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Abstract 

Quality-relevant process monitoring has attracted much attention for its ability to assist in 

maintaining efficient plant operation. However, when the process suffers from non-

stationary and over-complex (with noise, multiplicative faults, etc.) characteristics, the 

traditional methods usually cannot be effectively applied. To this end, a novel method, 

termed as Robust adaptive boosted canonical correlation analysis (Rab-CCA), is proposed 

to monitor the wastewater treatment processes. First, a robust decomposition method is 

proposed to mitigate the defects of standard CCA by decomposing the corrupted matrix 

into a low-matrix and a sparse matrix. Second, to further improve the performance of the 

standard process monitoring method, a novel criterion function and control charts are 

reconstructed accordingly. Moreover, an adaptive statistical control limit is proposed that 

can adjust the thresholds according to the state of a system and can effectively reduce the 

missed alarms and false alarms simultaneously. The superiority of Rab-CCA is verified by 

Benchmark Simulation Model 1 (BSM1) and a real full-scale wastewater treatment plant 

(WWTP). 

Keywords: Canonical correlation analysis (CCA), adaptive threshold, fault detection, 

quality-relevant, wastewater treatment. 

 
 

1. Introduction 

Safe and stable operation of WWTPs is crucial for energy conservation and  

environmental protection [1]. However, real WWTPs are always exposed to hostile working 
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environments. Sensor faults, machine faults or process faults, such as filamentous sludge 

bulking, are likely to frequently occur, especially for most small- and medium-sized WWTPs 

in rural areas [1]. Additionally, the WWTP is a complex industrial system with a mixture of 

physical, chemical and biological reactions [2]. If a fault is not satisfactorily recognized and 

removed in time, it will not only result in the huge economic losses but also cause secondary 

pollution of the environment. Moreover, the WWTP will be penalized by environmental 

protection agencies. 
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The data-driven process monitoring method is a popular and powerful tool for plant 

management because it can achieve better performance without requiring prior knowledge [3-

8]. Multivariate statistical methods, such as principal component analysis (PCA) [6] and 

support vector machine (SVM)[9], are among the most popular data-driven  methods and 

have been successfully used for process monitoring in industrial processes. Tian et al. 

proposed use of a multiblock strategy and PCA to monitor plant-wide processes [6]. 

Unfortunately, quality-relevant faults cannot be further identified and diagnosed satisfactorily 

by the above methods [3]. The multivariate statistical method, CCA, is able to represent the 

correlation between two groups of variables, which can facilitate effective diagnosis of the 

quality-relevant faults. In recent decades, the CCA-based fault diagnosis method has been 

applied in medicine, imaging, high-speed training and other fields [10-13]. Nonetheless, the 

CCA-based method is rarely used in energy-related industries. In this paper, the CCA-based 

method is applied to monitor the WWTP quality-relevant faults and to reduce the unnecessary 

energy consumption. 

The CCA-based method usually focuses on extracting the correlation structure between 

input and output variables. Jiang et al. studied the improved CCA for fault detection in the 

local TE (Tennessee Eastman) process [11]. Although decomposition of a large-scale industrial 

system into local components can improve the diagnostic performance, the inherent system 

structure is also be destroyed to some extent by decoupling the interacting relationship 

leading to missing data structure. At the same time, the robustness of the standard method is 

usually not fully considered, which likely produces missed alarms or false alarms in the case  

in which the parameters or hyperparameters are not set up carefully. Chen et al. proposed a 

generalized CCA-based method to monitor the system faults with an application to the 

traction drive control system (TDCS). In this method, a random algorithm was used to 

optimize the control limit and ensure that the method can recognize the working condition 

[10]. However, under complex conditions, the generalized CCA-based method may not be able 

to effectively identify the fault condition. Additionally, when the internal data structure is 

corrupted by noise, the trained model deviates significantly [14]. To mitigate this issue, robust 
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decomposition is used to treat the data matrix and ensure a low-rank matrix containing 

essential information. In turn, the performance of the CCA-based method can be effectively 

improved by recovering an original data matrix using a low-rank matrix. Recently, some 

researchers have focused on the issue in which the data matrix is corrupted by anomalies or 

noise [14-16]. Candès et al. proposed use of the principal component pursuit (PCP) method to 

estimate the low-rank matrix, and subsequently applied the estimated matrix to improve the 

method performance [16]. Pan et al. proposed an improved PCP method to recover the low-

rank matrix from the corrupted matrix [15]. 

The low-rank matrix estimation methods are used to improve the CCA. Branco et al. 

compared different low-rank matrix estimation algorithms to assess the impact on the CCA-

based method. The experiment showed that the effective recovered algorithm can indeed 

improve CCA-based fault diagnosis performance [14]. However, the above studies cannot 

make full use of the sparse matrix, and the decomposed sparse matrix may be mixed with 

useful information. In this paper, a new criterion function is established to achieve the 

purpose of multiobjective optimization. The criterion function can simultaneously maximize 

the correlation of the low-rank matrix, and minimize the correlation of the sparse matrix. 

Thus, the low-rank matrix and the sparse matrix can be effectively utilized together and the 

corresponding robust loading matrix (RLM) can be further obtained. 

T2 control chart and SPE (square prediction error) control chart are commonly used fault 

detection tools [17-19] that are derived from the PCA, CCA, and PLS (partial least squares) 

methods. Subsequently, these tools are used to justify the system working  condition. 

However, the traditional contribution plot (CP) always results in misidentification if the 

working condition is too complex [20]. To improve the diagnostic performance of CP, Alcala 

et al. proposed a reconstructed CP method [20]. However, the reconstruction method is only 

suitable for a single fault and does not properly consider fault detection accuracy [21]. To 

detect quality-relevant faults by CCA, Zhu et al. divided the data space into five components 

[22]: quality-relevant T2-based control chart, input space quality-irrelevant T2 and SPE control 

chart, output space quality-irrelevant T2 and SPE control chart. Chen et al. constructed a 
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residual generator by using the input and output state space, which can divide the control 

chart into four components [10]. Based on the above studies, the input-output state space is 

divided into two components in this paper, the quality-relevant T2 control chart and the 

quality-irrelevant SPE control chart. At the same time, the threshold of the standard control 

chart is taken as an invariant constant set up by the χ2 distribution or F distribution. 

Generally, these invariant thresholds cannot properly cope with the industrial dynamics, 

which continuously leads to false or missed alarms [23]. Therefore, a new adaptive control 

limit (ACL) is proposed in this paper by considering both the dynamics of historical data and 

real-time data. 

In this study, considering that the traditional CCA method cannot efficiently decompose the 

corrupted matrix, it cannot adaptively adjust the control limit of the control chart according to 

different working conditions. A novel fault detection method, termed Rab-CCA, is proposed to 

monitor wastewater treatment processes. Rab-CCA can effectively decompose the corrupted 

matrix. As scuh, the information of the corrupted matrix can be effectively extracted and used. 

In addition, a novel adaptive control limit (ACL) is proposed in this paper. The threshold of 

Rab-CCA can be adaptively adjusted according to different fault scenarios, which can reduce 

false alarms and missed alarms accordingly. Overall, the main contributions of this study can 

be summarized as follows: 

(1) Considering that the traditional CCA method cannot handle a data matrix that is 

corrupted by anomalies or noise, the inexact augmented Lagrange algorithm (IALM) is 

introduced to recover the low-rank matrix containing essential and hidden information of a 

system. A multi-objective criterion function is proposed and constructed in this paper to 

obtain the corresponding robust loading matrix. By doing so, the Rab-CCA is able to robustly 

deal with anomalies or noise. 

(2) Based on the robust loading matrix, a quality-relevant T2 control chart and quality-

irrelevant SPE control chart are reconstructed, and the reconstructed control chart shows 

better performance. Additionally, the ACL is further proposed to work together with T2 and 

the SPE control plots to reduce false alarms and missed alarms by resorting to adaptive 
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𝑋𝑋 

strategies. 
 

(3) The Rab-CCA-based method is proposed to monitor real wastewater treatment 

processes. Unlike traditional studies, the Rab-CCA-based method is able to monitor quality-

relevant faults under different scenarios (device faults or sludge bulking). 

2. Preliminaries 
 

2.1. Canonical correlation analysis 
 

CCA is a multivariate statistical method available for quality-relevant fault monitoring. Let 

X ∈ 𝑅𝑅𝑛𝑛×𝑝𝑝 and Y ∈ 𝑅𝑅𝑛𝑛×𝑞𝑞 be the input data matrix and output matrix, respectively，where 𝑝𝑝 

represents the number of input variables,  𝑞𝑞  represents the number of output variables, and 

𝑛𝑛    represents   the   number   of   samples.   The   correlation   coefficients   of   {𝑥𝑥1 ⋯ 𝑥𝑥𝑝𝑝} and 
 

{𝑦𝑦1 ⋯ 𝑦𝑦𝑞𝑞}𝑌𝑌 
can be solved by the corresponding linear combination: 

𝜌𝜌(𝛼𝛼𝛼𝛼𝑇𝑇, 𝛽𝛽𝛽𝛽𝑇𝑇) = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑇𝑇 

√𝛼𝛼𝛼𝛼𝑋𝑋𝑋𝑋𝑎𝑎𝑇𝑇∗√𝛽𝛽𝛽𝛽𝑌𝑌𝑌𝑌𝛽𝛽𝑇𝑇 

 
, (1) 

where α = [𝛼𝛼1 ⋯ 𝛼𝛼𝑝𝑝] and β = [𝛽𝛽1 ⋯ 𝛽𝛽𝑞𝑞] represent the nonzero constant  vector  (the 

combination coefficients of X and Y, respectively), and ∑(∗) is the covariance matrix. To 

ensure the uniqueness of the result, let 𝛼𝛼𝛼𝛼𝑋𝑋𝑋𝑋𝑎𝑎𝑇𝑇 = 1 and 𝛽𝛽𝛽𝛽𝑌𝑌𝑌𝑌𝛽𝛽𝑇𝑇 = 1 . The  following 

optimization formula can be derived： 

arg max 𝜌𝜌(𝑊𝑊𝑋𝑋, 𝑊𝑊𝑌𝑌)=arg max 𝑊𝑊𝑋𝑋𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋−1⁄2𝛴𝛴𝑋𝑋𝑋𝑋𝛴𝛴𝑌𝑌𝑌𝑌−1⁄2𝑊𝑊𝑌𝑌 
𝑊𝑊𝑋𝑋,𝑊𝑊𝑌𝑌 𝑊𝑊𝑋𝑋,𝑊𝑊𝑌𝑌  

s. t 𝑊𝑊𝑋𝑋𝑇𝑇𝑊𝑊𝑋𝑋  = 1,  𝑊𝑊𝑌𝑌𝑇𝑇𝑊𝑊𝑌𝑌 = 1, (2) 
 

where 𝑊𝑊𝑋𝑋 = 𝛴𝛴𝑋𝑋𝑋𝑋1⁄2𝛼𝛼𝑇𝑇, 𝑊𝑊𝑌𝑌 = 𝛴𝛴𝑌𝑌𝑌𝑌1⁄2𝛽𝛽𝑇𝑇. To solve the formula (2), a  singular  decomposition 

(SVD) is performed on the matrix 𝑍𝑍 = 𝛴𝛴𝑋𝑋𝑋𝑋−1⁄2𝛴𝛴𝑋𝑋𝑋𝑋𝛴𝛴𝑌𝑌𝑌𝑌−1⁄2. 

𝑍𝑍  = 𝑈𝑈 [𝛬𝛬𝑟𝑟 0] 𝑉𝑉, (3) 
0 0 

where  𝑈𝑈  and  𝑉𝑉  represent  the  left  and  right  singular  value  vectors,  respectively.  𝛬𝛬𝑟𝑟 = 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛾𝛾1, ⋯ , 𝛾𝛾𝑟𝑟) is the singular value, r=rank(Z), and r ≤ min(p, q) . Thus, the canonical 

correlation matrix can be expressed as 𝑃𝑃 = 𝛴𝛴𝑋𝑋𝑋𝑋−1⁄2𝑈𝑈(: ,1: 𝑟𝑟) , and 𝐿𝐿 = 𝛴𝛴𝑌𝑌𝑌𝑌−1⁄2𝑉𝑉(: ,1: 𝑟𝑟) . 

Additionally,    the    redundancy    noncorrelation    matrix    can    be    expressed    as    𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟  = 

𝛴𝛴𝑋𝑋𝑋𝑋−1⁄2𝑈𝑈(: , 𝑟𝑟 + 1: 𝑝𝑝) and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛴𝛴𝑌𝑌𝑌𝑌−1⁄2𝑉𝑉(: , 𝑟𝑟 + 1: 𝑞𝑞). 

2.2. CCA-based fault detection 
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𝑌𝑌 

𝑌𝑌𝑌𝑌𝑌𝑌
 

Generally, the fault vector can be represented as follows: 
 

u = 𝑢𝑢𝑖𝑖𝑖𝑖  + 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜  = 𝑢𝑢∗    + 𝜃𝜃𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑢𝑢∗ + 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, (4) 
𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 

 

where  𝑢𝑢∗ and  𝑢𝑢∗ represent the fault-free input and output space, respectively; 𝜃𝜃 
𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 

 

and 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 represent the fault amplitude of the input space and output space, respectively; and 
 

𝑓𝑓𝑖𝑖𝑖𝑖 and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 are the corresponding fault direction vectors. The fault amplitude  and direction  

are usually not available in advance [21]. Therefore, the data space can be roughly divided into 

four components by combining the CCA model with T2 and SPE control plots: 

𝑇𝑇2 = 𝑋𝑋𝑋𝑋𝑋𝑋−1𝑃𝑃𝑇𝑇𝑋𝑋𝑇𝑇, (5) 
𝑋𝑋 𝑖𝑖𝑖𝑖 

 

𝑇𝑇2  = 𝑌𝑌𝑌𝑌𝑌𝑌−1 𝐿𝐿𝑇𝑇𝑌𝑌𝑇𝑇, (6) 
𝑌𝑌 𝑜𝑜𝑜𝑜𝑜𝑜 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑋𝑋    𝑃𝑃𝑇𝑇   𝑋𝑋𝑇𝑇, (7) 
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟𝑟𝑟𝑟𝑟 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜    = 𝑌𝑌𝑌𝑌 𝐿𝐿𝑇𝑇      𝑌𝑌𝑇𝑇, (8) 
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟 

 

where   𝑇𝑇2  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 are used for the input space to monitor input -output-relevant faults and 
𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 

 

input-output-irrelevant faults, respectively; 𝑇𝑇2 is used for the output space to detect the output-

input-relevant faults; and 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 is used for the output space to detect the output-input-

irrelevant faults [22]. The dimension of the correlation space is usually determined 

by the  rank(𝑍𝑍)  [24]. Therefore,  𝛴𝛴−1=𝛴𝛴−1 . 
𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 
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Fig 1. Schematic of the proposed method for process monitoring 
 

3. Robust adaptive boosted canonical correlation analysis 
 

The collected data from WWTPs are often severely corrupted by noise. Traditional CCA-

based methods cannot extract the noise hidden in the data space when applied for data space 

decomposition. If the CCA model is trained by the contaminated data, the model performance 

becomes severely degraded. However, the noise matrix is usually sparse [25]. If the sparse 

matrix can be satisfactorily decomposed and the corresponding robust loading matrix(RLM) 

is accurately obtained, the model performance can be significantly improved. At the same 

time, because the modelling data are  usually nonstationary, CCA diagnoses a fault by an 

invariant control limit, which cannot effectively adapt to the real working conditions. 

Therefore, it is imperative to develop a dynamic control limit in this paper. Based on the 

aforementioned considerations, we propose the following Rab-CCA method. The execution 

flows of Rab-CCA for process monitoring are shown in Fig. 1. 
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𝟏𝟏 

To derive a robust loading matrix (RLM), the original data matrix needs to be decomposed. 

Suppose 𝑋𝑋 = 𝛭𝛭 + 𝐸𝐸, where 𝛭𝛭 and 𝐸𝐸 represent the low-rank matrix and the sparse matrix, 

respectively. The purpose of matrix decomposition is to solve the following convex 

optimization function [15, 25].  
{min‖𝛭𝛭‖∗ +  𝜎𝜎‖𝐸𝐸‖𝑙𝑙1 , (9) 
𝑠𝑠. 𝑡𝑡 𝑋𝑋 = 𝛭𝛭 + 𝐸𝐸 

where ‖𝛭𝛭‖∗ represents the nuclear norm of the matrix 𝛭𝛭 and is used to constrain the low 

rank, 𝜎𝜎 > 0 is the weight parameter, and ‖𝐸𝐸‖𝑙𝑙1 represents  the  𝑙𝑙1  norm  of  the  matrix  𝐸𝐸, 

which is the sum of all elements in the matrix. Recently, researchers have developed many 

different strategies to solve the aforementioned convex optimization function. Liu et al. 

pointed out that the inexact augmented Lagrange algorithm (IALM) is known to generally 

perform well in practice [26]. Given the augmented Lagrange function, the optimization 

function can be formulated as follows: 

L(𝑀𝑀, 𝐸𝐸, 𝛹𝛹, 𝜎𝜎, 𝑢𝑢)= ‖𝛭𝛭‖∗+𝜎𝜎‖𝐸𝐸‖𝑙𝑙 +⟨𝛹𝛹, 𝑋𝑋 − 𝛭𝛭 − 𝐸𝐸⟩+𝑢𝑢 ‖𝑋𝑋 − 𝛭𝛭 − 𝐸𝐸‖2 , (10). 
1 2 𝐹𝐹 

 

𝛹𝛹 is the Lagrange multiplier to remove the equality constraint and is bounded, and  𝑢𝑢  > 0  is  

a penalty parameter. The iterative update of matrix 𝛭𝛭 and 𝐸𝐸 is achieved by fixing other 

variables. Thus, the Lagrange multiplier 𝛹𝛹 is updated. Finally, the optimal decomposition 

matrix is obtained by setting the interactive threshold. The procedure of the inexact 

augmented Lagrange algorithm (IALM) is shown in algorithm 1: 

Algorithm 1: The iterative procedures of IALM method 
 

1. Input: data matrix 𝑿𝑿, weight parameter 𝝈𝝈, 𝝆𝝆. Iteration upper limit 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕, critical value 𝐦𝐦𝐦𝐦𝐦𝐦𝒖𝒖. 
2. Initialize: 𝜳𝜳𝟎𝟎 = 𝐗𝐗/𝐉𝐉(𝐗𝐗) ; 𝜧𝜧𝟎𝟎 = 𝑬𝑬𝟎𝟎 = 𝜳𝜳𝟎𝟎 = 𝟎𝟎 ; 𝒖𝒖𝟎𝟎 > 𝟎𝟎 ; 𝝆𝝆 = 𝟏𝟏. 𝟓𝟓 ; 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟏𝟏𝟏𝟏−𝟕𝟕 ; 𝒋𝒋 = 𝟎𝟎 ; 𝐦𝐦𝐦𝐦𝐦𝐦𝒖𝒖 = 

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏; 
3. While( not converged) Do 

 𝟏𝟏 𝟏𝟏 𝜳𝜳𝒋𝒋 
𝟐𝟐 

a. Update  𝜧𝜧𝒋𝒋:  𝜧𝜧𝒋𝒋+𝟏𝟏 = 𝒂𝒂𝒂𝒂𝒂𝒂 𝐦𝐦𝐦𝐦𝐦𝐦  
𝒖𝒖    
‖𝜧𝜧𝒋𝒋‖∗  

+ 
𝟐𝟐 
‖𝜧𝜧𝒋𝒋 − (𝑿𝑿 − 𝑬𝑬𝒋𝒋 +  

𝒖𝒖  
)‖  . 

𝑴𝑴𝒋𝒋 𝒋𝒋 𝒋𝒋 𝑭𝑭 

b. Update 𝑬𝑬𝒋𝒋: 𝑬𝑬𝒋𝒋+𝟏𝟏 = 𝐚𝐚𝐚𝐚𝐚𝐚 𝐦𝐦𝐦𝐦𝐦𝐦 𝑳𝑳( 𝜧𝜧𝒋𝒋+𝟏𝟏, 𝑬𝑬𝒋𝒋, 𝜳𝜳𝒋𝒋, 𝒖𝒖𝒋𝒋). 
𝑬𝑬𝒋𝒋 

 

𝑬𝑬𝒋𝒋+𝟏𝟏=𝑺𝑺𝝈𝝈⁄ 𝒖𝒖𝒋𝒋 
[𝐗𝐗 − 𝜧𝜧𝒋𝒋+𝟏𝟏+ 

𝒖𝒖𝒋𝒋 
𝜳𝜳𝒋𝒋]. 

c. Update 𝜳𝜳𝒋𝒋: 𝜳𝜳𝒋𝒋+𝟏𝟏=𝜳𝜳𝒋𝒋+𝒖𝒖𝒋𝒋(𝐗𝐗 − 𝜧𝜧𝒋𝒋+𝟏𝟏 − 𝑬𝑬𝒋𝒋+𝟏𝟏). 
d. Update 𝒖𝒖𝒋𝒋: 𝒖𝒖𝒋𝒋 to 𝒖𝒖𝒋𝒋+𝟏𝟏, 𝒖𝒖𝒋𝒋+𝟏𝟏 = 𝐦𝐦𝐦𝐦𝐦𝐦(𝝆𝝆𝝆𝝆𝒋𝒋, 𝐦𝐦𝐦𝐦𝐦𝐦𝒖𝒖). 

4. 𝒋𝒋 = 𝒋𝒋 + 𝟏𝟏； 

5. Until ‖𝑿𝑿 − 𝜧𝜧𝒋𝒋+𝟏𝟏 − 𝑬𝑬𝒋𝒋+𝟏𝟏‖∞ 
≤ 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕. 
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𝑢𝑢 

 

6. End. 
Output (𝜧𝜧𝒋𝒋, 𝑬𝑬𝒋𝒋) 

1 
where 𝑆𝑆𝜎𝜎⁄ 𝑢𝑢𝑗𝑗

[X − 𝛭𝛭𝑗𝑗+1+ 
𝑢𝑢𝑗𝑗 
𝛹𝛹𝑗𝑗] represents the soft-shrinkage operator, the soft-shrinkage 

operator definition refers to [25], and 𝛭𝛭𝑗𝑗 and 𝐸𝐸𝑗𝑗 represent the low-rank matrix and the 

sparse kernel matrix of the algorithm 1 iterative process, respectively. However, this approach 

may not converge to the optimal solution in formula (9). The optimal solution can be achieved 

only if it obeys theorem 1. 

Theorem 1. If the parameter 𝑢𝑢𝑗𝑗 is non-decreasing in all iterative procedures 
 

and ∑+∞ 𝑢𝑢−1 = +∞, (𝛭𝛭𝑗𝑗, 𝐸𝐸𝑗𝑗) converges to an optimal solution(𝛭𝛭, 𝐸𝐸) by algorithm 1. 
𝑗𝑗=1 𝑗𝑗 

 

Proof: Suppose (𝛭𝛭∗, 𝐸𝐸∗, 𝛹𝛹∗) is the saddle point of the Lagrange function, 𝑋𝑋 = 𝛭𝛭∗ + 𝐸𝐸∗.  

First, 𝜕𝜕(∗) (monotone operator) is defined as the subgradient of a convex function, if 𝑓𝑓 is a 

convex function, then ⟨𝑥𝑥1 − 𝑥𝑥2,𝑓𝑓1 − 𝑓𝑓2⟩ ≥ 0, and 𝑓𝑓1, 𝑓𝑓2 ∈ ∂(𝑓𝑓(𝑥𝑥𝑖𝑖))[25]. According to algorithm 1, 

X − 𝛭𝛭𝑗𝑗+1 − 𝐸𝐸𝑗𝑗+1= 1 (𝛹𝛹𝑗𝑗+1-𝛹𝛹𝑗𝑗). A new bounded time series can be introduced according to 
𝑗𝑗 

 

lemma 1 in Lin's paper [25],  
𝛹̂𝛹𝑗𝑗+1    =𝛹𝛹𝑗𝑗+𝑢𝑢𝑗𝑗 (X − 𝛭𝛭𝑗𝑗+1 − 𝐸𝐸𝑗𝑗+1) 𝛹̂𝛹𝑗𝑗+1  ∈ ∂(‖𝛭𝛭𝑗𝑗‖∗). (11) 

Assuming that 𝑓𝑓∗ = ‖𝛭𝛭∗‖∗ + 𝜎𝜎‖𝐸𝐸∗‖𝑙𝑙1 is the corresponding optimal value, we need to 

prove ‖𝛭𝛭𝑗𝑗‖∗ 

 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

+ 𝜎𝜎‖𝐸𝐸𝑗𝑗‖𝑙𝑙1 
→ 𝑓𝑓 

 
∗ . According to algorithm 1, 0 ∈ 𝜕𝜕𝑀𝑀 

 
𝐿𝐿(𝑀𝑀∗, 𝐸𝐸∗, 𝛹𝛹∗, 𝜎𝜎, 𝑢𝑢) ， and 

 

𝜕𝜕𝐸𝐸𝐿𝐿(𝑀𝑀∗, 𝐸𝐸∗, 𝛹𝛹∗, 𝜎𝜎, 𝑢𝑢) = ∂ ( ‖𝑀𝑀∗‖∗ ) − 𝛹𝛹∗ − 𝑢𝑢 ( X − 𝑀𝑀∗ − 𝐸𝐸∗ ), so 𝛹𝛹∗ ∈ ∂ ( ‖𝑀𝑀∗‖∗ ). Similarly, 0 ∈ 

𝜕𝜕𝐸𝐸𝐿𝐿(𝑀𝑀∗, 𝐸𝐸∗, 𝛹𝛹∗, 𝜎𝜎, 𝑢𝑢), so 𝛹𝛹∗ ∈ ∂(‖𝜎𝜎𝜎𝜎∗‖𝑙𝑙1 ). According to the above definition, the following 

formula can be derived: 

‖𝐸𝐸 − 𝐸𝐸∗‖2 +𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2  = ‖𝐸𝐸 − 𝐸𝐸 + 𝐸𝐸 − 𝐸𝐸∗‖2 + 𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹 + 𝛹𝛹 − 𝛹𝛹∗‖2 = 
𝑗𝑗+1 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝐹𝐹 𝑗𝑗+1 𝑗𝑗 𝑗𝑗 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝑗𝑗 𝑗𝑗 𝐹𝐹 

 

‖𝐸𝐸 − 𝐸𝐸∗‖2 + 𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2 − ‖𝐸𝐸 − 𝐸𝐸 ‖2 − 𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹 ‖2 − 2𝑢𝑢−2(⟨𝛹𝛹 − 𝛹𝛹 ,𝐸𝐸 − 
𝑗𝑗 𝐹𝐹 𝑗𝑗 𝑗𝑗 𝐹𝐹 𝑗𝑗+1 𝑗𝑗 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝑗𝑗 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝑗𝑗 𝑗𝑗+1 

𝐸𝐸𝑗𝑗⟩ +  ⟨𝛭𝛭𝑗𝑗+1 − 𝑀𝑀∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩  +  ⟨𝐸𝐸𝑗𝑗+1 − 𝐸𝐸∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩). (12) 

If  𝛹̂𝛹𝑗𝑗+1  ∈ ∂(‖𝛭𝛭𝑗𝑗+1‖∗，𝛹𝛹𝑗𝑗+1 ∈ ∂(‖𝜎𝜎𝐸𝐸𝑗𝑗+1‖𝑙𝑙1 
)，the following formula can be derived. 

⟨𝛹𝛹𝑗𝑗+1 − 𝛹𝛹𝑗𝑗,𝐸𝐸𝑗𝑗+1  − 𝐸𝐸𝑗𝑗⟩ ≥ 0, (13a) 

⟨𝛭𝛭𝑗𝑗+1 − 𝑀𝑀∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩ ≥ 0, (13b) 

⟨𝐸𝐸𝑗𝑗+1 − 𝐸𝐸∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩ ≥ 0. (13c) 
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𝑗𝑗 

∗ 𝑙𝑙1 

ℎ ℎ 

𝑗𝑗 

𝑗𝑗
 

ℎ ℎ 

Because 𝑢𝑢 is non-decreasing, {‖𝐸𝐸 − 𝐸𝐸∗‖2 +𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2 } is non-increasing by Eq. 
𝑗𝑗 𝑗𝑗+1 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝐹𝐹 

(12)  and  Eq.  (13),  and  2𝑢𝑢−2(⟨𝛹𝛹𝑗𝑗+1 − 𝛹𝛹𝑗𝑗 ,𝐸𝐸𝑗𝑗+1 − 𝐸𝐸𝑗𝑗⟩+⟨𝛭𝛭𝑗𝑗+1 − 𝑀𝑀∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩+⟨𝐸𝐸𝑗𝑗+1 − 𝐸𝐸∗,𝛹̂𝛹𝑗𝑗+1  − 
 

𝛹𝛹∗⟩) ≤ ‖𝐸𝐸 − 𝐸𝐸∗‖2 + 𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2 − ‖𝐸𝐸 − 𝐸𝐸 ‖2 −𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹 ‖2 < ‖𝐸𝐸 − 𝐸𝐸∗‖2 + 
𝑗𝑗 𝐹𝐹 𝑗𝑗 𝑗𝑗 𝐹𝐹 𝑗𝑗+1 𝑗𝑗   𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝑗𝑗   𝐹𝐹 𝑗𝑗 𝐹𝐹 

 

𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2 
. Thus, the following formula can be obtained: 

𝑗𝑗 𝑗𝑗 𝐹𝐹 

∑+∞  2𝑢𝑢−1(⟨𝛹𝛹𝑗𝑗+1 − 𝛹𝛹𝑗𝑗 ,𝐸𝐸𝑗𝑗+1 − 𝐸𝐸𝑗𝑗⟩ + ⟨𝛭𝛭𝑗𝑗+1 − 𝑀𝑀∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩ + ⟨𝐸𝐸𝑗𝑗+1 − 𝐸𝐸∗,𝛹̂𝛹𝑗𝑗+1  − 𝛹𝛹∗⟩) < +∞.   （14) 
𝑗𝑗=1 𝑗𝑗 

 
Similarly,  ∑+∞ 𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹 ‖2 < +∞ can be obtained by Eq.(12) and Eq.(14). It is 

𝑗𝑗=1 𝑗𝑗 𝑗𝑗+1 𝑗𝑗 𝐹𝐹 
 

known that (𝛭𝛭𝑗𝑗+1, 𝐸𝐸𝑗𝑗+1), so if ∑+∞ 𝑢𝑢−1 = +∞ is a feasible solution, the following formula can 
𝑗𝑗=1   𝑗𝑗 

 

be obtained:  
 

‖𝑋𝑋 − 𝛭𝛭 

 
− 𝐸𝐸 ‖2 = 𝑢𝑢−1‖𝛹𝛹 

 
− 𝛹𝛹 ‖2  → 0. (15) 

𝑗𝑗+1 𝑗𝑗+1 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝑗𝑗 𝐹𝐹 
 

Thus, 
 

‖𝛭𝛭𝑗𝑗‖   +  𝜎𝜎‖𝐸𝐸𝑗𝑗‖    ≤ ‖𝛭𝛭∗‖∗ +  𝜎𝜎‖𝐸𝐸∗‖𝑙𝑙1  − ⟨𝛹̂𝛹𝑗𝑗 ,𝑀𝑀∗  − 𝛭𝛭𝑗𝑗⟩ − ⟨𝛹𝛹𝑗𝑗 ,𝐸𝐸∗  − 𝐸𝐸𝑗𝑗⟩=𝑓𝑓∗  + ⟨𝛹𝛹∗  − 𝛹̂𝛹𝑗𝑗 ,𝑀𝑀∗  − 
 

𝛭𝛭𝑗𝑗⟩ + ⟨𝛹𝛹∗ − 𝛹𝛹𝑗𝑗,𝐸𝐸∗ − 𝐸𝐸𝑗𝑗⟩ − ⟨𝛹𝛹∗,𝑋𝑋 − 𝛭𝛭𝑗𝑗 − 𝐸𝐸𝑗𝑗⟩. (16) 

From  formulas  (13)  and   (14),  it  can  be  known   that  ∑+∞  𝑢𝑢−1(⟨𝛭𝛭𝑗𝑗 − 𝑀𝑀∗,𝛹̂𝛹𝑗𝑗  − 𝛹𝛹∗⟩ ⟨𝐸𝐸𝑗𝑗 − 
𝑗𝑗=1   𝑗𝑗 

𝐸𝐸∗,𝛹̂𝛹𝑗𝑗  − 𝛹𝛹∗⟩) < +∞.  ∑+∞  𝑢𝑢−1  = +∞.Thus,  there  must  be  a  subsequence  (𝛭𝛭𝑗𝑗  , 𝐸𝐸𝑗𝑗  ),  such  that 
𝑗𝑗=1   𝑗𝑗 ℎ ℎ 

 

the following formula holds:  

⟨𝛭𝛭𝑗𝑗   − 𝑀𝑀∗,𝛹̂𝛹𝑗𝑗  − 𝛹𝛹∗⟩ + ⟨𝐸𝐸𝑗𝑗   − 𝐸𝐸∗,𝛹̂𝛹𝑗𝑗  − 𝛹𝛹∗⟩ → 0. (17). 
 

Similarly, 𝑋𝑋 − 𝛭𝛭𝑗𝑗+1 − 𝐸𝐸𝑗𝑗+1=𝑢𝑢−1(𝛹𝛹𝑗𝑗+1-𝛹𝛹𝑗𝑗). From eq. (15), it can be observed that ⟨𝛹𝛹∗,𝑋𝑋 − 
 

𝛭𝛭𝑗𝑗 − 𝐸𝐸𝑗𝑗⟩ → 0.  
 

lim ‖𝛭𝛭 ‖ 
ℎ→+∞ ∗ 

 
+ 𝜎𝜎‖𝐸𝐸𝑗𝑗ℎ‖𝑙𝑙1 

 
 
≤ 𝑓𝑓∗, (18) 

 

where   (𝛭𝛭𝑗𝑗  , 𝐸𝐸𝑗𝑗  )   is   an   optimal   solution  (𝛭𝛭∗, 𝐸𝐸∗) ,   and    𝛹̂𝛹𝑗𝑗+1     is   bounded.   At   the   same 
 

time, {‖𝐸𝐸 − 𝐸𝐸∗‖2 +𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2 } is non-increasing. The following formulation can be 
𝑗𝑗+1 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝐹𝐹 

 

derived:  
 

‖𝐸𝐸 

 
− 𝐸𝐸∗‖2 +𝑢𝑢−2‖𝛹𝛹 − 𝛹𝛹∗‖2  → 0. (19) 

𝑗𝑗+1 𝐹𝐹 𝑗𝑗 𝑗𝑗+1 𝐹𝐹 
 

Thus, lim 
𝑗𝑗→+∞ 

 
𝛭𝛭∗ + 𝐸𝐸∗, lim 

𝑗𝑗→+∞ 

𝐸𝐸𝑗𝑗+1 − 𝐸𝐸∗ = 0. According to formula (15), lim 𝑋𝑋 − 𝛭𝛭𝑗𝑗+1 − 𝐸𝐸𝑗𝑗+1 = 0. Since 𝑋𝑋 = 
𝑗𝑗→+∞ 

 
𝛭𝛭𝑗𝑗+1 − 𝛭𝛭∗ = 0. When the low-rank matrix 𝛭𝛭 and sparse matrix 𝐸𝐸 can be 
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𝑀𝑀 𝑀𝑀   𝑀𝑀 

𝑀𝑀   𝑀𝑀 𝐸𝐸   𝐸𝐸 𝑀𝑀   𝑀𝑀 𝐸𝐸   𝐸𝐸 𝑀𝑀   𝑀𝑀 𝐸𝐸 𝐸𝐸 

obtained according to the above formulas, let 𝑋𝑋𝑀𝑀 = 𝛭𝛭，𝑋𝑋𝐸𝐸 = 𝐸𝐸. Thus, 𝑋𝑋 = 𝑋𝑋𝑀𝑀 + 𝑋𝑋𝐸𝐸 and 𝑌𝑌 = 
 

𝑌𝑌𝑀𝑀 + 𝑌𝑌𝐸𝐸. 𝑋𝑋𝑀𝑀 and 𝑌𝑌𝑀𝑀 represent the low-rank matrix containing essential information of the 

system. From Eq. (2), a new canonical correlation criterion function, termed the low-rank 

criterion function, can be established as follows: 

max 
𝑊𝑊𝑋𝑋𝑀𝑀,𝑊𝑊𝑌𝑌𝑀𝑀 

𝜌𝜌𝑀𝑀(𝑊𝑊𝑋𝑋  
𝑀𝑀 , 𝑊𝑊𝑌𝑌𝑀𝑀 

) = max 
𝑊𝑊𝑋𝑋𝑀𝑀,𝑊𝑊𝑌𝑌𝑀𝑀 

(𝑊𝑊𝑋𝑋  
𝑀𝑀 
𝑇𝑇𝛴𝛴𝑋𝑋 𝑋𝑋  

𝑀𝑀 
−1⁄2𝛴𝛴𝑋𝑋 𝑌𝑌 𝛴𝛴𝑌𝑌𝑀𝑀𝑌𝑌𝑀𝑀 

−1⁄2𝑊𝑊𝑌𝑌 ), (20) 
 

where 𝑋𝑋𝑀𝑀 and 𝑌𝑌𝑀𝑀 represent the sparse matrix. Because the sparse matrix  𝐸𝐸  also  contains  

some useful information [27], the sparse matrix is used to establish the sparse-criterion 

function.  
 

min 

 
𝜌𝜌𝐸𝐸(𝑊𝑊𝑋𝑋 , 𝑊𝑊𝑌𝑌 

 
 
) = min 

 
(𝑊𝑊𝑋𝑋 

𝑇𝑇𝛴𝛴𝑋𝑋 𝑋𝑋 
−1⁄2𝛴𝛴𝑋𝑋 𝑌𝑌 

 
𝛴𝛴𝑌𝑌 𝑌𝑌 

−1⁄2𝑊𝑊𝑌𝑌 

 
 
). (21) 

𝑊𝑊𝑋𝑋𝐸𝐸,𝑊𝑊𝑌𝑌𝐸𝐸 
𝐸𝐸 𝐸𝐸 𝑊𝑊𝑋𝑋𝐸𝐸,𝑊𝑊𝑌𝑌𝐸𝐸 

𝐸𝐸 𝐸𝐸 𝐸𝐸 𝐸𝐸 𝐸𝐸 𝐸𝐸  𝐸𝐸 𝐸𝐸 

 

To make full use of the low-rank matrix and the sparse matrix, we must find an optimal 
 

(𝑊𝑊∗, 𝑊𝑊∗)  so  that  formulas  (20)  and  (21)  are  simultaneously  established  to  maximize the 
𝑋𝑋 𝑌𝑌 

 

essential feature correlation (low-rank matrix) and to minimize the generalized noise 

correlation (sparse matrix) at the same time. Therefore, the following comprehensive criterion 

function can be established: 

max 𝜌𝜌∗(𝑊𝑊∗, 𝑊𝑊∗) =  max (𝑊𝑊∗𝑇𝑇𝛴𝛴𝑋𝑋𝑋𝑋∗−1⁄2(𝛴𝛴𝑋𝑋𝑋𝑋∗) 𝛴𝛴𝑌𝑌𝑌𝑌∗−1⁄2𝑊𝑊∗), (22) 
𝑊𝑊∗,𝑊𝑊∗ 𝑋𝑋 𝑌𝑌 𝑊𝑊∗,𝑊𝑊∗  𝑋𝑋 𝑌𝑌 
𝑋𝑋    𝑌𝑌 𝑋𝑋 𝑌𝑌 

where 𝛴𝛴𝑋𝑋𝑋𝑋∗ = 𝛴𝛴𝑋𝑋 𝑋𝑋 − 𝛴𝛴𝑋𝑋 𝑋𝑋 , 𝛴𝛴𝑌𝑌𝑌𝑌∗ = 𝛴𝛴𝑌𝑌 𝑌𝑌 − 𝛴𝛴𝑌𝑌 𝑌𝑌 , 𝛴𝛴𝑋𝑋𝑋𝑋∗ = 𝛴𝛴𝑋𝑋 𝑌𝑌 − 𝛴𝛴𝑋𝑋 𝑌𝑌 . To ensure the 
 

uniqueness of the result, let 𝑊𝑊∗ = (𝛴𝛴𝑋𝑋 𝑋𝑋 − 𝛴𝛴𝑋𝑋 𝑋𝑋 )1⁄2𝛼𝛼𝑇𝑇 , 𝑊𝑊∗ = (𝛴𝛴𝑌𝑌 𝑌𝑌 − 𝛴𝛴𝑌𝑌 𝑌𝑌 )1⁄2𝛽𝛽𝑇𝑇 . The 
𝑋𝑋 𝑀𝑀 𝑀𝑀 𝐸𝐸 𝐸𝐸 𝑌𝑌 𝑀𝑀    𝑀𝑀 𝐸𝐸 𝐸𝐸 

 

following formula can be easily obtained:  
 

max 𝜌𝜌∗(𝑊𝑊∗, 𝑊𝑊∗) 
𝑊𝑊∗,𝑊𝑊∗ 𝑋𝑋 𝑌𝑌 

{ 𝑋𝑋 𝑌𝑌 . (23) 
𝑠𝑠. 𝑡𝑡 𝑊𝑊∗𝑇𝑇𝑊𝑊∗ = 1, 𝑊𝑊∗𝑇𝑇𝑊𝑊∗ =  1 

𝑋𝑋 𝑋𝑋 𝑌𝑌 𝑌𝑌 
 

By performing a singular decomposition (SVD) on the matrix 𝑍𝑍  = 𝛴𝛴𝑋𝑋𝑋𝑋∗−1⁄2(𝛴𝛴𝑋𝑋𝑋𝑋∗)𝛴𝛴𝑌𝑌𝑌𝑌∗−1⁄2, 

the corresponding left singular value vector 𝑈𝑈∗(: ,1: 𝑟𝑟) and right vector 𝑉𝑉∗(: ,1: 𝑟𝑟) can be 

obtained respectively. Then, RLM of the input space ( 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛴𝛴𝑋𝑋𝑋𝑋∗−1⁄2𝑈𝑈∗(: ,1: 𝑟𝑟)) and  the  

output space (𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛴𝛴𝑌𝑌𝑌𝑌∗−1⁄2𝑉𝑉∗(: ,1: 𝑟𝑟)) can be further derived, respectively. 

Remark 1: In this paper, the loading matrix is solved under the assumption that 𝛴𝛴∗ and 
 

𝛴𝛴 can be inverted. However, the sparse matrix is usually not available. When the matrix is 

irreversible, the corresponding generalized Moore-Penrose inverse matrix is used instead. 

𝑀𝑀 
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𝑛𝑛−
 

𝑐𝑐𝑐𝑐
 

𝑐𝑐𝑐𝑐
 

𝑋𝑋 

3.2 Reconstruction of the control chart and adaptive thresholds 
 

The CCA-based method can effectively explore the internal structure of the input space 

and the output space. However, in the fault detection process, the core of the detection 

method can judge if a system is out-of-control. Thus, the number of control charts can be 

reduced while ensuring acceptable accuracy. In this section, the four control charts in section 

2.2 are reconstructed into two control charts: one is the quality-relevant T2 control chart, and 

the other is the quality-irrelevant SPE control chart. 

First, the robust score matrix is 𝛷𝛷𝑋𝑋 = 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟 . Similarly, the counterpart of the output space 

𝛷𝛷𝑌𝑌 = 𝑌𝑌𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 . In actual industrial processes, state changes occur between the input space and  

the output space. Based on [10], the following formula can be established: 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛷𝛷𝑌𝑌 − 𝛷𝛷𝑋𝑋𝛬𝛬𝑟𝑟 = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋∗−1⁄2𝑈𝑈∗(: ,1: 𝑟𝑟) − 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌∗−1⁄2𝑉𝑉∗(: ,1: 𝑟𝑟)𝛬𝛬𝑟𝑟∗, (24) 

where 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 contains the state mutation signal with correlation. Thus, we can use the above 

formula to establish a T2 control chart with the correlation between input and output. The 

control chart is shown as follows:  
 𝑇𝑇2 = 𝑅𝑅 

 

𝛴𝛴−1 𝑅𝑅 

 
𝑇𝑇, (25) 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟 

based on the above knowledge, 𝛷𝛷𝑋𝑋𝑇𝑇𝛷𝛷𝑋𝑋 = 𝐼𝐼, 𝛷𝛷𝑌𝑌𝑇𝑇𝛷𝛷𝑌𝑌 = 𝐼𝐼 , and thus 
 

𝛴𝛴𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = 1 
𝑛𝑛−1 

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 = 1 (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋∗−1⁄2𝑈𝑈∗(: ,1: 𝑟𝑟) − 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌∗−1⁄2𝑉𝑉∗(: ,1: 𝑟𝑟)𝛬𝛬𝑟𝑟∗)𝑇𝑇 

 

*(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋∗−1⁄2𝑈𝑈∗(: ,1: 𝑟𝑟) − 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌∗−1⁄2𝑉𝑉∗(: ,1: 𝑟𝑟)𝛬𝛬𝑟𝑟∗) = (𝐼𝐼 − 𝛬𝛬𝑟𝑟∗2), (26) 

𝑇𝑇2 control chart is used to detect the fault between the input and output, which has a 

correlation. Therefore, when the value of 𝑇𝑇2 exceeds the control limit, it indicates that the  

fault severely affects the quality-relevant variables. Also, we need to establish an SPE statistic 
𝑐𝑐𝑖𝑖𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 

∗𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 
∗𝑇𝑇 0 

to monitor the irrelevant input-output space faults. Let Q = [ 0 (1 − 𝑐𝑐 )𝐿𝐿 ∗𝐿𝐿 ∗𝑇𝑇]. 
𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟 

According to the formulas (7) and (8), the SPE control chart can be derived as follows: 

SPE = [𝑋𝑋,𝑌𝑌]Q [𝑋𝑋
𝑇𝑇
] = [𝑋𝑋,𝑌𝑌] [ 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑌𝑌𝑇𝑇 
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 ∗𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟∗

𝑇𝑇 0 
0 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 

∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 

 
𝑇𝑇 

∗𝑇𝑇] [
𝑌𝑌𝑇𝑇 ]. (27) 

𝑐𝑐𝑖𝑖 = 0.5 represents the weight coefficient, which means that the input residual space and 

output residual space have the same importance. 

In this section, the ACL coefficient is constructed, and the coefficient extracts the system 
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𝑐𝑐𝑐𝑐
 

1−
 

dynamic  trend  according  to  the  data  change.  Suppose 𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = [𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] ∈ 𝑅𝑅𝑛𝑛×(𝑝𝑝+𝑞𝑞) and 

𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = [𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]  ∈ 𝑅𝑅𝑚𝑚×(𝑝𝑝+𝑞𝑞)    represent the training set and online testing data, respectively, 
 

𝑛𝑛 and 𝑚𝑚 represent the number of samples, and 𝑝𝑝 and 𝑞𝑞 are the number of  monitored 

variables. First, the difference norm of the online data and the off-line data can be obtained as 

follows:  
𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)  =  ‖𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) − 𝛨𝛨𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚‖𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, (28) 

 

where ‖∗‖𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     is the  𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   norm,   𝑡𝑡   represents the sampling point,  （𝑡𝑡  ∈ {1 ⋯ 𝑚𝑚}, and 

𝛨𝛨𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). Assume  𝐼𝐼ℎ  = [1 ⋯ 1] ∈ 𝑅𝑅1×(𝑝𝑝+𝑞𝑞), so 
 

𝛨𝛨𝑎𝑎𝑎𝑎 (𝑡𝑡) = 1 
𝑝𝑝+𝑞𝑞 

(𝐼𝐼ℎ − 𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)−𝛨𝛨𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), (29) 
𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) 

 

where 𝛨𝛨𝑎𝑎𝑎𝑎(𝑡𝑡) ∈ 𝑅𝑅1×(𝑝𝑝+𝑞𝑞) represents the fluctuation value of the testing data relative to the 

historical data at the 𝑡𝑡th sampling. Due to the fluctuation information including the 𝑝𝑝 + 

𝑞𝑞 variables, when the abrupt fault occurs, 𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡) ≫ 𝛨𝛨𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ; thus, 0 < 𝛨𝛨𝛨𝛨𝛨𝛨𝛨𝛨𝛨𝛨(𝑡𝑡)−𝛨𝛨𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑖𝑖) < 1, 
𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) 

 

where 𝑖𝑖 represents the 𝑖𝑖th variable, and  thus,  𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛨𝛨𝑎𝑎𝑎𝑎(𝑡𝑡)) < 1).  Similarly,  when 

the testing data are collected under the normal conditions, 𝛨𝛨𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) ≪ 𝛨𝛨𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. Thus 𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) > 

1. The adaptive control limit (ACL) can be set according to the adaptive coefficient, and based 

on [23, 24], 𝑔𝑔𝑔𝑔2 (∗) is selected as the basic statistic. The ACL of T2  can be expressed as 

follows:  
𝑇𝑇2 = 𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ∗ 𝑔𝑔𝑇𝑇𝜒𝜒2     (𝑟𝑟𝑇𝑇), (30) 
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 1−𝑎𝑎 

 

where   𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(1) ⋯ 𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)], 𝑎𝑎 is the confidence level, 𝑔𝑔𝑇𝑇 = 𝑆𝑆𝑇𝑇⁄2𝑢𝑢𝑇𝑇 , and 𝑟𝑟𝑇𝑇 = 
 

𝛩𝛩𝛩𝛩𝑇𝑇2⁄𝑆𝑆𝑇𝑇. Typically, 𝛩𝛩 = 2, where 𝑢𝑢𝑇𝑇 and 𝑆𝑆𝑇𝑇 are estimated as 𝑢𝑢𝑇𝑇 = 1 ∑𝑛𝑛 𝑇𝑇2 (𝑖𝑖), and 𝑆𝑆𝑇𝑇 = 
𝑛𝑛 𝑖𝑖=1 𝑐𝑐𝑐𝑐𝑐𝑐 

 

1 
 

𝑛𝑛−1 
𝑛𝑛 
𝑖𝑖=1 (𝑇𝑇2 (𝑖𝑖)−𝑢𝑢𝑇𝑇 )2. Thus, the ACL of SPE 

 
cca can be constructed as follows： 

 

 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻 can be expressed as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛨𝛨𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻, (31) 
 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻  = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝜒𝜒2     (𝑟𝑟𝑇𝑇), (32) 
 

where 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠⁄2𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝑟𝑟𝑇𝑇 = 𝛩𝛩𝛩𝛩𝑠𝑠𝑠𝑠𝑠𝑠2⁄𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 . 𝑢𝑢𝑇𝑇 and 𝑆𝑆𝑇𝑇 are estimated as 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠 = 
 

1 ∑𝑛𝑛 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖) and 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 1 
∑𝑛𝑛 (𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖)−𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠)2, respectively. 

𝑛𝑛 𝑖𝑖=1 𝑛𝑛−1 𝑖𝑖=1 
 

4. CASE STUDIES 

∑ 
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标 
题 

4.1 Process monitoring for BSM1 
 

(1) Background: BSM1 (Benchmark Simulation Model 1, BSM1) was developed by the 

International Water Association(IWA)[28]. This model is based on the real WWTP 

predenitrification process and is mainly motived by the removal of C and N. The average daily 

sewage treatment capacity of BSM1 is 20,000 m3, which is a widely accepted water treatment 

simulation platform. The wastewater treatment process of BSM1 is shown in Fig. 2, and is 

mainly composed of a biochemical reaction tank (volume 5,999 m3) and a secondary 

sedimentation tank (volume 6,000 m3). The biochemical reaction tank is simulated by the 

activated sludge model No. 1 (ASM1) of IAWQ, including two anoxic tanks and three aerated 

tanks. The secondary settler tank has ten layers, and each layer is 0.4 meters. The detailed 

introduction can be found on the website (http://www.benchmarkWWTP.org). First, BSM1 is 

simulated over 150 days with constant flow and composition. second, the input data of the 

sunny day are used as the dynamic input of the WWTPs, and the simulation lasts for two 

weeks. During this period, the data are collected every 15 min. Twenty-six important variables 

were selected for monitoring, including 16 input variables (including process variables) and 10 

quality-relevant output variables. The monitoring variables covered all the processes of 

WWTP to monitor the entire process globally. In this section, the abrupt fault and drift fault 

are defined and monitored by the proposed Rab-CCA method. At the same time, to further 

verify the robustness of the Rab-CCA method, the collected data are added to Gaussian noise. 

Biochemical reaction basin To river 

Sewage 

Q0 

KLa5 

 
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

 

 
 

SO,5 

Settler 
 

Qe 

        m=6  
Qf    

 
 

Anoxic section 
 

SN0,2 

 
Aerated section 

 

Qint Qu 

Internal 
recycle 

External 
recycle 

Qw 

Wastage 

Fig 2. Schematic diagram of a wastewater treatment plant under BSM1 
 

(2) Diagnostic results of the proposed method: In this section, the faults are defined 

as follows: Scenario a) Fault 1 is the SO with abrupt changes at 8:00 during the 9th day in the 

PI 

PI 

http://www.benchmarkwwtp.org/
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(c
 

4th reaction tank; Scenario b) Fault 2 represents the abrupt fault SNO, which occurs in the 5th 

reaction tank; Scenario c) Fault 3 is the abnormal events of water five-day biochemical oxygen 

demand (BOD5) in the effluent and occurred at 8:00 during the 9th day. The Rab-CCA model 

is trained with the first 700 data samples, and the remaining 644 samples are used for testing. 

When the singular values are small, the extracted variables are weakly correlated. Thus, the 

RLM with a strong correlation is selected by adjusting the cumulative percent pariance 

(CPV=95%). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Detection results of fault 1 based on the proposed method and two other methods 
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Fig 4. Detection results of fault 2 based on the proposed method and two other methods 

Fault 1 is a very common sensor fault (oxygen sensor) in WWTPs due to corrosion and 

highly frequent signal variations. In this period, the first 100 samples of the testinging dataset 

are normal. As shown in Fig. 3, it can be observed that the traditional CCA-based method and 

PCA method have many simultaneous missed alarms and false alarms. Fig. 3(a) and Fig. 3(b) 

show the fault detection results of PCA-T2 and PCA-SPE, respectively. Fig. 3(c) and Fig. 3(d) 

represent the CCA-T2 and CCA-SPE, respectively. Conversely, the Rab-CCA-based method 

performs better, especially with fewer missed alarms. Because the inexact augmented 

Lagrange algorithm is used to decompose the corrupted matrix, the information of the 

corrupted matrix can be effectively extracted and used. In addition, Rab-CCA is configured 

with an adaptive control limit, and thus the Rab-CCA is able to robustly deal with anomalies 

or noise. The missed alarm rate of the Rab-CCA-T2 control chart (Fig. 3(e)) is 0, and the 

missed alarm rate with respect to Rab-CCA-SPE (Fig. 3(e)) is only 4%. The proposed Rab-

CCA-based method can effectively monitor abnormalities, with the T2 control plot used to 

monitor quality-relevant faults in the wastewater treatment process. To further verify the 

proposed method, fault 2 (SNO is the abnormal variable) is analysed as a special case. Fault 2 
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has a highly important influence on the biochemical reaction in the wastewater treatment 

process. If fault 2 is not well rectified, water qualities such as BOD and COD in the effluent 

can violate the standards. The process monitoring results are shown in Fig. 4, suggesting that 

the diagnostic accuracy of the Rab-CCA-based method for quality-relevant faults (Fig. 4(e)) is 

97.2% and the accuracy of the quality-irrelevant faults (Fig. 4(f)) is 99.38%. However, because 

the CCA-based method cannot adaptively manipulate the control limit, CCA-T2 (Fig. 4(d)) 

occurs many missed alarms. Similarly, the PCA-T2 (Fig. 4(a)) achieved poor performance with 

a false alarm rate of 11% and missed alarm rate of 73.53%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. Detection results of fault 3 based on the proposed method and two other methods 

Fault 3 represents a drifting fault of BOD5. BOD5 is an important index for measuring 

effluent quality, and thus, the effective monitoring of BOD5 anomalies is important for 

WWTPs. As shown in Fig. 5, the classic PCA (Fig. 5(a)-5(b)) and CCA (Fig. 5(c)-5(d)) methods 

cannot achieve the good performance, especially in the early fault stage. Because fault 3 is not 

obvious in the early stage (100-300 samplings), false alarms and missed alarms easily occur. 

However, Rab-CCA has the best performance during the entire monitoring process. Since the 

ACL values be adjusted according to the dynamic trend of the data, the Rab-CCA-based 

method can effectively reduce false alarms and missed alarms significantly. 
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Note that the ACL is first proposed in this paper. Although the theory of ACL is derived in 

section 3, it is global. Due to the faulty variables that cannot be derived in advance and exhibit 

non-obvious variations, the fault signal is likely to be covered by the other irrelated signal or 

noise. In this light, there will be occurred the false alarm. 

To further verify the proposed method, three different faults are studied. Fault 4 

represents the fault of SALK, which is emerges the first reaction tank. Fault 5 and Fault 6 

represent the abnormal concentrations of total nitrogen (TN) and total chemical oxygen 

demand (COD) in the effluent, respectively. Moreover, according to the method presented in 

the paper [29], 1%, 5%, and 10% Gaussian noise were added to the training sets. To better and 

more comprehensively compare the performance of the four methods under noise 

interference with a different degree, the performance evaluation indices (PEI) of accuracy and 

pre-alarm rate are used to evaluate the monitoring model [30]. The pre-alarm rate (PAR) is a 

comprehensive index that combines false alarms with missed alarms [30], and the lower the 

pre-alarm rate, the better the performance of the method. The formulas for the accuracy and 

pre-alarm rate are as follows:  

Accuracy =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇 , (33) 
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

 
𝑃𝑃𝐴𝐴𝐴𝐴  = 𝛾𝛾𝛾𝛾𝐴𝐴𝐴𝐴  + (1 − 𝛾𝛾)𝐹𝐹𝐴𝐴𝐴𝐴. (34) 

 

𝑀𝑀𝐴𝐴𝐴𝐴 and 𝐹𝐹𝐴𝐴𝐴𝐴 are the missed alarm rate and false alarm rate, respectively, and 𝛾𝛾 is the 

weight coefficient. In this paper, because missed alarms have a more serious impact on the 

WWTP than false alarms, the coefficient 𝛾𝛾 = 0.6. When many of the missed alarms occur in 

the system, the engineer cannot conduct repairs in time, which can lead to serious accidents. 

The definitions of TP and TN can be found in [30]. The diagnostic results of the 

aforementioned six faults are tabulated as follows: 

 

Average value 
of results 

Table 1. Average detection results of the six types of faults 

PCA CCA Robust-PCA Rab-CCA 
 

 

T2 SPE T2 SPE T2 SPE T2 SPE 
Noise FAR 0.11 0.04 0.042 0.095 0.787 0.842 0 0.022 
-free MAR 0.696 0.181 0.126 0.679 0.100 0.006 0.072 0.067 

 PAR 0.462 0.125 0.092 0.445 0.375 0.340 0.043 0.049 
 Accuracy 0.395 0.841 0.887 0.412 0.793 0.865 0.939 0.94 
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Noise FAR 0.007 0.007 0.044 0.068 0.849 0.858 0.124 0.05 
-added MAR 0.704 0.211 0.166 0.721 0.100 0.044 0.144 0.125 

PAR 0.425 0.129 0.118 0.46 0.400 0.370 0.136 0.095 
Accuracy 0.404 0.821 0.853 0.38 0.783 0.829 0.859 0.887 

It can be observed from Table 1 that the Rab-CCA method has extraordinarily better 

performance under the noise-free condition. According to the experimental  results,  the 

average accuracies of PCA-T2  and PCA-SPE are only 39.5% and 84.1%, respectively, and those 

of the corresponding robust-PCA- T2 and robust-PCA-SPE are 79.3% and 86.5%, respectively. 

These results indicate that robust technology is helpful to improving the performance of the 

model. Moreover, the average accuracies of Rab-CCA-T2 and Rab-CCA are 93.9% and 94%, 

respectively, which are significantly higher than those of the other methods. The average value 

of the pre-alarm rate (PAR) further confirms the superiority of the proposed method. The Rab-

CCA based T2 statistic and SPE statistic are 4.3% and 4.9%, respectively. When the data contain 

different proportions of Gaussian noise, i.e., the above six types of faults have added noise of 

1%, 5%, and 10% respectively, and the average accuracy and average PAR are shown    in Table 

1. The average accuracies of Rab-CCA-T2 and  Rab-CCA- SPE are the highest among  the four 

methods. The PCA-based T2 statistic is improved under noise interference, mainly because the 

data fluctuation becomes larger due to the addition of noise, and to a certain  extent, this will 

reduce the false alarms. It is worth noting that the special cases are the regular events of the 

method in the face of complex faults, which will not affect the implementation   and application 

of the method. The Rab-CCA T2 control chart has an average accuracy of 85.9% for six types of 

faults under the noise-added conditions, which decreases by 8.5% compared with the noise-free 

conditions. However, the accuracy of traditional CCA based method T2 control chart only 

decreases by 3.8%. Because the adaptive control coefficient is global, when noise is mixed in the 

data, the ACL may fail to reflect the real fluctuation  of  the  system. Despite these observations, 

the Rab-CCA based method T2 control chart and SPE control chart have the highest diagnosis 

accuracy under the noise-added condition.  Additionally, the  PAR   of Rab-CCA is the lowest 

among the four methods. 

4.2. Filamentous sludge bulking monitoring for a real full-scale WWTP 
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(1) Background: In this study, the proposed method is used to monitor a full-scale 

WWTP with the oxidation ditch (OD) process. The plant serves a population of 480,000, with 

a daily treatment flow of 170,000 m3 and a hydraulic retention time of 16.5 h, and uses a long 

solid residence time (SRT) to achieve good nitrogen removal performance. The SRT is 

typically maintained at 15–22 days. Due to some external factors such as weather, 

temperature and sludge activity, filamentous sludge bulking not only occurs frequently but is 

also difficult to monitor online in real- time. The schematic of the WWTP is shown in Fig. 6. 

The data were collected from 1 October to 21 March of the next year (the sampling interval is 

one day), and filamentous sludge bulking occurred during the sample period. The first 70 days 

of data are used for training, and the remaining days for testing. The 15 monitoring variables 

include 8 input variables and 7 output variables. In the testing data, the first 23 days of 

sampling are normal, whereas the rest of the sampling occurs under sludge bulking. The 

collected data not only contain noise but also may have sensing errors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. Schematic diagram of a real full-scale WWTP 
 

(2) Diagnostic results of the proposed method: Filamentous sludge bulking is a 

drift fault [31]. In contrast to abrupt faults, the sludge bulking of real wastewater treatment 

processes may return to normal after the self-regulation of microorganisms [32, 33]. In this 

section, the experiment is ignores some special cases, i.e., the experiment assumes that the 

sludge bulking could last after the 24th day. The CPV of the Rab-CCA-based method still 

retains 95%, and other fixed parameters are set as in case study 1. 
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Fig 7. Detection results for sludge bulking in a real WWTP 
 

The monitoring results are shown in Fig. 7, and Fig. 7(a) and Fig. 7(b) represent the PCA- 

T2 control chart and PCA- SPE control chart, respectively. PCA-T2 has many missed alarms. 

Since sludge bulking is a typical drift fault, PCA-T2 cannot effectively identify the initial sludge 

bulking. The missed alarm rate of PCA- T2 reaches 32.5%. However, CCA- T2 has relatively few 

missed alarms. As shown in Fig. 7(c), the missed alarm rate is zero. However, the false alarm 

rate of CCA- T2 is 84.61% higher than that of PCA- T2, indicating that the control limit of the 

CCA- T2 method is set too low, which makes the control chart appear to have more false 

alarms. According to the results of the SPE control chart, the false alarm in Fig. (7d) (CCA-

SPE) is lower than that in Fig. (7b) (PCA-SPE). However, the missed alarm in Fig. (7d) is 

higher than that in Fig. (7b). Since sludge bulking is a drift fault and the traditional control 

chart cannot adaptively adjust the control limit, false alarms and missed alarms become more 

obvious. To solve the above problem, both robust-PCA and Rab-CCA are used to monitor 

sludge bulking in wastewater treatment plants. The false alarm rate, missed alarm rate, 

accuracy, and pre-alarm rate are tabulated in Table 2. Table 2 shows that the performances of 

robust-PCA and Rab-CCA methods are significantly better than those of PCA and CCA. The 

T 2 
T 2 
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Rab-CCA-SPE missed alarm rate is reduced by 82.86% compared to CCA-SPE. The missed 

alarm rate of Robust-PCA-SPE is reduced by 84.21% compared to PCA-SPE. This result fully 

proves the effectiveness of the robust-based method. In addition, from the comprehensive 

evaluation index PAR and accuracy, the PAR of the Rab-CCA method is the lowest among the 

four methods, e.g, Rab-CCA-T2 is reduced by 42.9% compared with CCA- T2. Additionally, the 

PAR of Rab-CCA- T2 is 56.31% lower than that of Robust-PCA-T2. Overall, Rab-CCA achieves 

the best performance in terms of the PAR. In addition, the consecutive filamentous sludge 

bulking causes unpermitted effluent and secondary  pollution to the environment. Therefore, 

it is crucial to design an effective method to monitor quality-relevant faults for real WWTPs. 

In this section, the proposed Rab-CCA can be used to monitor quality-related faults in 

WWTPs. According to Fig. 7(f) and Table 2, the detection accuracy of Rab-CCA-T2 for quality-

related faults reaches 92.23%. Compared with the traditional CCA-T2, the accuracy is 

improved by 5.55%. Moreover, the accuracy of Rab-CCA- T2 is 10.46% higher than that of 

Roubst-PCA- T2. The above experimental results show that the proposed Rab-CCA method 

can effectively monitor effluent quality-related faults. Meanwhile, the performance of Rab-

CCA-SPE is still that of superior to the other methods in monitoring of quality-irrelevant 

faults. The corresponding fault detection accuracy on the WWTP can be ranked as follows: 

Rab-CCA-SPE (87.38%) > Robust-PCA (81.55%) > PCA-SPE (76.7%) > CCA-SPE (30.1%). 

This result fully demonstrates that the proposed Rab-CCA method can provide effective early 

warning for sludge bulking. 

Table 2. Detection results of four methods for sludge bulking in a real WWTP 

Results PCA CCA Robust-PCA Rab-CCA 
 

T2 SPE T2 SPE T2 SPE T2 SPE 
 

FAR 0.087 0.2174 0.5652 0.087 0.7391 0.6957 0.3043 0.0435 
MAR 0.325 0.2375 0 0.875 0 0.0375 0.0125 0.15 
PAR 0.2298 0.2295 0.2261 0.5598 0.2957 0.3008 0.1292 0.1074 

Accuracy 0.7282 0.767 0.8738 0.301 0.835 0.8155 0.9223 0.8738 
 
 

5. Conclusions 
 

In this study, the novel fault detection method Rab-CCA is proposed for monitoring of 
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quality-relevant faults in the effluent of WWTPs. Different from previous studies, Rab-CCA 

can efficiently remedy the defects of traditional methods, especially for different types of 

faults under complex interference. Additionally, Rab-CCA mitigates the issue in which the 

collected data are corrupted by anomalies or noise. Rab-CCA can effectively decompose the 

corrupted matrix into a low-rank matrix and a sparse matrix. Subsequently, a new criterion 

function is established to achieve the purpose of multi-objective optimization, in such a way 

that the information of the low-rank matrix and sparse matrix can be fully extracted. 

Moreover, the ACL is first assimilated into the proposed method. In this paper, the six types  

of faults imposed on BSM1 and real full-scale WWTP sludge bulking are monitored by Rab-

CCA. The results show that the ACL can indeed efficiently reduce missed alarms and false 

alarms. Additionally, when the aforementioned faults are imposed with different proportions 

of noise, Rab-CCA still achieves superior performance. It should be noted that the Rab-CCA-

based method focuses on fault detection. However, prediction of the fault propagation route is 

necessary for system maintenance. Especially when the data structure is more complex (non-

Gaussian and non-linear), the quality-relevant fault root cause diagnosis and prognosis are 

still not well researched. In future research, we will focus on quality-relevant fault root cause 

diagnosis and prediction. 
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