in Fig. 14 is obtained based on 
5000 sample structures. According to Fig. 14, it is observed that the probability 𝑝1  of the 
displacement being less than 𝑑0=0.0476 m is 100% under minor, basic, and major earthquakes. This 
indicates that the dome with uncertain parameters will not fail under these earthquakes, and the 
structure is sufficiently safe. However, under the super earthquake, the probability 𝑝1  of the 
displacement being less than 𝑑0=0.0476 m is only 0.72%, while the probability of the displacement 
being larger than 𝑑0=0.0476 m will be as high as 99.28%. Clearly, this structure fails in a super 
earthquake with a very high probability.  

For the perfect dome, the mean vertical displacements are 0.065 m, 0.013 m, 0.0259 m, and 0.0522 
m under minor, basic, major, and super earthquakes, respectively. According to the 5000 sample 
structures, the mean vertical displacement values of the imperfect dome are 0.0066 m, 0.0133 m, 
0.0265 m, and 0.0531 m, respectively. Compared with the perfect dome, the mean vertical 
displacement values of the imperfect dome are slightly larger than those of the perfect dome. Moreover, 
they have uncertain intervals of {0.0056 m, 0.0082 m}, {0.0111 m, 0.01644 m}, {0.0222 m, 0.0329 m}, 
and {0.0445 m, 0.0657 m}. Clearly, they are not deterministic, and these values lead to the variation in 
estimating the displacement.  

 
     Fig. 14 Cumulative probability of the mean deformations           Fig. 15 Maximum vertical nodal displacement 

Fig. 15 shows the maximum vertical nodal displacement values of each sample structure under the 
above earthquakes. Their mean values are 0.0146 m, 0.0293 m, 0.059 m, and 0.117 m, while these 
values are 0.0096 m, 0.0191 m, 0.0382 m, and 0.0764 m for the perfect dome, respectively, indicating 
that the uncertainties of the parameters greatly increase the structural deformation demand. Because the 
RSA is linear, these values also increase approximately linearly. Under the super earthquake, the 
maximum value of the nodal displacements in Fig. 15 is as high as 0.273 m, which is approximately 
1/440 of the span length, while the maximum values of the nodal displacements under minor, basic, 
and major earthquakes are 0.0341 m, 0.0682 m, and 0.1364 m, respectively. The maximum 
displacement values also increase approximately linearly. 

The cumulative probability distribution functions can be obtained by fitting the curves using the 
generalized extreme value (GEV) distribution with shape parameter 𝑘, scale parameter 𝜎, and location 
parameter 𝜇. The cumulative distribution function of the GEV distribution can be described by the 
following equation [36], 

𝐹(𝑥; 	𝜇, 𝜎, 𝑘) = 𝑒𝑥𝑝	{−[1 + 𝑘(%23
4
)]2&/6}                     (11) 
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where 𝑥 is the variable. The fitting curves for the four earthquake intensity levels are shown in Fig. 16. 
The shape parameters in the GEV distributions are very close, and they have a mean value of -0.1676, 
while the scale parameters and location parameters linearly increase as the earthquake intensity 
increases. It is also observed that if the parameters 𝑘 , 𝜎 , and 𝜇  in the cumulative probability 
distribution function for the minor earthquake can be obtained, the parameters under other earthquake 
intensity levels are 𝑘, 2σ, and 2𝜇 for basic earthquake, 𝑘, 4σ, and 4𝜇 for major earthquake, and 𝑘, 
8σ, and 8𝜇 for super earthquake, respectively, and the parameters 𝜎 and 𝜇 depend on the earthquake 
intensity when using the RSA method. Thus, the cumulative probability distributions for different 
earthquake intensity levels can be predicted using those parameters under minor earthquake. 

 
Fig. 16 Cumulative probability distribution functions of the mean deformation. 

4.2 Distribution of the total vertical reaction force caused by earthquakes 
Based on 5000 sample structures, the distributions of the total vertical reaction force (not including 

the gravity load) at the supports caused by the above four earthquake levels are shown in Fig. 17. Here, 
it is assumed that the peak vertical reaction force of each support occurs at the same time. The mean 
values of the total vertical reaction force caused by the earthquakes are 619 kN, 1237.7 kN, 2475.4 kN, 
and 4950.8 kN, respectively, while the total vertical reaction force values of the perfect dome are 614.9 
kN, 1229.7 kN, 2460 kN, and 4918.8 kN, respectively. The vertical reaction force values for the 
imperfect dome are slightly larger than those of the perfect structure. In Fig. 17, the standard deviations 
increase linearly as the earthquake intensity increases. Therefore, according to the above analysis, this 
method can conveniently and approximately evaluate the seismic performance of imperfect domes 
under other earthquake levels based on a minor earthquake. For all cases, the variation coefficient 
(sigma/mean) of the vertical reaction force is approximately 0.0604. However, the uncertain structure 
causes a wide interval in the vertical reaction force. The intervals of the vertical reaction force are 
{492.02 kN, 723.4 kN}, {984.1 kN, 1446.5 kN}, {1968.2 kN, 2892.9 kN}, and {3936.4 kN, 5785.9 
kN}, respectively. These intervals represent the uncertainties in the reaction force. 

Fig. 18 shows the cumulative probability distribution curves and their fitting curves under the four 
earthquake levels. Among the distribution parameters in the fitting curves, the values of the shape 
parameter 𝑘 are also very close and are approximately equal to -0.3, while the scale parameter σ and 
location parameter 𝜇 increase linearly, which depends on the earthquake intensity. Based on this, the 
distributions of the vertical reaction forces under other earthquake intensity levels can also be estimated 
using the data for minor earthquake in RSA. 
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Fig. 17 Distribution of the vertical reaction force 

 

Fig. 18 Cumulative probability distribution function of the vertical reaction force 
4.3 Vertical reaction force and vertical mean deformation  

 For each earthquake intensity level, the relationship between the total vertical reaction force and 
statistical vertical mean deformation is presented in Fig. 19. As the earthquake intensity level increases, 
the forces and deformations linearly increase within a radial interval and are uncertain but bounded. 
The degree of the data discretization depends on the earthquake intensity; that is, the greater the 
earthquake intensity, the more the force-deformation relationship deviates from the average curve. This 
indicates that the uncertainties of the structural performance increase with increasing earthquake 
intensity. Clearly, the uncertainties in a structure are an important factor that affects the structural 
performance, and they must be considered when estimating the structural demands. However, because 
the RSA method is linear, it is difficult to accurately predict the structural performance when a structure 
is highly nonlinear, such as when the mean structural deformation is larger than the limit deformation 
of 0.0476 m.  
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Fig. 19 Distribution of the relationship between the vertical reaction force and vertical mean deformation. 
4.4 Axial force distribution due to an earthquake 

  Uncertainties in a structure result in uncertain axial forces in the members. The following index is 
used to describe the statistical mean axial force of a sample structure,  

𝐹! = 4∑ 𝐹$,!"
8!
!-& /𝑛9                              (12) 

where 𝐹! is the statistical mean value of the axial force of all members in the 𝑖./ sample structure; 
𝐹$,! is the axial force of the 𝑖./ element in the dome; and 𝑛9 is the number of elements of the dome.  

 
Fig. 20 Mean axial force distribution in the members. 

  Fig. 20 shows the distributions of the statistical mean axial forces of all members under minor, basic, 
major, and super earthquakes, in which the intervals of the mean axial forces are {18.4 kN, 24.2 kN}, 
{36.8 kN, 48.4 kN}, {73.6 kN, 96.7 kN}, and {147.2 kN, 193.3 kN}, respectively. The distributions in 
the statistics are approximately normal. The mean axial force values caused by earthquakes are 21.6 kN, 
43.2 kN, 86.4 kN, and 172.8 kN, respectively, and they increase linearly. The standard deviations also 
increase linearly. Statistically, they have a variation coefficient of 0.041. In a perfect dome, the mean 
values of the axial force are 22.4 kN, 44.7 kN, 89.5 kN, and 179.1 kN. They are slightly larger than the 
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values of the dome with uncertain parameters. This is because the existence of uncertain parameters 
leads to a decrease in the overall stiffness of the structure.  
 The maximum axial force values in the domes with uncertain parameters are shown in Fig. 21. These 

values are also bounded, and they have mean values of 45.4 kN, 90.8 kN, 181.7 kN, and 363.4 kN. 
These data are not deterministic and have randomly distributed characteristics. Compared with the 
deterministic method, uncertain analysis can present uncertainties in the axial force. Although the 
calculation is time-consuming, the uncertain analysis of the structure has many advantages in 
engineering design. 

 

Fig. 21 Maximum axial force value in the dome with uncertain parameters. 

  4.5 Effect of the modal combination method on the structural demands  
Some methods for performing the combination of peak modal responses are available. Typically, 

these methods are the square root of the sum of the squares (SRSS) method and the CQC method. In 
general, when the frequency difference between two adjacent modes is more than 20%, the effect of the 
cross-modal correlation is slight, and the results provided by CQC and SRSS methods are the same 
[37]. In this paper, the difference between the SRSS method and the CQC method in obtaining the peak 
modal demands is compared.  

 
Fig. 22 Distributions of the mean vertical deformations using different combination methods. 

Fig. 22 shows the distributions of the mean vertical deformations of the whole structure under basic 
earthquake using different combination methods based on 5000 sample structures. The mean values of 
the structural demands are 0.0135 m for the CQC method and 0.0144 m for the SRSS method. For the 
perfect dome, the mean vertical deformations of the whole structure are 0.013 m for the CQC method 
and 0.0138 m for the SRSS method. The cumulative probability curves of the mean vertical 
deformations, mean axial forces, and vertical reaction forces at the supports are shown in Fig. 23. 
Compared with the CQC method, the SRSS method is not conservative in estimating the deformation 
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demand of the uncertain dome; however, it is conservative in estimating the mean axial force and 
vertical reaction force caused by earthquakes. Especially in estimating the vertical reaction force, the 
two methods have a very large difference. Generally, the SRSS method does not yield appropriate 
results where the frequencies of the dominant modes of the structure are very close, such as for the 
dome structure.  

 

 

Fig. 23 Cumulative probability of the structural demands using different combination methods. 
5. Effect of uncertain parameters on the structural demands 

Uncertainty estimates play an important role in making decisions. Another important aspect of 
uncertainty analysis is the importance quantification of each uncertain parameter. In this study, the 
effects of each parameter on the maximum vertical structural deformation and axial force are analyzed. 
Here, each parameter is quantified based on 5000 sample structures. An evaluation indicator 𝑆! of the 
𝑖./ source is determined as,  

𝑆! =
:1"#$2:1"#$,&

:1"#$,&
                              (13) 

where 𝑆𝑑#$% is the maximum structural demand value (such as the maximum deformation in all 
nodes and the maximum axial force in all members) in the 5000 sample structures, and 𝑆𝑑#$%,; is the 
corresponding maximum structural demand value of the perfect dome. 

Fig. 24 shows the evaluation indicator values under the basic earthquake level. According to the 
evaluation indicator values, it can be seen that these uncertain parameters have a greater influence on 
the deformation of the structure than on the axial force of the members. However, the geometric 
imperfections have the most significant effect on the deformation and axial force demands; for the 
deformation demand, the next factors are the cross-section, damping, load, and elastic modulus, while 
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for the axial force demand, the next factors are the damping, load, cross-section, and elastic modulus; it 
has been found that the effects of the different parameters on the different structural demands are not 
the same. In general, the low-level elastic modulus parameter has a small effect on the structural 
performance. In addition, according to Eq. (13) and Fig. 24, the results also reveal that the demand 
values of a dome with uncertain parameters are higher than those with deterministic parameters. 
Clearly, the existence of uncertain parameters results in the deterioration of the structural performance 
of the dome. 

Unlike the THRA method [14], imperfections are the most important factor in a dome instead of the 
damping when using the RSA method to evaluate the structural seismic performance. In addition, the 
importance of the influence of these uncertain parameters on the structural performance is also different 
between the two methods. Therefore, researchers and structural engineers should comprehensively 
predict the impact of these uncertain parameters on the seismic performance of structures based on 
several methods. 

 
Fig. 24 Effect of uncertain parameters on the structural demands. 

6. Conclusions 
Uncertain analysis plays an important role in the PBEE framework. However, the probabilistic 

structural performance for large-scale single-layer lattice domes with multiple uncertainties has not 
been extensively investigated. The present study develops a probabilistic finite element code to 
evaluate the seismic performance of the dome using the RSA method under different earthquake 
intensity levels. Important uncertain parameters and their intervals are introduced in probability 
analysis. Based on a large number of sample structures, the structural demands are quantified, and the 
upper and lower bounds of the structural demands are given, presenting the uncertain characteristics. 
Compared with the perfect dome, it is found that in the imperfect dome, the statistical mean structural 
deformation and vertical reaction force values at the supports increase and the statistical mean axial 
forces in the members decrease; the standard deviations of the structural demands increase linearly 
with the earthquake intensity level, indicating that the uncertainty of the results increases as the 
earthquake intensity level increases. The effect of the modal combination method on the structural 
demands is discussed in this paper, indicating that in terms of estimating the structural demands of the 
single-layer lattice dome, there is a significant difference between the CQC method and the SRSS 
method. The effect of uncertain parameters on the structural demands is also discussed. The results 
show that each source has a different influence on important structural demands; in general, the 
geometric imperfections in the dome are the most important factor in the RSA method. Compared with 
THRA method, the developed method using the RSA is able to carry out the structural probabilistic 
analysis of complex large-scale structures with a higher sample precision. 
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