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Abstract 

Process monitoring is essential and important strategy for ensuring process safety and 

product quality. However, due to the nonlinear characteristics and multiple working 

conditions in process industries, the traditional process monitoring method cannot be 

effectively applied. Therefore, we propose a novel process monitoring framework, 

termed as mixture enhanced kernel canonical correlation analysis framework (M-

NAKCCA). The innovations and advantages of M-NAKCCA are as follows: 1). The 

traditional CCA method is re-boosted as a new method, M-NAKCCA, to better 

nonlinear fault detection. Also, a matter-element model (MEm) is assimilated into M-

NAKCCA to make the information more refined. 2). To overcome the curse of 
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dimensionality that usually occurs in the high-dimensional dataset, M-NAKCCA uses 

the Nyström approximation technology to compress the kernel matrix. Moreover, the 

T2 control chart is reconstructed and the corresponding control upper limit is re-

configured to improve the method sensitivity and to better the fault detection 

performance. 3). The proposed M-NAKCCA framework is firstly used to monitor a 

wastewater treatment plant (WWTP) and chemical plant with diverse process 

behaviors. The experimental results showed that the M-NAKCCA framework achieved 

the best performance for both of case studies.  

Keywords: Kernel canonical correlation analysis; Nyströ m approximation; Matter-

element;  Fault detection;  Nonlinear industrial process. 

1. Introduction 

Since industrial processes become more and more complicated, the safety of 

process industry system has received attention gradually (Ge et al., 2010; Kramer, 1991; 

Liu et al., 2016; Ma et al., 2019; Olsson, 2012). Taking the WWTP as an example, 

WWTP is a complex system that contains chemical, physical, and biological reactions. 

Such complexity, in turn, makes the generated data usually exhibit the characteristics 

of multi-modality, time-varying parameters, multi-variable coupling, and nonlinearity. 

Moreover, the wastewater treatment process involves a large amount of sensors 

(temperature, alkalinity, flow, etc.), brakes, and biochemical reaction devices. 

Simultaneously, different types of faults will occur because the equipment is always 

exposed to the harsh environment (Olsson, 2012). These faults will directly lead to the 

degradation of effluent quality. Poorly treated wastewater flowing into the river will 
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have severe effects on the environment, and may also cause the irreversible damage to 

citizens' living. Therefore, it is necessary to take the quality-relevant faults into account 

during the plant management. Fortunately, the data generated and stored by the WWTPs 

contains important information and knowledge about the equipments. If the abnormal 

information of equipments can be extracted from the dataset, the refined knowledge can 

be used to build a model to monitor and support the management of the WWTPs. 

Therefore, the data-driven process monitoring methods have attracted much 

attention from the industrial communities and academic (Baklouti et al., 2018; Chen et 

al., 2016; Cheng et al., 2019a; Ge et al., 2010; Jiang et al., 2017; Liu and Xie, 2020). 

Moreover, unsupervised statistical methods, such as principal component analysis 

(PCA), CCA, and forecastable component analysis (ForeCA) have been more studied 

widely (Cheng et al., 2019a; Liu et al., 2018; Shen et al., 2012; Zhu et al., 2016). Yu et 

al. proposed sparse PCA to monitor the Tennessee Eastman chemical process (TECP), 

the experiment showed that sparse PCA is more robust in corrupted data when 

performing feature extraction (Yu et al., 2016). Adisbaba et al. combined PCA with 

Bayesian network to detect the fault of the crude oil distillation unit operation system 

(Adedigba et al., 2017). Ghosh et al. combined the copula function and Bayesian 

network to predict the fault of multivariate time dependent process system. Over the 

past several decades, CCA achieves excellent performance and popularity because of 

its ability to monitor the quality-relevant fault accurately (Zhu et al., 2016). In the field 

of wastewater treatment, the quality-relevant faults are the most concerning types for 

WWTP. Therefore, it is necessary to study the application of CCA in wastewater 
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process monitoring. Cheng et al. proposed to use the combination of CCA and transfer 

learning to monitor the quality-relevant failures of WWTP (Cheng et al., 2020a). 

However, due to the complexity of a wastewater treatment process, the collected data 

are usually nonlinear. It is a pity that the basic statistical methods can show superior 

performance only for the linear data. To overcome this issue, industrial communities 

have done a lot of research works (Cheng et al., 2020b; Dong and Mcavoy, 1996; Ge et 

al., 2010; Kramer, 1991; Ma et al., 2019). Kramer et al. proposed to use a five-layer 

neural network to approximate the nonlinear relationship among data (Kramer, 1991). 

Nevertheless, the main defect is that it is time-consuming. To solve the time-consuming 

problem, Dong et al. proposed a nonlinear model combining the principal curve and the 

neural network. Although the time consumption is alleviated, the poor generalization 

performance makes the method unable to be further applied widely (Dong and Mcavoy, 

1996). Besides, Ge et al. proposed to use the Bayesian inference to fuse multiple linear 

subspaces models, whose purpose is to approximate the nonlinear relationship among 

data (Ge et al., 2010). However, the accuracy of the nonlinear approximation method 

cannot be effectively guaranteed. Recently, the kernel track-based techniques have 

gained more attention. Because there is no need to know the mapping function, and to 

a certain extent, it can avoid the dimensional disasters (Yu et al., 2019). Therefore, 

KPCA, SVM, and other nonlinear statistical methods are gradually being studied in the 

field of process monitoring (Cheng et al., 2019a; Jiang and Yan, 2015). Cheng et al. 

used a novel ensemble adaptive sparse Bayesian transfer learning machine for nonlinear 

process monitoring(Cheng et al., 2020b). Recently, Samuel et al. used the kernel 
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canonical variate analysis (KCVA) based method to monitor a TE process(Samuel and 

Cao, 2015). Inspired by this, this paper embeds kernel trick into the CCA method. The 

difference with KCVA is that KCCA can capture the structural information of the 

nonlinear system among input and output space, while KCVA is mainly to describe the 

relevant information on the time node. Therefore, the KCCA method is suited to explain 

quality-relevant faults. However, the KCCA method still has the following 

disadvantages. Firstly, although the idea of the kernel track method can avoid the 

dimensional disaster, the time consumption of operations in high-dimensional space 

cannot be completely avoided (Yu et al., 2019). Secondly, the chemical process not only 

has a complex internal reaction but also suffers from the uncertain external disturbances. 

Therefore, the fault signal is easy to be hidden by other signals (Cheng et al., 2019b), 

which leads to the general method cannot effectively extract the fault information. 

To tackle the overly time-consuming problem of the kernel-based methods, Cheng et 

al. use the forecast component analysis to reduce the computational burden of SVM 

(Cheng et al., 2019a). Generally, these methods reduce the space dimension by an 

external strategy. It is noteworthy that the external strategy does not consider the best 

approximation of the sparse matrix, which will cause the information lost. To achieve 

the proper low-rank approximation of the kernel matrix, we consider directly shrink the 

kernel matrix. Firstly, Nyström approximation technology is used to calculate the kernel 

matrix with approximate eigenvalues and eigenvectors (Williams and Seeger, 2000). 

Secondly, the best low-rank approximation of the matrix is obtained through cross-

validation. Nyströ m technology is firstly proposed to solve integral equations. The 
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principle behind is to use a small number of sampling points to approximate 

convolution operators, and then to obtain the corresponding eigenvector. In recent years, 

because the feature space approximated by Nystr ö m technology can reduce the 

computational complexity while retaining more data information, this method has 

become a helpful tool for processing the big data (Li et al., 2010). According to the 

analysis of Williams et al. (Williams and Seeger, 2000), Nyström technology can reduce 

the original computational complexity from 𝛰𝛰(𝑛𝑛3)  to 𝛰𝛰(𝑚𝑚2𝑛𝑛) . Therefore, the 

Nyström technology is used in many different fields, such as image processing(Fowlkes 

et al., 2004), text clustering(Li et al., 2010), and fault detection(Ma et al., 2019), etc. 

Based on the above theory and application foundation,  

M-NAKCCA uses the Nyström technology to obtain the low-rank approximation of the 

kernel matrix. M-NAKCCA method firstly considers taking the information processing 

for the raw data. The idea of information processing is based on the extenics theory 

proposed by Cai et al. (Yang and Wen, 2015) and discrete mathematics. It firstly uses 

raw data to establish a complete MEm, and then uses the matter-element indicators to 

split the data. Finally, the correlation degree (CRD) function is constructed to process 

the corresponding layer data. The segmented domain of MEm provides a larger external 

space for extracting the data statistical features, which makes the redundant information 

in the data matter-element compressed effectively. 

The motivation of this work is to develop a novel nonlinear method, called M-

NAKCCA, which aims to solve the problems as mentioned above. Besides, several 

typical process faults are also discussed. As we all know, industrial process faults can 
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be roughly divided into two categories (Chen et al., 2016; Juricek et al., 2004): (i) 

Additive faults. (ii) Multiplicative faults. In terms of the data statistical characteristics, 

additive fault means that the mean value changes over time, whereas multiplicative 

fault means that the variance changes accordingly. From the perspective of the detection 

object, additive fault refers to the sudden deviation of the sensor, whereas multiplicative 

fault means that the system parameter change or external random disturbance (Juricek 

et al., 2004). Chen et al. pointed out that multiplicative faults can be approximately 

transformed into additive faults (Chen et al., 2016). Therefore, if the proposed method 

has sufficiently excellent performance, it can effectively diagnose additive faults while 

detecting multiplicative faults. Moreover, drift fault and step fault are further studied. 

More details of step fault and drift fault definition can refer to (Jiang et al., 2017; Liu 

et al., 2016). Moreover, fault signal is often identified by T2 and 

squared prediction error (SPE) control charts. In previous studies, it was found that the 

T2 control chart is more insensitive than SPE (Cheng et al., 2019b). Therefore, T2 

usually cannot effectively identify the early stage of drifting faults. Larimore et al. used 

the residual-based control chart to test state-space change (Larimore, 1997). Chen et al. 

combined the local statistical approach and the residual of state-space to identify the 

incipient multiplicative fault (Chen et al., 2016). In this paper, the T2 control chart is 

reconstructed by the residual of principal canonical space, and then uses it to store the 

system input-output information. Also, the corresponding upper control limit (UCL) is 

reconsidered. Recently, Ma et al. pointed out that the kernel density estimation(KDE) 

is used to set UCL can achieve a satisfactory classification effect (Ma et al., 2019). KDE 



8 

is different from the χ2statistic or F-distribution, which relaxes the restriction of data 

obeying Gaussian distribution. 

Based on the above discussion, the main contribution of the paper is to develop a 

novel process monitoring framework for identifying quality-relevant multiplicative 

faults and additive faults. Meanwhile, the typical fault patterns, such as drifting faults 

and step faults, are fully considered under the proposed framework. The novelty and 

advantages of the proposed framework can be summarized as follows: 

(1) In this paper, we firstly propose a novel process monitoring framework of M-

NAKCCA, which is able to identify the different abnormal events of the system. 

Simultaneously, MEm technology is embedded in M-NAKCCA framework, aiming 

to improve the information extraction ability of the method. 

(2) In the framework of M-NAKCCA, Nystro ̈m technology is used to obtain the low 

dimensional approximation of the original high dimensional matrix. This alleviates 

the time-consuming problem of the traditional KCCA. 

(3) To solve the problem that the T2 control chart is not sensitive to the drift fault, the 

residual of input-output is used to reconstruct the T2 control chart. Moreover, KDE 

is used to define and set up the corresponding UCL for fault detection. 

The remainder of this paper is organized as follows. In Section 2, the paper presents 

the basic theory of CCA. In Section 3, The theoretical formula of M-NAKCCA is 

derived in detail. In Section 4，M-NAKCCA is used for monitoring some different type 

faults. In Section 5, the paper ends with some conclusions.  

2. Preliminary work  
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CCA is a standard multivariate statistical method. In CCA, the internal structure 

between input data (𝑋𝑋 ∈ 𝑅𝑅𝑝𝑝×𝑛𝑛) and output data (𝑌𝑌 ∈ 𝑅𝑅𝑞𝑞×𝑛𝑛) is described by extracting 

the correlation between two sets of variables, where 𝑝𝑝 and 𝑞𝑞 represent the number of 

monitoring variables resepectively. In(Ma et al., 2019), the correlation coefficients can 

be obtained by the following optimization function: 

𝜌𝜌(𝛼𝛼𝑇𝑇𝑋𝑋,𝛽𝛽𝑇𝑇𝑌𝑌) = arg max
𝛼𝛼,𝛽𝛽

𝛼𝛼𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋𝛽𝛽
�𝛼𝛼𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋𝛼𝛼∗�𝛽𝛽𝑇𝑇𝛴𝛴𝑌𝑌𝑌𝑌𝛽𝛽

,                               (1) 

where non-zero constant vector 𝛼𝛼  and 𝛽𝛽  are the weight coefficients, the max 

correlation coefficient  𝜌𝜌(∗)  can be learned by finding the best linear combination 

between 𝛼𝛼𝑇𝑇𝑋𝑋  and 𝛽𝛽𝑇𝑇𝑌𝑌 .  𝛴𝛴𝑋𝑋𝑋𝑋  ,  𝛴𝛴𝑋𝑋𝑋𝑋   and 𝛴𝛴𝑌𝑌𝑌𝑌  represent the covariance matrix. To 

ensure the uniqueness of the result, let 𝑎𝑎𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋𝛼𝛼 = 1  and 𝛽𝛽𝑇𝑇𝛴𝛴𝑌𝑌𝑌𝑌𝛽𝛽 = 1 . To solve 

Eq.(1), the following formula can be obtained by using the Lagrange multiplier: 

𝐿𝐿(𝛼𝛼,𝛽𝛽, 𝛾𝛾𝑋𝑋 ,𝛾𝛾𝑌𝑌)=𝛼𝛼𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋𝛽𝛽 − ( 𝑎𝑎𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋𝛼𝛼 − 1) ∗ �𝛾𝛾𝑋𝑋
2
� − ( 𝛽𝛽𝑇𝑇𝛴𝛴𝑌𝑌𝑌𝑌𝛽𝛽 − 1) ∗ �𝛾𝛾𝑌𝑌

2
�,      

(2) 

𝛾𝛾𝑋𝑋  and 𝛾𝛾𝑌𝑌  represent the Lagrange multiplier. Eq.(1) can be simplified by transforming 

into the following general algebraic eigenvalue problem: 

� 0 𝛴𝛴𝑋𝑋𝑋𝑋
𝛴𝛴𝑌𝑌𝑌𝑌 0 � �

𝛼𝛼
𝛽𝛽� = λ �𝛴𝛴𝑋𝑋𝑋𝑋 0

0 𝛴𝛴𝑌𝑌𝑌𝑌
� �
𝛼𝛼
𝛽𝛽�.                                    (3) 

The weight coefficients 𝛼𝛼  and 𝛽𝛽  can be obtained by solving the generalized 

eigenvalue of Eq.(3). 𝜆𝜆 is the corresponding eigenvalue. 

3. Process monitoring framework of M-NAKCCA for quality-relevant faults 

In this section, the theory of M-NAKCCA is derived in detail. Moreover, the entire 

procedure to implement the M-NAKCCA framework for the quality-relevant fault 

monitoring is presented in Figure 1. 
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Figure 1. Procedures of implementing M-NAKCCA for process monitoring 

3.1. The mixture kernel canonical correlation analysis 

This work firstly embedded the matter-element model (MEm) into KCCA. Therefore, 

the MEm is established as following by the offline raw data:  

𝑀𝑀𝑡𝑡(𝜃𝜃,𝑥𝑥,𝜑𝜑(𝑥𝑥))=�
𝜃𝜃 𝑥𝑥1𝑡𝑡 𝜑𝜑(𝑥𝑥1𝑡𝑡)
 ⋮ ⋮
 𝑥𝑥𝑙𝑙𝑙𝑙 𝜑𝜑(𝑥𝑥𝑙𝑙𝑙𝑙)

�,                                     (4) 

where Mt(∗) is matter-element containing the system information. 𝜃𝜃 is a system that 

generates raw data. 𝜑𝜑(𝑥𝑥𝑙𝑙𝑙𝑙) represents the state value collected by the 𝑙𝑙th sensor at 

time 𝑡𝑡 . The fault matter-element and non-fault matter-element can be established 

separately. Moreover, the unsupervised model only needs to get the non-fault state data 

during the offline training stage. According to (Gong et al., 2012; Yuan et al., 2013), 

the classical domain and segmented domain are established as follows: 

𝑀𝑀𝐶𝐶(𝜃𝜃norm, 𝑥𝑥,𝜑𝜑(𝑥𝑥))=�
𝜃𝜃norm 𝑥𝑥1 𝜑𝜑(𝑥𝑥1)

 ⋮ ⋮
 𝑥𝑥𝑝𝑝+𝑞𝑞 𝜑𝜑(𝑥𝑥𝑝𝑝+𝑞𝑞)

�,                          (5) 
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𝑀𝑀𝑆𝑆(𝜃𝜃norm ,𝑥𝑥,𝜑𝜑′(𝑥𝑥))=�
𝜃𝜃norm 𝑥𝑥1 𝜑𝜑′(𝑥𝑥1)

 ⋮ ⋮
 𝑥𝑥𝑝𝑝+𝑞𝑞 𝜑𝜑′(𝑥𝑥𝑝𝑝+𝑞𝑞)

�.                         (6) 

  𝑀𝑀𝐶𝐶(∗)  is the classical domain, meaning the matter-element with respect to the 

system under normal condition. 𝜑𝜑(𝑥𝑥𝑖𝑖) = extremum[𝑥𝑥𝑖𝑖1,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖] =  (𝑥𝑥𝑖𝑖,min, 𝑥𝑥𝑖𝑖,max) , 

where 𝑥𝑥𝑖𝑖,min   and 𝑥𝑥𝑖𝑖,max   represent the minimum and maximum value respectively, 

they are extracted from the sample set. 𝑖𝑖 is the corresponding sensor (1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 + 𝑞𝑞), 

n is the number of samples. 𝑀𝑀𝑆𝑆(∗) is the segmented domain, which represents the 

classical domain extended by the actual condition and engineer experience. In the actual 

industrial processes, the number of sampling is usually limited. Moreover, the existence 

of uncertainty disturbances makes it even difficult for the classical domain to describe 

the system state properly (Yong-xiu et al., 2011). Therefore, a new segmented domain 

is established, where 𝜑𝜑′(𝑥𝑥𝑖𝑖) = (𝑥𝑥’𝑖𝑖,min ,𝑥𝑥’𝑖𝑖,max) . 𝑥𝑥’𝑖𝑖,min  and 𝑥𝑥’𝑖𝑖,max  represent the 

maximum and minimum values of the segmented domain respectively. The 

corresponding extreme values are obtained by the following formula: 

𝑥𝑥’𝑖𝑖,min = 𝑥𝑥𝑖𝑖,min − 𝜉𝜉(𝑥𝑥𝑖𝑖,max − 𝑥𝑥𝑖𝑖,min),                                     (7) 

𝑥𝑥’𝑖𝑖,max = 𝑥𝑥𝑖𝑖,max + 𝜉𝜉(𝑥𝑥𝑖𝑖,max − 𝑥𝑥𝑖𝑖,min).                                    (8) 

𝜉𝜉 is the penalty parameter, which is used to adjust the range of segmented domain. 

We standardize the offline matter-element model 𝑀𝑀 = (𝑀𝑀1 ⋯ 𝑀𝑀𝑛𝑛). As profiled in 

Figure1, in the offline training stage, the proper correlation degree (CRD) function 

needs to be established to evaluate the core range of system transformation. Based on 

(Yong-xiu et al., 2011; Yuan et al., 2013), the corresponding CRD function can be 

derived as follows: 
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D�𝑥𝑥𝑖𝑖𝑖𝑖� = 𝜌𝜌(𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝐶𝐶)
𝛿𝛿(𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝐶𝐶,𝑀𝑀𝑆𝑆)

,                                                 (9) 

where 𝜌𝜌(𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝐶𝐶) is the distance between 𝑥𝑥𝑖𝑖𝑖𝑖 and classical domain  𝑀𝑀𝐶𝐶 .  𝑥𝑥𝑖𝑖𝑖𝑖 is the 

value of the jth sensor at the ith sample. 𝛿𝛿(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑀𝑀𝐶𝐶 ,𝑀𝑀𝑆𝑆) is the distance of 𝑥𝑥𝑖𝑖𝑖𝑖 between 

𝑀𝑀𝐶𝐶   and 𝑀𝑀𝑆𝑆 . According to (Yuan et al., 2013). The formula of  𝜌𝜌(𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝐶𝐶)  and 

𝛿𝛿(𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝐶𝐶 ,𝑀𝑀𝑆𝑆) can be constructed as follows: 

𝜌𝜌�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑀𝑀𝐶𝐶� = �𝑥𝑥𝑖𝑖𝑖𝑖 −
𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚+𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

2
� − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

2
,                          (10) 

𝛿𝛿�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑀𝑀𝐶𝐶 ,𝑀𝑀𝑆𝑆� = �
𝜌𝜌�𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝑆𝑆� − 𝜌𝜌�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑀𝑀𝐶𝐶�         𝑥𝑥𝑖𝑖𝑖𝑖 ∉  𝑀𝑀𝐶𝐶  

𝜌𝜌�𝑥𝑥𝑖𝑖𝑖𝑖,𝑀𝑀𝑆𝑆� − 𝜌𝜌�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑀𝑀𝐶𝐶� + �𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑖𝑖,max�   𝑥𝑥𝑖𝑖𝑖𝑖 ∈  𝑀𝑀𝐶𝐶  
.    

(11) 

The constructed distance function 𝜌𝜌(∗) and 𝛿𝛿(∗) combine with the CRD function, 

it can be deduced that CRD has the following three important properties: i). If  𝑥𝑥𝑖𝑖𝑖𝑖 ∈

 𝑀𝑀𝐶𝐶 , D�𝑥𝑥𝑖𝑖𝑖𝑖� ≥ 0. It represents the test data under the normal working condition. ii). If 

𝑥𝑥𝑖𝑖𝑖𝑖 ∉  𝑀𝑀𝐶𝐶  and 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀𝑆𝑆. Then, −1 < 𝐷𝐷�𝑥𝑥𝑖𝑖𝑗𝑗� < 0. In this case, it can be determined 

if the system is in a critical and emergent state. iii). If 𝑥𝑥𝑖𝑖𝑖𝑖 ∉  𝑀𝑀𝐶𝐶  , 𝑥𝑥𝑖𝑖𝑖𝑖 ∉ 𝑀𝑀𝑆𝑆 . It 

represents if the system is out of work, so we can derive that D�𝑥𝑥𝑖𝑖𝑖𝑖� ≤ −1. When the 

offline CRD function is established, the online test data in the segmented domain can 

be modified accordingly. And the faulty data outside the segmented domain can 

sequently be enlarged. Suppose the test data 𝑉𝑉 = [𝑉𝑉norm ,𝑉𝑉fault] ∈ 𝑅𝑅𝑙𝑙∗𝑚𝑚. 𝑉𝑉norm and 

𝑉𝑉fault represent the data collected by norm work condition and the abnormal condition 

respectively，𝑚𝑚 is the number of samples. According to the value of CRD, the fuzzy 

test set can be obtained by the following rules: 

(1) If D�𝑣𝑣𝑖𝑖𝑖𝑖� ≥ 0 , the test data is normed by mean and variance of training data, 

𝑣𝑣𝑖𝑖𝑖𝑖∗ = (𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) �𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑖𝑖)⁄ . 
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(2) If −1 < 𝐷𝐷�𝑥𝑥𝑖𝑖𝑖𝑖� < 0, it represents the test data is out of the classical domain. In 

general, the data in the segmented domain is the system deviation caused by noise 

or human factors. Therefore, the test data can be returned to the classical domain by 

the following special processing. This can further mitigate the influence of 

corrupted data. If 𝑥𝑥’𝑖𝑖,min < 𝑣𝑣𝑖𝑖𝑖𝑖 < 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑣𝑣𝑖𝑖𝑖𝑖∗ = (𝑣𝑣𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) �𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑖𝑖)⁄ . If 

𝑥𝑥𝑖𝑖,max < 𝑣𝑣𝑖𝑖𝑖𝑖 < 𝑥𝑥’𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑖𝑖𝑖𝑖∗ = (𝑣𝑣𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) �𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑖𝑖)⁄ . 

(3) If D�𝑥𝑥𝑖𝑖𝑖𝑖� ≤ −1, it represents the data is abnormal and the corresponding system is 

out of work. However, if the abnormal signal is weak, the monitoring method cannot 

identify it properly. Thus, we can let 𝑣𝑣𝑖𝑖𝑖𝑖∗ = 𝜉𝜉′(𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) �𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥𝑖𝑖)⁄ . 𝜉𝜉′ is the 

corresponding compensation coefficient, 𝜉𝜉′ = 1 − 𝜉𝜉𝜉𝜉�𝑥𝑥𝑖𝑖𝑖𝑖�. 

After the above MEm processes the data, it is assumed that the newly obtained 

training set and testing set are 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [𝑈𝑈𝑋𝑋, 𝑈𝑈𝑌𝑌] ∈ 𝑅𝑅(𝑝𝑝+𝑞𝑞)∗𝑛𝑛 and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [𝑉𝑉𝑋𝑋 , 𝑉𝑉𝑌𝑌] ∈

𝑅𝑅(𝑝𝑝+𝑞𝑞)∗𝑛𝑛, respectively. 𝑈𝑈𝑋𝑋 ∈ 𝑅𝑅𝑝𝑝∗𝑛𝑛 and 𝑈𝑈𝑌𝑌 ∈ 𝑅𝑅𝑞𝑞∗𝑛𝑛 represent the data set of input and 

output respectively. Since the processed data remains nonlinear, the performance of the 

linear model is severely affectedand could be deviated. To describe the internal structure 

of nonlinear data, the data are firstly mapped to high dimensional space: 

�𝜙𝜙: 𝑈𝑈𝑋𝑋 ∈ 𝑅𝑅𝑝𝑝∗𝑛𝑛 → 𝜙𝜙(𝑈𝑈𝑋𝑋) = [𝜙𝜙(𝑥𝑥1) ⋯ 𝜙𝜙(𝑥𝑥𝑛𝑛)]
𝑈𝑈𝑌𝑌 ∈ 𝑅𝑅𝑞𝑞∗𝑛𝑛 → 𝜙𝜙(𝑈𝑈𝑌𝑌) = [𝜙𝜙(𝑦𝑦1) ⋯ 𝜙𝜙(𝑦𝑦𝑛𝑛)],                        (12) 

where 𝜙𝜙  is the mapping function, 𝐻𝐻𝑋𝑋  =span {𝜙𝜙(𝑥𝑥1) ⋯ 𝜙𝜙(𝑥𝑥𝑛𝑛)} ∈ 𝑅𝑅𝑛𝑛∗𝑛𝑛  and 

𝐻𝐻𝑌𝑌 =span{𝜙𝜙(𝑦𝑦1) ⋯ 𝜙𝜙(𝑦𝑦𝑛𝑛)} ∈ 𝑅𝑅𝑛𝑛∗𝑛𝑛  represent the mapped feature space. Suppose 

𝐻𝐻𝑋𝑋  and 𝐻𝐻𝑌𝑌 are complete inner product spaces. So ∃ 𝑓𝑓1 ∈ 𝐻𝐻𝑋𝑋 and 𝑓𝑓2 ∈ 𝐻𝐻𝑌𝑌 , let 

𝑓𝑓1 = ∑ 𝜙𝜙(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑋𝑋𝑖𝑖 ,                                                (13) 

𝑓𝑓2 = ∑ 𝜙𝜙(𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑌𝑌𝑖𝑖,                                                (14) 
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𝑓𝑓1 and 𝑓𝑓2 are n-dimensional basis vectors of 𝐻𝐻𝑋𝑋  and 𝐻𝐻𝑌𝑌 respectively. The core idea 

of CCA is to to find the optimal eigenvectors 𝑊𝑊𝑋𝑋  and 𝑊𝑊𝑌𝑌 , in such a way that 𝑓𝑓1
𝑇𝑇𝜙𝜙(𝑋𝑋) 

and 𝑓𝑓2
𝑇𝑇𝜙𝜙(𝑌𝑌)  has the greatest correlation. The cost function can be constructed by 

combining Eq.(1): 

𝜌𝜌�𝑓𝑓1
𝑇𝑇𝜙𝜙(𝑋𝑋),𝑓𝑓2

𝑇𝑇𝜙𝜙(𝑌𝑌)� = arg max
𝑊𝑊𝑋𝑋 ,𝑊𝑊𝑌𝑌

𝑐𝑐𝑐𝑐𝑐𝑐(f1
Tϕ(X),f2

Tϕ(Y))

�var(f1
Tϕ(X))∗�var(f2

Tϕ(Y))
,                 (15) 

𝜙𝜙(𝑋𝑋) and 𝜙𝜙(𝑌𝑌) represent the mapping function of input and output space respectively. 

In general, the corresponding kernel function is defined as 𝐾𝐾𝑋𝑋 = 〈𝜙𝜙(𝑈𝑈𝑋𝑋),𝜙𝜙(𝑈𝑈𝑋𝑋)〉 =

𝜙𝜙(𝑈𝑈𝑋𝑋)𝑇𝑇𝜙𝜙(𝑈𝑈𝑋𝑋)，𝐾𝐾𝑌𝑌 = 𝜙𝜙(𝑈𝑈𝑌𝑌)𝑇𝑇𝜙𝜙(𝑈𝑈𝑌𝑌). The covariance matrix of Eq. (15) can be derived 

as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓1
𝑇𝑇𝜙𝜙(𝑋𝑋), 𝑓𝑓2

𝑇𝑇𝜙𝜙(𝑌𝑌))= 1
𝑛𝑛−1

∑ 𝑓𝑓1
𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 (𝑓𝑓1
𝑇𝑇  𝜙𝜙(𝑦𝑦𝑖𝑖))𝑇𝑇= 

1
𝑛𝑛−1

∑ ∑ ∑ 𝑤𝑤𝑋𝑋𝑗𝑗
𝑇𝑇𝑛𝑛

𝑑𝑑=1
𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 𝜙𝜙(𝑥𝑥𝑗𝑗)𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) 𝜙𝜙(𝑦𝑦𝑖𝑖)𝑇𝑇𝜙𝜙(𝑦𝑦𝑑𝑑) 𝑤𝑤𝑌𝑌𝑑𝑑=𝑊𝑊𝑋𝑋

𝑇𝑇Σ𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌,      

(16) 

where 𝐾𝐾𝑋𝑋 and 𝐾𝐾𝑌𝑌 are the kernel matrix, Σ𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌 = 1
𝑛𝑛−1

𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌𝑇𝑇is the covariance matrix. 

So,  �𝑓𝑓1
𝑇𝑇𝜙𝜙(𝑋𝑋), 𝑓𝑓2

𝑇𝑇𝜙𝜙(𝑌𝑌)� = max
𝑊𝑊𝑋𝑋 ,𝑊𝑊𝑌𝑌

𝑊𝑊𝑋𝑋
𝑇𝑇𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌

�𝑊𝑊𝑋𝑋
𝑇𝑇𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋𝑊𝑊𝑋𝑋∗�𝑊𝑊𝑌𝑌

𝑇𝑇𝛴𝛴𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌

 . When Σ𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋   and 

Σ𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌   are invertible, Eq. (2) and Eq. (15) can be transformed into the following 

generalized eigenvalue problem: 

� 0 𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌𝑇𝑇

𝐾𝐾𝑌𝑌𝐾𝐾𝑋𝑋𝑇𝑇 0
� �𝑊𝑊𝑋𝑋
𝑊𝑊𝑌𝑌

� = λ �𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋
𝑇𝑇 0

0 𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌𝑇𝑇
� �𝑊𝑊𝑋𝑋
𝑊𝑊𝑌𝑌

�.                       (17) 

 𝜆𝜆 is the eigenvalue. 

3.2  Nystr𝐨̈𝐨m approximation of mixture KCCA for fault detection 

3.2.1 Mixture Nyström approximation 

Reformulation of CCA based on kernel function will lead to the increment of the 
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computational burden (Williams and Seeger, 2000; Yu et al., 2019). Therefore, how to 

retain more data information while compressing the high-dimensional space has 

become an important issue to be solved. The kernel matrix of high dimensional space 

is usually a sparse and non-full rank. Therefore, the assumption that Σ𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋  and Σ𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌  

are both invertible cannot be guaranteed easily. Recently, the Nyström approximation 

technique is used to seek the low-rank approximation of the kernel matrix. the low-rank 

approximation can be derived as follows: 

𝐾𝐾� = 𝑈𝑈�𝛬̃𝛬𝑈𝑈�𝑇𝑇 = ∑ 𝜆̃𝜆𝑖𝑖
(𝑛𝑛)𝑚𝑚

𝑖𝑖=1 𝑢𝑢�𝑖𝑖
(𝑛𝑛)(𝑢𝑢�𝑖𝑖

(𝑛𝑛))𝑇𝑇,                                  (18) 

𝐾𝐾�  represents the Nyströ m approximations of the kernel matrix 𝐾𝐾 , 𝜆̃𝜆𝑖𝑖
(𝑛𝑛)

  and 𝑢𝑢�𝑖𝑖
(𝑛𝑛) 

are the corresponding eigenvalue and eigenvector respectively. 𝑚𝑚 is the dimension of 

the low-rank approximation matrix, the eigenvalue and eigenvector formulas can be 

derived as follows: 

𝜆̃𝜆𝑖𝑖
(𝑛𝑛)

≝ 𝑛𝑛
𝜏𝜏
𝜆̃𝜆𝑖𝑖

(𝜏𝜏)
(𝑖𝑖 = 1,⋯𝜏𝜏),                                           (19) 

𝑢𝑢�𝑖𝑖
(𝑛𝑛) ≝ �𝜏𝜏

𝑛𝑛
1

𝜆𝜆�𝑖𝑖
(𝜏𝜏) 𝐾𝐾𝑛𝑛,𝜏𝜏𝑢𝑢�𝑖𝑖

(𝜏𝜏)(𝑖𝑖 = 1,⋯𝜏𝜏),                                   (20) 

where τ is the dimension of the constructed subspace from the kernel space, and m ≤

𝜏𝜏 < 𝑛𝑛. 𝐾𝐾𝑛𝑛,𝜏𝜏 is the appropriate 𝑛𝑛 × 𝜏𝜏 submatrix of 𝐾𝐾, which can be obtained by the 

K-means clustering method(Ma et al., 2019). In summary, by embedding the Nyström 

approximations method, the computation complexity can be reduced from 𝛰𝛰(n3) to 

𝛰𝛰(𝜏𝜏2𝑛𝑛). The new eigenvalues and eigenvectors can be derived by introducing the low-

rank matrix into Eq. (17). 

Subsequently, the data space can be decomposed into quality relevant-subspace and 

irrelevant-subspace. To monitor the effluent quality relevant fault, the following quality 
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relevant T2 can be obtained: 

𝑇𝑇2 = 𝑍𝑍𝑇𝑇𝛴𝛴𝑟𝑟−1𝑍𝑍,                                                     (21) 

according to reference (Chen et al., 2016), where 𝑍𝑍 =  𝑊𝑊𝑌𝑌
𝑇𝑇𝐾𝐾𝑌𝑌 − 𝛬𝛬𝑟𝑟𝑊𝑊𝑋𝑋

𝑇𝑇𝐾𝐾𝑋𝑋, 𝑊𝑊𝑋𝑋 =

[𝑤𝑤𝑋𝑋1 ⋯ 𝑤𝑤𝑋𝑋𝑟𝑟] ∈ 𝑅𝑅𝑛𝑛×𝑟𝑟 , and 𝑊𝑊𝑌𝑌 = [𝑤𝑤𝑌𝑌1 ⋯ 𝑤𝑤𝑌𝑌𝑟𝑟] ∈ 𝑅𝑅𝑛𝑛×𝑟𝑟 . 𝑊𝑊𝑌𝑌
𝑇𝑇𝐾𝐾𝑋𝑋  is the score 

matrix of input space, 𝑊𝑊𝑋𝑋
𝑇𝑇𝐾𝐾𝑌𝑌  is the score matrix of output space. Thus, residual 

matrix 𝑍𝑍 represents the system state changes between output space and input space. 

The matrix 𝑍𝑍 can be derived as followings: 

𝑍𝑍 = �𝑊𝑊𝑌𝑌
𝑇𝑇𝐾𝐾𝑌𝑌 − 𝛬𝛬𝑟𝑟𝑊𝑊𝑋𝑋

𝑇𝑇𝐾𝐾𝑋𝑋�,                                           (22) 

where 𝑊𝑊𝑋𝑋
𝑇𝑇𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋𝑊𝑊𝑋𝑋 ≈ 𝐼𝐼𝑟𝑟  and 𝑊𝑊𝑌𝑌

𝑇𝑇𝛴𝛴𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌 ≈ 𝐼𝐼𝑟𝑟 . Also, 𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌 = 𝛬𝛬𝑟𝑟𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋𝑊𝑊𝑋𝑋  

and 𝛴𝛴𝐾𝐾𝑌𝑌𝐾𝐾𝑋𝑋𝑊𝑊𝑋𝑋 = 𝛬𝛬𝑟𝑟𝛴𝛴𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌  𝑊𝑊𝑌𝑌   can be easily derived by Eq. (3). Thus, 𝛴𝛴𝑟𝑟  can be 

obtained as 

𝛴𝛴𝑟𝑟 ≈
1

𝑛𝑛−1
𝑍𝑍𝑍𝑍𝑇𝑇= 1

𝑛𝑛−1
�𝑊𝑊𝑌𝑌

𝑇𝑇𝐾𝐾𝑌𝑌 − 𝛬𝛬𝑟𝑟𝑊𝑊𝑋𝑋
𝑇𝑇𝐾𝐾𝑋𝑋�� 𝑊𝑊𝑌𝑌

𝑇𝑇𝐾𝐾𝑌𝑌 − 𝛬𝛬𝑟𝑟𝑊𝑊𝑋𝑋
𝑇𝑇𝐾𝐾𝑋𝑋�

𝑇𝑇
= 𝑊𝑊𝑌𝑌

𝑇𝑇𝛴𝛴𝐾𝐾𝑌𝑌𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌  

−𝛬𝛬𝑟𝑟  𝑊𝑊𝑌𝑌
𝑇𝑇𝛴𝛴𝐾𝐾𝑌𝑌𝐾𝐾𝑋𝑋𝑊𝑊𝑋𝑋 − 𝛬𝛬𝑟𝑟𝑊𝑊𝑋𝑋

𝑇𝑇𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑌𝑌𝑊𝑊𝑌𝑌 + 𝛬𝛬𝑟𝑟2𝑊𝑊𝑋𝑋
𝑇𝑇𝛴𝛴𝐾𝐾𝑋𝑋𝐾𝐾𝑋𝑋𝑊𝑊𝑋𝑋 = 𝐼𝐼𝑟𝑟 − 𝛬𝛬𝑟𝑟2,       (2

3) 

where 𝛬𝛬𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜆𝜆1 , ,⋯ , 𝜆𝜆𝑟𝑟) , it can be represented by the first 𝑟𝑟  maximum 

eigenvalue.  Moreover, according to reference (Zhu et al., 2016), the quality irrelevant 

fault can be monitored by the following SPE control chart: 

SPE = 𝑒𝑒𝑇𝑇𝑒𝑒,                                                        (24) 

where 𝑒𝑒 = (𝐼𝐼 −𝑊𝑊𝑋𝑋
𝑇𝑇𝑊𝑊𝑋𝑋)𝐾𝐾𝑋𝑋  or 𝑒𝑒 = (𝐼𝐼 − 𝑊𝑊𝑌𝑌

𝑇𝑇𝑊𝑊𝑌𝑌)𝐾𝐾𝑌𝑌 . Therefore, the SPE control 

chart can be divided into two parts (Zhu et al., 2016). The first SPE is more influential 

in the input space, whereas the second one is more reliable in the output space. In this 

paper, the SPE is calculated according to the actual working conditions. 
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3.2.2 Upper control limit 

Kernel density estimation (KDE) is an essential nonparametric estimation method, 

which is often used for the setting of the upper control limit (UCL) for T2 and SPE (Ma 

et al., 2019; Odiowei and Cao, 2010). Based on (Odiowei and Cao, 2010), the 

corresponding threshold can use the kernel density estimations shown as follows： 

𝑃𝑃(𝑇𝑇2 < 𝑈𝑈𝑈𝑈𝑈𝑈T2) = ∫ 𝑝𝑝(T2)UCLT2
−∞ 𝑑𝑑T2 = 𝛼𝛼�,                               (25) 

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆 < 𝑈𝑈𝑈𝑈𝑈𝑈SPE) = ∫ 𝑝𝑝(SPE)𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆
−∞ 𝑑𝑑(SPE) = 𝛼𝛼�.                        (26) 

𝛼𝛼�  is the confidence level. 𝑈𝑈𝑈𝑈𝑈𝑈T2  and 𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆  are upper control limit of 

T2  and 𝑆𝑆𝑆𝑆𝑆𝑆  respectively. If 𝑇𝑇2 > 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇2  or SPE > 𝑈𝑈𝑈𝑈𝑈𝑈SPE , the system will 

declare that the working states are out of control. KDE is a method based on the data 

samples, which does not need to know the prior knowledge of data distribution. 

3.2.3 Performance evaluation index(PEI) 

The PEI is an important decision tool for evaluating the performance of a 

monitoring method. To comprehensively evaluate the performance of different methods, 

missed alarm rate (MAR), false alarm rate (FAR), fault diagnosis accuracy, and pre-

alarm rate (PAR) are used for model evaluation. FAR means that the system false alarms 

proportion in the total number of alarms. Because the system engineers need to check 

the equipment after the alarm declaration, it will waste unnecessary workforce and 

material resources if suffering from the false alarms. Moreover, the missed alarms have 

more serious influence than false alarms. The PAR is constructed by mixing false alarm 

and missed alarm indicators (Cheng et al., 2019a). It is used as a comprehensive PEI 

together with fault diagnosis accuracy. The corresponding formulas are as follows: 
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MAR = Fr(Normal|Fault) = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

,                                    (27) 

FAR = Fr(Fault|Normal) 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

,                                       (28) 

𝑃𝑃𝐴𝐴𝐴𝐴 = 𝜛𝜛MAR + (1− 𝜛𝜛)FAR,                                         (29) 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

.                                            (30) 

Note that the “Normal” is the non-fault conditions.  Fr( | )  represents the 

conditional frequency (Cheng et al., 2019a). TP is true positive, TN represents true 

negative. FP is false positive. 𝜛𝜛 is the weight parameter (0 ≤ 𝜛𝜛 ≤ 1). 

4. Case studies 

In this studies, the proposed M-NAKCCA method is used to monitor the TE chemical 

plant and a wastewater treatment plant (BSM1). BSM1 is a water treatment platform 

developed by the international water association (IWA). TE is simulated a real chemical 

plant designed by the chemical company. Meanwhile, academics and industries widely 

recognize both platforms. Moreover, the parameter of PC is CPU intel core i7-6700HQ, 

8GB RAM,1TB SSD. 

4.1. Case study I: Tennessee Eastman chemical process 

(1) Background: Tennessee Eastman process (TEP) is designed by the American 

Eastman chemical company, which is based on a real chemical plant. As shown in 

Figure 2, TEP consists of five core units: reactor, compressor, stripper, condenser, and 

separator. The whole process includes manipulated variables and measured variables. 

There are four gaseous reactants (A, B, C, D, E) and two liquid products (G and H). 

The reaction equation is as follows: 
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�

A(g) + C(g) + D(g) → G(liq)
A(g) + C(g) + E(g) → H(liq)
A(g) + E(g) → F(byproduct)

3D(g) → 2F(byproduct)

,                                      (31) 

where F is the byproduct, in the reactor, the reaction rates are Arrhenius functions of 

temperature, and the process is irreversible. More detailed reaction information of the 

TEP can refer (Downs and Vogel, 1993). According to downs and vogel introduction 

(Downs and Vogel, 1993), we can know that the TEP may occur five type faults (step 

fault, random variation fault, slow drift fault, sticking fault, and unknown fault). Step 

fault and drift fault are the most noteworthy among the above five type faults. When 

the external disturbance is strong, it is easy to cause the step fault. Due to the harsh 

working environment, the equipment is easy to be corroded. The control accuracy of 

this corroded equipment will slowly degrade. Therefore, this paper further investigates 

the step fault and drift fault. On this basis, we have also studied the random variation 

fault. According to (Zhu et al., 2016), the process contains 52 observation variables. 

Before proceeding with the data, the platform started with a 25-hour steady state. It is 

noted that the test set and training set are have the same sampling interval (the interval 

is 3 minutes). The training set is generated from the 48 h (1–960) without fault working 

condition. The data from 961 to 1920 is used as the testing set, where the sample 961-

1120 are normal data, and the rest of the data (1121-1920) is sampled from the faulty 

working condition.  
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Figure 2. Schematic layout of the TE chemical process(Downs and Vogel, 1993). 

 (2) Discussion and analysis of monitoring result: M-NAKCCA is different from the 

previous overall modeling methods (PCA, SVM, ForeCA (ICA), etc.). It is used to 

analyze the correlation between two sets of variables. Therefore, the data set must be 

divided before training the model. Based on the study of Zhu et al.(Zhu et al., 2016). 

The study adds variables of the stream 9 (exhaust gas) as the quality-relevant variables 

based on the stream 11 (product). The rest variables are used as input (process) variables. 

As mentioned above, three typical faults (step fault, drift fault, and random variation 

fault) of TE have been further explored. According to the engineering experience, M-

NAKCCA basic parameters are set as follows by trials and errors: the penalty parameter 

𝜉𝜉  of MEm is 0.01, and the kernel function is ' Gauss'. The confidence of UCL is 

0.99. 𝜛𝜛=0.6. 
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As profiled in Figure 3, the detection plot of M-NAKCCA/CCA method for the fault 

1 is shown. The fault 1 is a step fault, which represents the component B step changed 

in the stream 4. Since the TE process involves chemical reactions, when an abnormality 

occurs in a specific component, it will inevitably cause a series of effects and faults will 

propagate around the entire process. Moreover, abnormal information will be stored in 

the testing data. As shown in Figure 3, the fault detection accuracy of the M-NAKCCA-

T2 is 98.33%. The accuracy of M-NAKCCA-SPE is 98.65%. Compared with the basic 

CCA method, the accuracy of fault detection is improved by 2.38% and 7.14% 

respectively. It is worth noting that the real chemical process has the self-adjusting 

function, so the system could be adjusted after the step fault. The M-NAKCCA method 

can capture the system state after the fault. On the contrary, the basic CCA method fails 

to deal with this issue. Fault 4 is a typical random variation fault, and it represents that 

the cooling water inlet temperature of the TEP reactor changes randomly. Because of 

the randomness of the disturbance, the system will have different degrees of chain 

reaction. Therefore, it is necessary to monitor the fault 4. The monitoring results are 

shown in Figure 4. The MAR of M-NAKCCA-T2 is 0.126, the corresponding FAR 

equal to zero. The T2 of M-NAKCCA has a fault diagnosis accuracy of 89.48%, while 

the CCA method has only 68.23%. The diagnosis accuracy of M-NAKCCA has 

increased by 31.15%. 
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Figure 3. Monitoring results for a step fault (fault 1): (a) CCA-T2, (b) CCA-SPE, (c) 

M-NAKCCA-T2 and (d) M-NAKCCA-SPE 
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Figure 4. Monitoring results for random variation fault (fault 4): (a) CCA-T2, (b) CCA-

SPE, (c) M-NAKCCA-T2, and (d) M-NAKCCA-SPE 

Figure 5 presents the monitoring results of drift fault (fault 5). It is noteworthy that 

fault 5 is caused by the system reaction kinetic constants slight change, which is a slow 

drift fault. Although the M-NAKCCA method has fewer false alarms than CCA, the 

missed alarms are higher than CCA. Because the MEm is not well deal with the data, 
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the weak fault signal is not adequately compensated. Overall, the M-NAKCCA method 

diagnosis accuracy is higher than the CCA method. The accuracy of M-NAKCCA-SPE 

is 5.66% higher than that of CCA-SPE. 
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Figure 5. Monitoring results for a drift fault (fault 5): (a) CCA-T2, (b) CCA-SPE, (c) 

M-NAKCCA-T2 and (d) M-NAKCCA-SPE  
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Figure 6. The consuming time of online monitoring (Note: Blue use Nystr ö m 

approximation, gray not use.) 

Table 1. PEI values of different detection methods for the TE chemical process. 

Average PCA KPCA CCA M-NAKCCA 
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 (%) T2 SPE T2 SPE T2 SPE T2 SPE 

FAR 0.25 0.25 23.5 - 6.625 44.875 0.0 4.0 

MAR 34.925 11.225 20.475 - 18.1 0.7 5.5 1.7 

PAR 21.055 6.835 21.685 - 13.51 18.37 3.3 2.62 

Accuracy 70.854 90.604 79.021 - 83.813 91.938 95.417 97.917 

As the formula derived in Section 3.2, we know that the Nyström approximation 

method can reduce the running time of the proposed method. Figure 6 presents the 

method running time for five different faults. Fault 1 and fault 2 are step faults. Fault 3 

and fault 4 belong to random variable faults. Fault 5 classified as drift fault. Table 1 is 

the average value of detection results for the TE chemical process, which is mainly 

from the proposed M-NAKCCA method and three basic methods. As shown in Table 1, 

the average diagnosis accuracy of M-NAKCCA-T2 method is 95.42%. The average 

accuracy of quality-irrelevant fault diagnosis is 97.92%. Moreover, the average PAR 

value of M-NAKCCA is low than that of the other three basic methods. This is mainly 

due to the M-NAKCCA method using the following essential technologies. Firstly, M-

NAKCCA uses MEm and CRD to reduce and compensate the data subsequently. 

Secondly, the boosted nonlinear CCA technology is used to establish a reliable 

monitoring model, and this technology can extract more nonlinear data information 

while compressing high dimensional kernel space. Besides, KDE is used to set up the 

corresponding UCL，this technology can leap over the limitation of data must obeying 

a specific distribution. When the chemical data have some problems such as 

nonlinearity, noise, and multi-distribution, the M-NAKCCA method based on the above 



25 

technology can show superior performance. 

4.2. Case study II: Wastewater treatment-benchmark simulation model 1 

(1) Background: The international water association (IWA) design the benchmark 

simulation model 1 (BSM1) for removing the C and N, which is based on the real 

WWTP pre-denitrification process. Also, the BSM1 model is widely accepted by the 

most people. As shown in Figure 7, the core operating components of the wastewater 

treatment process, BSM1, interact between reactors and settlers: The first component 

is the biochemical reaction tank, which is based on the IAWQ activated sludge model 

No. 1 (ASM1). The second component is a secondary settler tank. It is designed by the 

Tak𝑎́𝑎𝑐𝑐𝑐𝑐 double exponential sedimentation velocity model. The detailed introduction 

can refer to the website (http://www.benchmarkWWTP.org). Firstly, BSM1 is simulated 

over 150 days with constant flow. Then, the sunny day's input data is used as the 

dynamic input of the WWTPs. In this study, the sampling interval is 15 min. And the 

simulation lasted for four weeks. During this period, the first two weeks' data as the 

training set. The training set has 1344 samples data, which is collected under the no-

fault condition. In the testing set, different types of faults occur from 701 to 1344. 

 

Figure 7. Schematic plot of BSM1(Liu et al., 2016). 

(2) Discussion and analysis of monitoring results: In this section, according to the 
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knowledge about BSM1 and the engineering experience, thirty-two variables were 

selected, including twenty-eight process variables and four output variables. The 

monitoring variables covered all the processes of BSM1. Simultaneously, the severe 

abrupt faults and drift faults are considered by the proposed M-NAKCCA. M-

NAKCCA basic parameters set as follows: the penalty parameter ξ  is 0.5, and the 

kernel function is ' Gauss'. The confidence of UCL is 0.99. ϖ = 0.6. 

Fault 1 is the oxygen sensor fault from the first unit of the BSM1. Oxygen is an 

essential element of biochemical reactions in activated sludge wastewater treatment, 

which directly affects the bacteria behaviours across the entire WWTP process. 

Therefore, M-NAKCCA is implemented for monitoring fault 1 herein. As shown in 

Figure 8. Missed alarm number of the M-NAKCCA-T2 and M-NAKCCA-SPE is zero. 

The accuracy of M-NAKCCA-T2 is 99.41%, while that of the CCA method is only 

74.78%. This is mainly due to the traditional statistical method (PCA, CCA) can not 

effectively extract the nonlinear information of fault 1. Figure 9 is to profile the 

detection result of the drift fault (fault 3), it represents that autotrophic bacteria 

concentrations increase gradually. The fault diagnosis accuracy of M-NAKCCA-T2 is 

98.88%, and the accuracy of M-NAKCCA-SPE is 98.59%. It is important to notice that 

the fault signal during 700-800 is relatively weak. Fortunately, the MEm plays a proper 

compensation herein. However, CCA method has missed alarms at the beginning of the 

fault, and the MAR of CCA -T2 is as high as 28.57%. By comparison, the M-NAKCCA-

T2 method’s MAR is only 1.09%. Fault 3 is a typical drift fault, the corresponding data 

concurrently with nonlinear structure. The linear methods ( PCA, CCA) cannot extract 
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the nonlinear structure information, which makes the behaviour of constructed linear 

model disordered. 
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Figure 8. Monitoring results for a step fault (fault 1): (a) CCA-T2, (b) CCA-SPE, (c) 

M-NAKCCA-T2 and (d) M-NAKCCA-SPE 
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Figure 9. Monitoring results for a drift fault (fault 3): (a) CCA-T2, (b) CCA-SPE, (c) 

M-NAKCCA-T2 and (d) M-NAKCCA-SPE  
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Figure 10. The consuming time of online monitoring (Note: Blue use Nystr ö m 

approximation, gray not use.) 

Table 2. PEI values of different detection methods for the BSM1 

Average 

(%) 

PCA KPCA CCA M-NAKCCA 

T2 SPE T2 SPE T2 SPE T2 SPE 

FAR 2.143 1.143 3.6 - 8.629 13.0 7.429 6.971 

MAR 60.093 10.621 52.888 - 19.068 36.646 1.957 2.143 

PAR 36.913 6.830 33.173 - 14.892 27.188 4.145 4.074 

Accuracy 70.089 94.316 72.783 - 86.369 75.670 95.194 95.342 

Figure 10 shows the program running time for five different faults. Fault 1 and fault 

2 are step faults. Fault 3-Fault 5 are classified as drift faults. Fault 3 is the most time-

saving case by using the Nyström approximation technology. Fault 2 is the least time-

consuming. Moreover, as summarized in Table 2, it presents the average value of 

detection results for the BSM1. The accuracy of M-NAKCCA method for detecting 

quality-relevant fault is 95.19%. The average accuracy for quality-irrelevant fault is 

95.34%. By comparison with the basic CCA method, the accuracy of T2 and SPE 
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improved by 10.218% and 25.997% respectively. Besides, The comprehensive index 

PAR of the M-NAKCCA method is also improved compared to three basic methods. 

The PAR value of M-NAKCCA-T2 is only 0.04145, which is far below the CCA-T2 

method. Also, the PAR value of the basic PCA method is the highest, which is up to 

0.36913. This is mainly because the wastewater treatment process contains complex 

biochemical reactions, and the corresponding process information usually exists in the 

data with nonlinear structure. CCA and PCA are linear methods, which can not extract 

the information of the nonlinear data effectively. Moreover, the nonlinear method of 

KPCA cannot show its talents. The accuracy of KPCA is low than CCA, and it is 

attributed to the KPCA method that cannot capture the structural information of the 

input space and output space. Besides, the M-NAKCCA uses MEm and CRD to 

compensate for the nonlinear data, and it further enhances the method performance. 

Therefore, the proposed M-NAKCCA method is promising for monitoring the 

wastewater treatment process. 

5. Conclusion 

Process monitoring and risk assessment are indispensable for the process industries, 

implicating accidence decrement, cost-saving and environment protection. To deal with 

this problem, a novel M-NAKCCA framework is proposed in this paper. The proposed 

method can identify diverse types of faults (drift fault, step fault, and random fault), 

with the ability to indicate the abnormal events. Under the M-NAKCCA monitoring 

framework, the raw dataset is firstly processed by the matter-element model. Secondly, 

the nonlinear CCA based on kernel function is developed. Meanwhile, Nystr ö m 
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technology is effectively used to estimate the low-rank approximation of the Gram 

matrix, whose purpose is to reduce time consumption and improve the information 

retention capacity of the low-rank matrix. Finally, T2 control chart is reconstructed by 

the residual of input-output to monitor the quality-relevant faults. 

In this paper, the proposed M-NAKCCA framework is used to monitor a wastewater 

treatment process and a TE chemical process. The comparison study with the other 

basic methods (PCA, CCA and KPCA) demonstrates that the proposed method is more 

satisfactory in terms of FAR, MAR, PAR, and accuracy. Moreover, the result illustrates 

that the proposed method is effective for the detection of quality-related faults. However, 

since the external interference and internal processes behavior is too complicated, it is 

inevitable that the system failures will propagate across the entire process and to 

intertwine with each other. This can be resorted to incipient fault detection and fault 

locations. Unfortunately, the proposed M-NAKCCA framework only focuses on fault 

detection, while ignoring the location of the root cause of the fault. In future research, 

the M-NAKCCA framework will be further expanded to locate the root cause of faults 

and deal with more complex industrial problems. 
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