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Abstract In automotive applications, artificial neural network (ANN) is now considered as a

favorable prediction tool. Since it does not need an understanding of the system or its underlying

physics, an ANNmodel can be beneficial especially when the system is too complicated, and it is too
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Nomenclature

CO carbon monoxide

CO2 carbon dioxide
Dout outer mean diameter of injected droplet
NOx nitrogen oxides
Pmax maximum in-cylinder pressure

R coefficient of correlation
R2 coefficient of determination
CeO2 cerium oxide

Acronyms
AAPE average absolute percent relative
ANFIS adaptive neuro fuzzy inference system
ANL artificial neural network noise level

ANP analytical network process
BBO biogeography-based optimization approach
BFG Broyden, Fletcher, Goldfarb & Shanno

BMEP break mean effective pressure
BPA back-propagation algorithm
BSEC brake specific energy consumption

BSFC brake Specific fuel consumption
BTE brake thermal efficiency
CFD computational fluid dynamics
CGF conjugate gradient with Fletcher-Reeves

CNG compressed natural gas
CNL combustion noise level
CR compression ratio

CPP cylinder peak pressure
CPT cylinder peak temperature
Diesosenol diesel-kerosene-ethanol

DOE design of experiment
DOI duration of injection
EGT exhaust gas temperature

ELM extreme learning machine
ERM empirical risk minimization
FAHP fuzzy analytical hierarchy process
FIP fuel injection pressure

GA genetic algorithm
GDA gradient descent with adaptive learning rate
GDX gradient descent with momentum and adaptive

learning rate
GRNN general regression neural network
HC hydrocarbon

HCCI homogeneous charge compression ignition
HCNG hydrogen enriched compressed natural gas
HHO oxy-hydrogen gas
HnOME Honne oil methyl ester

HSU Hartridge smoke unit
HORD hyper-parameter optimization-radial basis func-

tion and dynamic coordinate search

ICE internal combustion engine
ID ignition delay
IE indicated efficiency

IMEP indicated mean effective pressure

KGE Kling-Gupta efficiency

LM Levenberg – Marquardt
LP-EGR low pressure cooled exhaust gas recirculation
LSTM long short-term memory
MAAE mean absolute average error

MAPE mean absolute percentage error
MCDM multi-criteria decision-making
MFB mass fraction burned

MIMO multi-input multi-output
MLP multi-layer perceptron
MORSM

multi-objective response surface methodology
MPCI multi-performance characteristics index
MRE mean relative estimation error
MRPR maximum rate pressure rise

MSE mean square error
NaN not a number
NARXNET nonlinear autoregressive network with exoge-

nous inputs
NRMSE normalized root mean square error
NSE Nash-Sutcliffe coefficient of efficiency

ON octane number
PME peanut methyl ester
PSO particle swarm optimization

RBF radial basis function
RI ringing intensity
RMS root mean square
RNN recurrent neural network

RON research octane number
RP resilient back-propagation
RS random search

RSM response surface methodology
SFC specific fuel consumption
SCG scale conjugate gradient

SE scavenging efficiency
SIT static injection timing
SOC start of combustion
SoE summary of emission

SPL sound pressure level
SPM suspended particulate matter
SRM structural risk minimization

SVM support vector machine
TBC thermal barrier coating
TBHQ tert-butyl hydroxyl quinone antioxidant

TOPSIS technique for order preference by similarity to
ideal solution

TPE tree structured Parzen estimator

VE volumetric efficiency
Vikor Vise Kriterijumska Optimizacija Kompromisno

Resenje
WCO waste cooking oil

8364 I. Veza et al.
Diesel engine;

Homogeneous charge com-

pression ignition engine;
costly to model it using a simulation program. Therefore, using ANN to model an internal combus-

tion engine has been a growing research area in the last decade. Despite its promising capabilities,

the use of ANN for engine applications needs deeper examination and further improvement.
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Internal combustion engine;

Optimization

Research in ANN may reach its maturity and be saturated if the same approach is applied repeat-

edly with the same network type, training algorithm and input–output parameters. This review arti-

cle critically discusses recent application of ANN in ICE. The discussion does not only include its

use in the conventional engine (gasoline and diesel engine), but it also covers the ANN application

in advanced combustion technology i.e., homogeneous charge compression ignition (HCCI) engine.

Overall, ANN has been successfully applied and it now becomes an indispensable tool to rapidly

predict engine performance, combustion and emission characteristics. Practical implications and

recommendations for future studies are presented at the end of this review.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
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1. Introduction
Despite being invented more than a century ago, the internal
combustion engine (ICE) remains the most dominant power
supply for vehicles [1]. Stricter safety, stringent emissions reg-

ulations and increasing demand for fuel economy have trig-
gered both the industry and university to improve ICE [2].
In order to meet the emission target, a number of methods

are being investigated to decrease engine emissions. One of
the solutions is using diesel/biodiesel additive [3]. Another
promising technique is by using nanoadditives [4,5] such as cer-

ium oxide (CeO2) nanoparticles [6] to decrease harmful emis-
sions whilst enhancing engine performance. In another study
by Atarod et al. [7], nanoparticle added to diesel was found

to diminish the formation of NOx at moderate load. There-
fore, the next ICE should possess both maximum efficiency
and minimum emissions [8]. In this regard, strong theoretical
and applied understanding of the engine play important roles

to enhance the existing technology. The complexity of internal
combustion engines can be improved using both innovative
experiments and computer simulation.

Various modeling and simulation methods have been exam-
ined for a more affordable solution in supplementing the
experimental works [9]. To develop and optimize the combus-

tion process, engine modeling plays an increasingly signifi-
cant role, especially with the increasing computer power and
the availability of various engine models. Precise engine simu-
lations will assist the introduction of new technologies and
provide an accurate assessment of the preliminary design.
The use of computer simulation will shorten research and

development time and reduce the cost to manufacture the pro-
totypes of physical products. With conventional engine
research process, it is difficult and expensive to meet the grow-

ing demand for better performance vehicles and reduced emis-
sions due to strict regulations implemented worldwide.

Although a computational study often has more quantita-
tive uncertainties than that of an experiment, they offer several

benefits that make its application a necessity. Instead of con-
structing each prototype which can be expensive and time-
consuming, numerical simulation can provide fast preliminary

results for a wide range of parametric studies in which each
variable can be determined, and several boundary conditions
can be analyzed. More recently, artificial neural network

(ANN) has received increasing popularity to solve complex
nonlinear real-life scientific and engineering problems due to
its great generalization capability [10].

Model accuracy and computer resources have always been

a trade-off in the modeling process. Methods such as compu-
tational fluid dynamics (CFD) and chemical kinetic modeling
can accurately represent the processes inside the cylinder,

enabling thorough analysis of the physics and processes of
the engines. However, they need high computing power. For

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Table 1 Advantages and disadvantages of ANN.

Advantages Disadvantages

� Less statistical learning is

required.

� Responsive measurement of

non-repeatability problems.

� Re-learn capability to

strengthen its accuracy where

new data are obtained.

� Availability of various train-

ing algorithms.

� Flexibility to add or remove

input and output.

� Possibility to run in online

mode owing to ANN’s fast

convergence.

� Accommodation of multiple

inputs to estimate multiple

outputs.

� Ease of optimization, leading

to affordable and adaptable

non-linear large data

analysis.

� Robust non-linear mapping

capabilities that can estimate

any discrete quantitative

feature.

� Having numerous intercon-

nected variables to address

big and complicated

structures.

� No need for long iterative

calculations to solve differen-

tial equations.

� Possibility to be combined

with other optimization

approaches such as response

surface methodology (RSM).

� Susceptible to overfit.

� Uncertain convergency.

� Large data are required.

� Not well-described validation

criteria.

� The optimal network struc-

ture is generally not known

(trial-and-error).

� Difficult to identify possible

cause and effect correlations

(black box).

� Regulations regarding the

amount and type of

data training are limited.

� The selection criteria for the

best training algorithm with -

the rapid convergence of new

patterns is not well-

understood.

� No established standard for

determining the neuron num-

bers in the hidden layer.

� Instability with insufficient

neurons, particularly hidden

layer networks with one or

two neurons.

� Despite offering more stabil-

ity and accuracy, more train-

ing and data validation are

needed for optimization

using genetic algorithm.
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a practical application such as in the real-time simulation or
the engine control development, low computing resources with
fast processing time is preferred. Therefore, an alterna-

tive modeling method that requires lower computing resources
but with acceptable model accuracy is desirable. This is where
the ANN method could solve the trade-off between model

accuracy and computer resources [11,12].
ANN is completely different from traditional modeling

strategy. It can overcome nonlinear and complicated applica-

tions that are difficult to be modeled mathematically [13].
Unlike the classical method, ANN collects and analyze the
information using input data [14,15]. Through data training
and validation, an ANN model can improve its prediction per-

formance. Therefore, rather than using an empirical equation,
an ANN model merely requires adequate input and output
data to be trained. Some research groups have compared

ANNs with the conventional linear model. Although ANNs
gave more accurate prediction than the traditional linear
model, they have sometimes conflicting outcomes. In several

conditions where the data is already linear without much dis-
turbance, ANN shows relatively poor performance. Overall,
ANNs have shown varying degrees of success; thus, they

should be applied carefully. Table 1 lists the advantages and
disadvantages of using ANN.

2. Artificial neural networks for engine applications

The use of ANN for modeling the operation of internal com-
bustion engines is more recent progress where most of the
applications are only limited to engine performance and emis-

sions. ANN has been used in numerous fields. In engineering
systems, neural networks have been successfully applied to pre-
dict several renewable energy problems [16–18]. In the field of

automotive, the ANN can be utilized as an alternative
approach to model non-linear and complicated engine applica-
tions [19,20]. Currently, ANN is considered as a more promis-

ing tool to predict engine responses because of its fast delivery.
Also, it requires relatively low computing resources compared
to conventional computer simulations.

2.1. Artificial neural networks for diesel engine

Due to its comparable properties to diesel fuel, biodiesel is
often added in diesel engine [21–25]. It can be produced from

a variety of sources that are grown regionally as depicted in
Fig. 1 [26]. One of promising biodiesel sources is produced
from waste cooking oil (WCO) owing to its affordability and

accessibility worldwide [27–29]. Babu et al. [30] developed an
ANN model to predict diesel engine performance, combustion
and emissions fueled with waste frying oil using multi injection

strategy. It was found that for engine performance with four
inputs and two outputs, the optimum architecture was
achieved with eight hidden neurons (4–8-2). For combustion

and emissions, the optimum architectures were 4–14-3 and
4–13-5, respectively. The ANN model developed in this study
gave a lower mean square error and correlation coefficient val-
ues between 0.01 and 0.02 & 0.980 and 0.998, respectively. In

another study, Kshirsagar and Anand [31] used Calophyllum
inophyllum methyl ester biodiesel. They suggested using a
Nash-Sutcliffe coefficient of efficiency (NSE) to improve the

representation of R2 owing to NSE’s sensitivity to differences
in the means and variances. Also, the Theil uncertainty or
known as the THEIL U2 was introduced as an evaluation cri-

terion. It is a standardized measure to evaluate and validate
the prediction quality of a model. It was found that the results
of NSE and THEIL U2 indicated robustness and credibility of

the proposed model. Salam and Verma [32] used microalgae
biodiesel and developed an ANN model trained using operat-
ing conditions simulated in Diesel-RK software. The ANN

model could predict the performance, combustion and emis-
sions with an average R of 0.9801 ± 0.0146. Other interesting
ANN applications for biodiesel were reported by Ramalingam
et al. [33] and Fangfang et al. [34].

Tosun et al. [35] used ANN modeling to predict diesel
engine performance using peanut methyl ester biodiesel
(PME) and its blend with alcohol. The results from ANN were

compared with linear regression. The model has a three-layer
structure; input, hidden and output layer. One layer for input
and output layer, while the hidden layer had 7 neurons for tor-

que prediction, 9 neurons for CO and 13 neurons for NOx pre-
dictions. As an activation function, logistic sigmoid (logsig)
was used in the hidden layer, while the linear transfer func-
tion (purelin) was used in the output layer. Levenberg-



Fig. 1 Potential of biodiesel feedstocks worldwide [26].
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Marquardt was used to learn the algorithm. Compared to lin-

ear regression, the ANN model was found to be more accurate
in which the MAPE values from ANN model were less than
that of the linear regression.

Soot, NOx and CO2 emissions of n-heptane from direct
injection diesel engines are often understudied. Taghavifar
et al. [36] used a CFD approach with detailed kinetic and ther-
modynamic database along with ANN to predict emissions of

a diesel engine fueled with n-heptane. It was found that satis-
fying R2 were achieved for CO2, soot and NOx emissions at
0.9976, 0.9995 and 0.9951, respectively. Also, Fig. 2. shows

that the lowest MSE (0.0001086) was obtained using 18 neu-
rons in the hidden layer.

Nano-catalysts addition is known for its ability to enhance

thermo-physical properties of diesel fuel. One of the promising
nano-catalysts is alumina [37–39]. Yet, no previous studies
investigated the use of alumina addition into biodiesel-diesel
blends until Hosseini et al. [40] developed an ANN model to

predict alumina effect on diesel engine using numerous input
parameters. What is interesting from this study is that it used
many parameters as the input and output as shown in Fig. 3.

While most studies usually only use two parameters as the
input (engine speed or fuel blend ratio) and ignore many
important parameters such as fuel properties, this work used

12 inputs involving numerous parameters that could poten-
tially affect engine’s behaviors, making the prediction more
accurate. These include fuel density, kinematic viscosity, lower

heating value, manifold pressure, fuel consumption, exhaust
temperature, oxygen in the exhaust gas, oil temperature, rela-
tive humidity, ambient pressure, fuel blend and engine speed.
The results were exceptionally satisfying where the correspond-

ing R for training, validation and testing had values close to
one. Another study utilizing nanoparticles was conducted by
Saraee et al. [41]. CeO2 in 10, 20 and 40 ppm were added to

pure diesel. An ANN model with 12 neurons in the hidden
layer trained with the Levenberg-Marquardt algorithm was

found to give the best network performance with the lowest
MSE value of 0.000172. Also, the most stable error conver-
gence giving the least error was provided with the learning rate

of 0.4 and momentum coefficients of 0.8.
One of the important engine parameters is cycle-by-cycle

variations. They represent extensive pressure, thus potentially
deteriorating engine performance, lowering efficiency and

increasing exhaust emissions. Cyclic variability in a gasoline
engine has been extensively investigated [42–46], but it is often
neglected in the diesel engine. This is because the diesel engine

is relatively stable than the gasoline engine. Yet, the addition
of alternative fuels into diesel fuel may affect its cycle-by-
cycle variations due to their different fuel properties [47].

Therefore, control strategy plays an important role to reduce
cyclic issues in the diesel engine. An ANN model could be a
promising tool to control combustion variation. Gürgen
et al. [48] developed an ANN model using Levenberg – Mar-

quardt (LM) and scaled conjugate gradient (SCG) to predict
diesel engine’s cyclic variability fueled with butanol-diesel fuel.
The results showed that the coefficient of determination values

varied between 0.737 and 0.9677 with MAPE and MSE were
lower than 8.7 and 0.042, respectively.

One of the promising methods to improve engine perfor-

mance and reduce its emissions is the use of oxy-hydrogen
gas (HHO) enrichment dual-fuel in a diesel engine. Kenanoğlu
et al. [49] used soybean biodiesel (B25) enriched with oxy-

hydroxy gas with 3, 5 and 7 L/min. Unlike previous studies
who exhaustively used back-propagation network, this study
used cascade forward network trained with the Levenberg-
Marquardt algorithm. Cascade forward network is compara-

ble to the feed-forward network, but it differs by including a
connection from the input with each previous layer being con-
nected to the subsequent layer. It was found that the ANN

model could predict the target response with 95,82%,



Fig. 2 MSE vs. Neuron numbers in the hidden layer; re-plotted from [36].

Fig. 3 An ANN model with multi-input and multi-output parameters developed by Hosseini et al.; . reproduced from [40]

8368 I. Veza et al.



Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine 8369
96,07% and 92,35% accuracies for torque, power and NOx
emission, respectively.

In some cases, ANN models need to be optimized with

other methods. Baranitharan et al. [50] combined an ANN
model with RSM to predict and optimize the performance
and emission of a diesel engine fueled with Aegle marmelos

pyrolysis oil/diesel/Tert-butyl hydroxyl quinone antioxidant
(TBHQ) blend. The ANN and RSM gave R and R2 of 0.998
and 0.991, respectively with A20D80T blend presenting the

optimum blend. Studies using RSM alone to optimize the out-
put of the diesel engine can be found in Refs. [51–54]. Further-
more, Bhowmik et al. [55] used multi-objective response
surface methodology (MORSM) to improve prediction of

the operating parameters in an indirect injection diesel engine
fueled with diesel-kerosene-ethanol (diesosenol) blends that
were previously modeled using ANN. The optimal operating

condition was found at 74.14% engine load using 2.42% ker-
osene and 10% ethanol. In another study utilizing both ANN
and RSM, Samuel and Okwu [56] used waste cooking oil in a

diesel engine with the ANN model being developed to predict
the engine response. The RSM was used to optimize the exergy
and energy efficiencies. It was found that the optimum engine

performance was achieved at 80% engine load with B10 and
B20 according to energy analysis. As for the exergy analysis,
the optimal point was obtained at the same engine load but
with B90 and B100. Other studies investigating the combined

application of ANN and RSM in a diesel engine can be found
in Refs. [57–59].

Another optimization method known as a genetic algo-

rithm was used by Channapattana et al. [60] to obtain the opti-
mal engine’s performance and emission characteristics using
various second-generation biofuels. It was found that that

the optimum values of static injection timing were 18 and
22� bTDC, while the fuel injection pressure and Honne oil
methyl ester (HnOME) blend were 227 bar and 60%, respec-

tively. Fuzzy logic was another promising optimization
method. It is employed by Deb et al. [61] to optimize the
ANN model to predict the performance and emissions behav-
ior of hydrogen in dual-fuel mode. They aimed to find MPCI

(multi-performance characteristics index) for optimum value.
It was found that the highest MPCI was 0.742 using a combi-
nation of both logsig and tansig with the minimum error of

2.14 � 10-6. Furthermore, little is known about the application
of the analytical network process technique for order prefer-
ence by similarity to ideal solution (ANP-TOPSIS) in an inter-

nal combustion engine. It is a multi-objective optimization
multi-criteria decision-making (MCDM) technique. Sakthivel
et al. [62] employed such a technique to look for the optimum
blend under various loads while trying to maximize engine effi-

ciency and minimize emissions. Prior to the application of
ANP-TOPSIS, an ANN model was developed and optimized
using a genetic algorithm as shown in Fig. 4. Given the success

of the ANN-GA-TOPSIS model, it would be interesting to see
the implementation of other integrated models to obtain more
satisfying outcomes such as fuzzy logic-GA-FAHP (fuzzy ana-

lytical hierarchy process) TOPSIS or fuzzy-GA-FAHP Vikor
(Vise Kriterijumska Optimizacija Kompromisno Resenje).

Selection of training algorithm, transfer functions and neu-

ron numbers in the hidden layer plays a substantial role in
determining the efficiency of an ANN model. Thus far, most
studies seem to use one learning algorithm i.e., Levenberg –
Marquardt (LM) with small number combinations of transfer
functions. Other training algorithms and combinations of

transfer functions are worth investigating. Syed et al. [63]
developed an ANN model for a hydrogen dual fueled diesel
engine using seven different training algorithms; (1) Levenberg

– Marquardt (trainlm), (2) Gradient descent with adaptive
learning rate (traingda), (3) Gradient descent with momentum
and adaptive learning rate (traingdx), (4) Resilient back-

propagation (trainrp), (5) Conjugate gradient with Fletcher-
Reeves updates (traincgf), (6) Scale conjugate gradient (train-
scg) and (7) Broyden, Fletcher, Goldfarb & Shanno (trainbfg).
This study also combined eight transfer functions of tansig,

logsig and purelin for each algorithm (tansig-tansig, logsig-
tansig, tansig-logsig, logisg-logsig, logisg-purelin, tansig-
purelin, purelin-logisg, purelin-tansig). It was found that the

ANN model built with trainbfg gave the best result with
regression coefficients varied between 0.9869 and 0.9996.

Almost similar to Syed et al. [63], Javed et al. [64] also used

seven different training algorithms with five combination
transfer functions of tansig, logsig and purelin for each algo-
rithm. The engine was operated using Jatropha Methyl Ester.

The data were normalized into numeric values between 0.1 and
0.9 before being randomized for network training. Later, these
data were reverted by denormalizing them. The ANN model
was performed for different learning algorithm and training

functions mentioned above for 100 iterations. Results indi-
cated that the best model was achieved by Levenberg – Mar-
quardt training algorithm using logsig and tansig transfer

functions with R, MSE and MAPE being 0.9936, 0.0011 and
4.863% respectively.

Air mass flow is an important variable in an internal com-

bustion engine [65]. To determine its performance, volumetric
efficiency is normally quantified. The use of a physical model
using thermo-fluid dynamic model is the most popular

method. Such a model, however, involves a non-linear and
complex process. Luján et al. [66] proposed a novel adaptive
learning algorithm to predict volumetric efficiency in a diesel
engine. The algorithm was developed based on the rise of hid-

den layer weight update speed with training epochs number
being 200–15,000. It was found that the proposed model gave
satisfying results with the maximum generalization error about

13% with an average relative error of 5.5%.
To objectively present its prediction accuracy, ANN should

be compared with other soft computing approaches such as

support vector machine (SVM). Both ANN and SVM have
analogous architectures in which ANN used weights and acti-
vation functions to estimate nonlinear problems, whereas
SVM uses nonlinear mapping to generate linear function.

Niu et al. [67] used both ANN and SVM to predict perfor-
mance and emissions of a marine diesel engine. As the marine
engine experiment involves a considerable amount of time and

resources, the Taguchi orthogonal array was used to reduce
the experiment time. Results showed that SVM presented more
stable predictive accuracy compared to ANN. SVM could look

for the global solution, while ANN was prone to local minima
and overfitting. To enhance the stability and accuracy of
ANN, its initial weights and threshold values should be

enhanced. The detailed summary of ANN application in diesel
engine discussed in this section is listed in Table 2.



Fig. 4 An ANN model optimized with GA coupled with ANP-TOPSIS; . reproduced from [62]
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2.2. Artificial neural networks for gasoline engine

Despite its promising capabilities, the ANN has not been

applied in gasoline engine as much as in diesel engine. How-
ever, several studies have tried to utilize it. Table 3 lists the
detailed summary of the ANN application in gasoline engines

discussed in this section. Liu et al. [73] established an ANN to
predict the performance and emissions of a port fuel injection
gasoline engine under different equivalence ratio. They used

butanol-gasoline blends as the fuel with ratio from B0 (pure
gasoline) to B60. Results showed that a correlation coefficient
and a mean relative error were at 0.9929 to 0.9996 and
0.1943% to 9.953%, respectively. Also, Tosun et al. [74] used

ANN as an estimation tool to predict operational parameters
of direct injection turbocharged gasoline engine and compared
the results with regression analysis. The authors used a three-

layer feed-forward and back-propagation ANN algorithm to
train the experimental data. It was found that, compared to
linear and non-linear regression techniques, the ANN model
gave better accuracy.

Researches in the ethanol-gasoline blends for gasoline
engine has long been established [75], but the application of
ANN in this area is still relatively new [76–78]. Tekin and Sar-
idemir [79] predicted engine performance using ethanol-

gasoline blends with the assistance of ANN. This study found
satisfying prediction results where the correlation coefficient
for the power, torque, CO, CO2, HC, exhaust temperature

and BSFC were 0.9992, 0.9991, 0.9987, 0.9989, 0.9977,
0.9993, and 0.9979, respectively. Similarly, Thakur et al. [80]
also used ethanol-gasoline blends in SI engine. The ratio was

varied ranging from E0 to E100 with 20% interval. Seventy
per cent of the data was used randomly to be trained, while
15% was used for validation. The remaining 15% was used
to enhance the results for network generalization. For all



Table 2 ANN for diesel engine.

Research

groups

Engine

specification

Fuel ANN model

Input Hidden layer Output Network (Training) Evaluation

criteria

Babu et al. [30] 1-cylinder,

553 cc, 16:5

compression

ratio, direct

injection

diesel engine

Waste frying oil

biodiesel

4 inputs

(pre injection

timing, main

injection

timing, post-

injection

timing, test

fuels)

Single layer

with 8 neurons

(performance),

4 neurons

(combustion)

and 13 neurons

(emission)

2 outputs

for engine

performance

(BSEC,

BTE)

3 outputs

for

combustion

(ignition

delay,

combustion

duration,

cylinder

peak

pressure)

5 outputs

for emission

(CO, CO2,

HC, NO,

smoke)

Back-propagation

multilayer perceptron

feed-forward

(Levenberg-Marquardt)

R2, RMSE,

MAPE,

MSRE,

NSE

Kshirsagar and

Anand [31]

1-cylinder,

553 cc, 16:7

compression

ratio, direct

injection

diesel engine

Calophyllum

inophyllum methyl

ester biodiesel

4 inputs

(load %, blend

%, injection

pressure,

injection

timing)

Single layer

with 16

neurons for

engine

performance

and double

layers for

emission with

14 neurons for

each hidden

layer

3 outputs

for engine

performance

(BTE,

BSEC,

EGT)

6 outputs

for

emissions

(CO, CO2,

UHC, NO,

dry soot,

O2)

Feed-forward

(Levenberg-Marquardt)

MSE,

RMSE, R,

R2, MAPE,

MSRE,

NSE,

THEIL U2

Salam and

Verma [32]

1-cylinder,

direct

injection

diesel engine

Microalgae

biodiesel

3 inputs

(load,

blending, FIP)

Single layer

with 10

neurons

17 outputs

(SFC, BTE,

IE, SE,

EGT, CPP,

CPT,

MRPR,

Dout, ID,

HSU,

smoke,

SPM, CO2,

NOx, SoE,

NO2)

Feed-forward back-

propagation (Levenberg-

Marquardt)

R, MAPE

Tosun et al. [35] In-line 4-

cylinder,

3907 cc, direct

injection

diesel engine

with glow

Diesel, peanut

methyl ester

(PME),

ethanol + PME,

methanol + PME,

butanol + PME

5 inputs

(engine speed,

fuel properties,

cetane number,

lower heating

value, density)

Single layer

with 7,9 and 13

neurons for

torque, CO and

NOx

3 outputs

(torque, CO

and NOx)

Back-propagation feed-

forward (Levenberg-

Marquardt)

R2, MAPE

(continued on next page)
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Table 2 (continued)

Research

groups

Engine

specification

Fuel ANN model

Input Hidden layer Output Network (Training) Evaluation

criteria

plug

Taghavifar

et al. [36]

4-cylinder,

1800 cc direct

injection

diesel engine

N-heptane 6 inputs

(crank angle,

equivalence

ratio,

temperature,

pressure, O2,

liquid mass

evaporated)

Single layer

with 18

neurons

3 outputs

(NOx, soot,

CO2)

Back-propagation

multilayer perceptron

feed-forward

(Levenberg-Marquardt)

R2, MSE

Hosseini et al.

[40]

1-cylinder,

510 cc, 17.5:1

compression

ratio,

common rail

diesel engine

Diesel-biodiesel

blends added with

alumina nano-

catalyst

12 inputs

(fuel blend,

engine speed,

fuel density,

kinematic

viscosity,

LHV,

manifold

pressure, fuel

consumption,

exhaust

temperature,

O2 in the

exhaust gas, oil

temperature,

relative

humidity,

ambient

pressure

Double layer

with each layer

has 25 neurons

12 outputs

(torque,

power, CO,

CO2, UHC,

NO, RMSx,

RMSy,

RMSz,

Kurtosisx,

Kurtosisy,

Kurtosisz)

Back-propagation

multilayer perceptron

feed-forward

(Levenberg-Marquardt)

R, MSE

Saraee et al. [41] 6-cylinder,

5800 cc direct

injection

diesel engine

Diesel fuel added

with CeO2

nanoparticles

3 inputs

(engine speed,

nano addition,

ISFC)

Single layer

with 12

neurons

4 outputs

(power,

NOx, HC,

CO)

Back-propagation

multilayer perceptron

(LM, SCG, RP, DX)

R, MSE

Gürgen et al.

[48]

1-cylinder

direct

injection

diesel engine

n-butanol-diesel

blend

2 inputs

(engine speed,

fuel blend

ratio)

Single layer

with 11

neurons

1 output

(COVIMEP)

Back-propagation (LM,

SCG)

R2, MSE,

MAPE

Kenanoğlu

et al. [49]

4-cylinder,

3567 cc, in-

line diesel

engine

Diesel and soybean

methyl ester

enriched with HHO

(oxy-hydrogen gas)

3 inputs

(motor speed,

fuel type, fuel

consumption)

Double layers,

10 neurons in

the first layer

and 15 neurons

in the second

layer

3 outputs

(torque,

power, NOx

emission)

Cascade forward

(Levenberg-Marquardt)

AAPE, R2,

MSE

Baranitharan

et al. [50]

1-cylinder

multi-fuel,

variable

compression

ratio (12:1 to

18:1) diesel

engine

Aegle marmelos

pyrolysis oil-diesel-

Tert-butyl hydroxyl

quinone

antioxidant

(TBHQ) blend

2 inputs

(compression

ratio and

engine load)

– 2 outputs

for engine

performance

(BSFC,

BTE)

4 outputs

for

emissions

(CO, HC,

CO2 and

NOx)

Feed-forward back-

propagation (Levenberg-

Marquardt) + RSM

R, R2,

MSE,

RMSE,

MAAE

Bhowmik et al.

[55]

1-cylinder,

318 cc

indirect

injection

diesel engine

Diesel-kerosene-

ethanol

(Dieseosenol)

3 inputs

(engine load,

kerosene share,

ethanol share)

Single layer

with 9 neurons

5 outputs

(BTE,

BSEC,

NOx, UHC,

Feed-forward back-

propagation (Levenberg-

Marquardt) + MORSM

R, R2,

MSE,

MAPE,

MSRE,

NSE,
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Table 2 (continued)

Research

groups

Engine

specification

Fuel ANN model

Input Hidden layer Output Network (Training) Evaluation

criteria

CO) KGE,

THEIL U2

Channapattana

et al. [60]

1-cylinder,

direct

injection

diesel engine

with a

variable

compression

ratio

Diesel, HnOME,

diesel-HnOME

5 inputs

(CR, SIT,

FIP, load,

blend)

Single layer

with 28

neurons

8 outputs

(BTE,

BSEC,

EGT, CO2,

CO, HC,

NOx,

smoke)

Multilayer perceptron

back-propagation (LM,

RP, SCG, GDX) + GA

MAPE,

MSE,

Prediction

accuracy

Aydin et al. [57] 1-cylinder

diesel engine

with 200 bar

injection

pressure

Biodiesel-diesel

blends

3 inputs

(injection

pressure,

biodiesel ratio,

load)

Single layer

with 10

neurons

7 outputs

(BSFC,

EGT, BTE,

NOx, HC,

CO, smoke)

Feed-forward back-

propagation (Levenberg-

Marquardt)

R2, MRE,

RMSE

Uslu [58] 1-cylinder,

296 cc, 18:1

compression

ratio diesel

engine

Palm oil-diesel

blend

3 inputs

(engine load,

palm oil

percentage,

and injection

advance)

Single layer

with 10

neurons

6 outputs

(EGT,

BTE, CO,

HC, smoke

and NOx)

Feed-forward back-

propagation (Levenberg-

Marquardt)

R2, MRE,

RMSE

Syed et al. [63] 1-cylinder,

553 cc, direct

injection

diesel engine

Diesel and

hydrogen

2 inputs

(load and H2)

Single layer

with 8 neurons

6 outputs

(BTE,

BSFC, CO,

NOx, HC,

EGT)

Multilayer perceptron

back-propagation (LM,

GDA, GDX, RP, CGF,

SCG, BFG)

R, RMSE,

MAPE,

NSE, KGE

Javed et al. [64] 1-cylinder,

553 cc, direct

injection

diesel engine

Diesel and Jatropha

Methyl Ester (JME)

enriched with

hydrogen

3 inputs

(load,

biodiesel

blend, H2)

Single layer

with 16

neurons

8 outputs

(BTE,

BSFC, CO,

O2, CO2,

NOx, HC,

EGT)

Feed-forward back-

propagation (LM, GDA,

GDX, RP, CGF, SCG,

BFG)

R, MAPE,

MSE

Niu et al. [67] Common rail

direct

injection-

assisted

marine diesel

engine

Diesel 4 inputs

(rail pressure,

injection

timing, charge

pressure,

charge

temperature)

Single layer

with 4 neurons

for BSFC, max

pressure, NOx,

and 3 neurons

for soot and

efficiency

5 outputs

(BSFC,

max

pressure,

NOx, soot,

efficiency)

Feed-forward back-

propagation (Levenberg-

Marquardt) + SVM

R2, MSE,

MAPE

Rao et al. [68] 1-cylinder,

447.3 cc,

indirect diesel

injection

engine

Rice bran methyl

ester (RBME)-

Isopropanol blend

2 inputs

(engine load

and fuel)

Single layer

with neurons

being varied

from 14 to 23

9 outputs

(EGT,

BSFC,

BSFC, HC,

CO, CO2,

O2, NOx

and smoke)

Feed-forward back-

propagation (Levenberg-

Marquardt)

R, MSE

Uslu and Celik

[69]

1-cylinder,

296 cc, 18:1

compression

ratio, direct

injection

diesel engine

Diesel and diesel-

DEE

3 inputs

(engine load,

blend, engine

speed)

– 7 outputs

(BSFC,

BTE, EGT,

NOx, CO,

HC and

smoke).

Feed-forward back-

propagation (Levenberg-

Marquardt)

R2, MRE,

RMSE

Yang et al. [70] In-line 6-

cylinder,

9726 cc, high-

pressure

common-rail,

turbocharged

and

intercooled

diesel engine

Diesel 7 inputs

(V_, Torexp,

pexp,in, pexp,out,

Texp,in, Tcon,out,

pp,out)

Single layer (no

information

about the

neuron

numbers)

1 output

W_exp

Feed-forward back-

propagation (LM, GD,

DM, GDA) + GA

R, MSE

(continued on next page)
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Research

groups

Engine

specification

Fuel ANN model

Input Hidden layer Output Network (Training) Evaluation

criteria

Çelebi et al. [71] In-line 4-

cylinder,

3907 cc, direct

injection

diesel engine

with glow

plug

Diesel, sunflower

and canola

biodiesel, natural

gas,

5 inputs

(engine speed,

CNG flow

rate, cetane

number,

density)

Single layer

with 4 neurons

for vibration

and 5 neurons

for SPL

2 outputs

(Vibration

and SPL)

with

different

ANN

architecture

Feed-forward back-

propagation (Levenberg-

Marquardt)

R2, MAPE

Dharma et al.

[72]

1-cylinder,

638 cc direct

injection

diesel engine

Jatropa curcas-

Ceiba pentandra

biodiesel-diesel

2 inputs

(engine speed

and biodiesel

blends)

Single layer

with 9 neurons

5 outputs

for engine

performance

(BSFC,

torque,

brake

power,

EGT, BTE)

4 outputs

for exhaust

emissions

(CO, CO2,

NOx, smoke

opacity)

– R, MAPE,

MSE,

RMSE
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engine performance and emissions, the ANN model gave cor-
relation coefficients from 0.9999 to 0.9999. Mean relative

errors were found between 0.12% and 5.56% with root mean
square errors being exceptionally low. Also, by increasing the
number of neurons in the hidden layer above 20 (i.e., 21, 22,

23 and 24), the R values were not found to raise. Thus, the
authors concluded that the optimal ANN model for this study
was achieved with a single hidden layer of 20 neurons.

One of the promising renewable energy sources is biogas. It
can be used not only for thermal and electricity application but
also for internal combustion application [81–85]. Kurtgoz et al.
[86] developed an ANN model to predict thermal and volumet-

ric efficiency as well as the brake specific fuel consumption of
gasoline engine fueled with biogas using various methane
ratios. The ANN model was found to provide satisfying results

with high correlation value and low error rates. Another
promising gaseous fuel for the gasoline engine is compressed
natural gas (CNG) enriched with hydrogen. The addition of

hydrogen is believed to improve the efficiency of existing
CNG engines without penalty in the exhaust emissions.
Despite its straightforward and promising accuracy, the use
of ANN for hydrogen-enriched compressed natural gas

(HCNG) is difficult to find in the literature. Mehra et al. [87]
investigated the performance and emission behaviors of
HCNG under different ignition timings and excess ratio. Var-

ious neuron numbers were tested as shown in Fig. 5. and
Fig. 6. They trained the model 100 times for every neuron, gen-
erating different weights that determine MSE and R. Fig. 5

shows that at the beginning (few neuron numbers), the MSE
values are quite high for BSFC and torque. With increasing
neuron numbers, the MSE value fluctuates with a decreasing

trend, indicating a good simulation accuracy. The trend in
coefficient correlation (Fig. 6) also shows that the ANN model
presents satisfying results, giving coefficient correlation close
to 1.00 with the increase of neuron numbers.

Compared to port fuel injection, gasoline direct injection
(GDI) engines are known for their higher thermal efficiency
and power output [88]. However, little is known about the

effect of in-combustion pressure on the low pressure cooled
exhaust gas recirculation (LP-EGR) in a turbocharged gaso-
line direct injection. Jo et al. [89] developed an ANN model

to predict the LP-EGR utilizing in-cylinder pressure data,
and combined it with three optimization algorithms; random
search (RS), tree-structured Parzen estimator (TPE) and
hyper-parameter optimization using radial basis function and

dynamic coordinate search (HORD). The three algorithms
were found to be able to enhance the efficiency to find the mul-
tidimensional hyper-parameters with HORD showing the best

performance with stable convergence. Its R2 was above 0.9896
with total RMSE of less than 0.63%.

It is known that internal combustion engines suffer from

heat loss as a result of cooling system elements. One of the
effective approaches to minimize such loss is by applying ther-
mal barrier coating (TBC) [90,91]. Hazar and Gul [92] used
chrome carbide (Cr3C2) to coat piston, exhaust and inlet

valves. Yet, to measure the performance and emission of a
gasoline engine coated with chrome carbide would be a time-
consuming process. Therefore, an ANN with multi-layered,

feedforward, back-propagation algorithm was developed to
decrease the experiments repetitions and costs.

In most cases, a feed-forward neural network for engine

application is trained using back-propagation neural network.
This type of ANN is widely used to solve various engine appli-
cation to predict performance and emissions characteristics.

However, the back-propagation neural network has significant
problems such as high reliance on the initial weights, the



Table 3 ANN for gasoline engine.

Research

groups

Engine

specification

Fuel ANN model

Input Output Network Training Performance

Liu et al.

[73]

1-cylinder, 575 cc

PFI gasoline engine

Gasoline,

gasoline-n-

butanol

2 inputs

(equivalence ratio, butanol

ratio)

6 outputs

(power, BTE,

BSFC, CO, HC,

NOx)

Back-

propagation

feed-forward

Levenberg –

Marquardt,

Scale

Conjugate

Gradient

R, MRE,

RMSE

Tosun

et al. [74]

4-cylinder, 1368 cc,

10:1 compression

ratio, turbocharger

DI gasoline engine

Gasoline 2 inputs

(engine speed and BMEP)

4 outputs

(DOI, SFC, exhaust

gas at turbine inlet

and within the

catalytic converter

brick)

Back-

propagation

feed-forward

Levenberg –

Marquardt

MAPE,

RMSE,

NRMSE

Thakur

et al. [80]

1-cylinder, 4.5:1

compression ratio,

PFI gasoline engine

Gasoline,

gasoline-

ethanol

2 inputs

(engine load, ethanol-

gasoline blend)

9 outputs

(brake power,

torque, BSFC, BTE,

volumetric

efficiency, CO, CO2,

HC, NOx)

Back-

propagation

feed-forward

Levenberg –

Marquardt

R, MSE,

RMSE

Kurtgoz

et al [86]

4-cylinder, 3610 cc,

11:1 compression

ratio gasoline

engine

Biogas 5 inputs

(methane content, load, Tin,

air fuel ratio, Pmax)

3 outputs

(BTE, VE, BSFC)

Back-

propagation

feed-forward

Levenberg –

Marquardt

R, RMSE,

MAPE

Mehra

et al. [87]

In-line 6-cylinder,

11.5:1 compression

ratio, turbocharged

gasoline engine

Hydrogen-

CNG

4 inputs

(Excess air ratio, engine load,

ignition timing, HCNG

blends)

6 outputs

(BSFC, torque,

NOx, CO, THC,

CH4)

Back-

propagation

feed-forward

Levenberg –

Marquardt

R, MRE,

RMSE

Jo et al.

[89]

4-cylinder, 1998 cc,

10:1 compression

ratio, DOHC, GDI

Gasoline 12 inputs

(pMAXp, IMEPp, MFB5p,

MFB10p, MFB20p, MFB30p,

MFB40p, MFB50p, MFB60p,

MFB70p, MFB80p, MFB90p)

1 output

(LP-EGR)

Back-

propagation

feed-forward

Levenberg –

Marquardt

R2, RMSE

Uslu and

Celik

[96]

1-cylinder, 196 cc

gasoline engine

Gasoline and

gasoline-

isoamyl

alcohol

(isopentanol)

3 inputs

(CR, blending ratio, speed)

6 outputs

(BMEP, BTE,

BSFC, NOx, CO,

HC)

Back-

propagation

feed-forward

+ RSM

Levenberg –

Marquardt

R2, MRE,

RMSE

Fig. 5 MSE vs. Neuron numbers for BSFC and torque; re-plotted from [87].
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possibility of being trapped in local minima and slow conver-
gence. In this regards, extreme learning machine (ELM) has
several promising features to solve such problems. Mariani

et al. [93] developed an ELM design based on a modified
biogeography-based optimization approach (BBO) to predict
the in-cylinder pressure of a gasoline engine. The proposed

design comprises of three steps; (1) dataset reading, (2) ELM
model linked with BBO approach and (3) 5-fold cross-
validation as shown in Fig. 7. Results showed that the ELM-

BBO optimized model had satisfying accuracy with reasonable
consistency with experimental results.
Fig. 6 R vs. neuron numbers for BSF

Fig. 7 Design of ELM;
ANN can be useful to predict the octane number. Octane
number (ON) is a measure of the quality of gasoline which
determines its resistance to detonation. The effects of ON have

been studied on engine performance and exhaust emissions.
The requirement of octane number is influenced by engine
design and compression ratio. Other factors that influence

the ON include weather, driving conditions and mechanical
conditions of the engine [94]. Moreover, decreased cooling effi-
ciency, problems in fuel and ignition systems as well as failure

in emission control also alter the ON requirements. Therefore,
to model the prediction of ON using a traditional computa-
C and torque; re-plotted from [87].

reproduced from [93]
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tional model requires numerous mathematical equations. This
is where the ANN can be used to model the physical phenom-
ena of complex systems without mathematical representations.

More recently, most studies have combined ANN with other
optimization approaches such as RSM.

RSM has been applied successfully as an optimization tool

in many chemical and biochemical studies. Now, its applica-
tion has gained more attention in internal combustion engines.
Elfghi [95] combined the ANN with RSM to model and opti-

mize research octane number. This study found that ANN
showed better performance than the RSM in terms of data fit-
ting and prediction accuracy. However, RSM offered a more
efficient approach as it only required relatively fewer experi-

ments to provide a large of dataset information, resulting from
its design of experiment (DOE) characteristic. Another study
combining the application of ANN with RSM in gasoline

engine was conducted by Uslu and Celik [96]. In their study,
the ANN model was developed to predict the effects of I-
amyl alcohol/gasoline fuel blends on gasoline engine perfor-

mance and emissions, while the RSM was used to find appro-
priate optimal operating conditions. The correlation
coefficients were found to be between 0.94 and 0.99 and the

MRE is less than 7%. The optimal engine parameters based
Fig. 8 Confusion matrix plot for three RON classes at different spark

(d) � 30� bTDC; . reproduced from [99]
on the RSM method is at the i-AA ratio of 15% using a com-
pression ratio of 8.31 under 2958 rpm. This study implied that
the ANN along with RSM could be used as a promising pre-

diction tool to optimize engine response with minimal experi-
ment data.

Thus far, we have seen that most ANN applications for

internal combustion engine are mostly developed to solve fit-
ting problems where a neural network was designed to map
between a dataset of numeric inputs and a set of numeric tar-

gets. Other ANN applications are worth investigating such as
pattern recognition [97], classification [98], clustering or
dynamic time series. Ghanaati et al. [99] developed an ANN
model based on neural pattern recognition for on-board fuel

octane number classification. It was found that the ANN
model could classify the research octane number (RON) at
various spark advances as shown in the confusion matrix in

Fig. 8. Here, the rows represent the predicted (output) class,
while the columns correspond to the true (target) class. The
last column in the right displays the accuracy for each output

class, and the last row at the bottom shows the accuracy for
each target class. The overall accuracy is shown in the blue cell
at the bottom right of the matrix. Another study using an

ANN model for classification was conducted by Zheng et al.
advance (a) � 10� bTDC, (b) � 30� bTDC, (c) � 10� bTDC, and
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[100] for dynamic misfire fault diagnosis. Back-propagation
neural network, Elman neural network and SVM were exam-
ined and compared. Results showed that the three methods

were able to detect misfire efficiently under transient condi-
tions, but the Elman neural network was found to be more
effective.

Although most studies have successfully developed an
ANN model based on the feed-forward network due to its
accuracy, another network is worth investigating. Recurrent

neural network (RNN) for instance. Compared to feed-
forward ANN, RNN can process sequential inputs, enabling
it to present dynamic temporal behavior in a time sequence
manner. Zhao et al. [101] developed a bidirectional RNN

model coupled with long short-term memory (LSTM) to esti-
mate the in-cylinder flow fields in an optical gasoline engine
as schematically presented in Fig. 9. Here, both RNN and

bi-RNN process the inputs sequentially in a similar way except
that the bi-RNN model processes the inputs in opposite direc-
tions, allowing it to use information from before and after the

target time. Also, the LSTM with three multiplicative gates to
store and attain information over a longer period was intro-
duced since both RNN and bi-RNN models could experience

the gradient exploding and vanishing issues during the training
process.

2.3. Artificial neural networks for homogeneous charge
compression ignition engines

In addition to premixed charge compression ignition strategy
(PCCI) [102–104], another innovative combustion mode

known as the homogeneous charge compression ignition
(HCCI) engine is a promising advanced combustion technol-
ogy [105]. It offers high-efficiency and low-emission engine
Fig. 9 Different schematic representation between an RNN a
characteristics due to its low-temperature combustion modes
[106]. However, its operation is limited at high load conditions
caused by rapid pressure rise rate, short combustion duration

and ringing operation. Fig. 10 shows the development of heat
release, combustion and the formation of emissions in a typical
HCCI engine. Moreover, controlling HCCI engines remains a

major challenge. While experimental testing is not a feasible
option, an efficient and accurate model to control HCCI com-
bustion needs to be developed. Using an ANN model instead

of CFD simulation or kinetic modeling is relatively less time-
consuming and more affordable. This is because the thermo-
kinetic HCCI model needs a considerable amount of time.
Also, despite its high HC and CO emissions, no model can

be found in the literature to predict its emissions. To simulate
emissions for just one HCCI engine cycle, which is only 40–
120 ms long, it takes several hours to a couple of days to finish

[107].
In general, HCCI models can be categorized into three

main groups as shown in Fig. 11. The first group, the empirical

model, needs a large amount of experimental data, whereas the
second group, the thermo-kinetic model, requires computa-
tional resources which are not available for real-time engine

control. The third group, the ANN model, offers the compet-
itive advantage of the first and second model, providing a com-
promise between accuracy, computational resources and
experimental data. Of all the three groups, the ANN model

is mainly used to predict the performance and to detect a fault.
Many studies have used ANN model on internal combustion
engines. However, its application on HCCI engines is still lim-

ited. Table 4 lists the detailed summary of the ANN applica-
tion in HCCI engines discussed in this section.

Rezaei [107] developed a model for the HCCI engine that is

able to run real-time and can predict its performance and emis-
nd bi-RNN models with LSTM cell; reproduced from [101]



Fig. 10 Heat release, combustion and emissions formation in an HCCI engine; reused with permission from Elsevier [108]

Fig. 11 The position of ANN for HCCI engine; . adapted from [107]
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sions characteristics. They used oxygenated fuels i.e. butanol

and ethanol, whereas the model itself was a multi-input
multi-output (MIMO) that predicted HCCI emissions, heat
release, maximum in-cylinder pressure, indicated mean effec-

tive pressure (IMEP) and thermal efficiency. The proposed
ANN model used two functions: feed-forward and radial basis
function. The model was then validated with the experimental
data gathered from 123 HCCI operating conditions. The

results showed that the proposed ANN model could predict
the engine performance characteristics for both engines with
less than 4% error. It was also found that the feed-forward

neural network model required only fewer neurons and less
complicated, but it needed two-fold training time than radial
basis function model.

It is known that the HCCI engine is limited by intense noise
during ringing operation. Ringing intensity is one of the big-
gest problems in HCCI engine. The maximum acceptable ring-

ing intensity of an HCCI engine is normally set to 5 MW/m2.
To evaluate the ringing operation, Maurya and Kumar [109]
developed a real-time model to identify the ringing intensity

of an HCCI engine fueled with hydrogen. An ANN model
was developed, and it was found that the CA50 was strongly
affecting the ringing operation with a coefficient correlation
of 0.99. Also, the ringing intensity was reported to increase

with the early combustion phasing, higher intake air tempera-
ture and equivalence ratio. Furthermore, Bahri et al. [110]
developed an ANN model to detect ringing operation in

real-time for HCCI engines. They proposed an ANN model
which could predict the ringing intensity (RI) of the HCCI
engine and identify its operating points region. The main

HCCI combustion parameters and exhaust emissions were also
investigated. The results showed that the RI increased in two



Table 4 ANN for HCCI engine.

Research groups Objective The novelty of the method

Rezaei et al. [107] To predict HCCI performance metrics fueled with

oxygenated fuels using a comprehensive ANN

model.

Used a novel multi-input multi-output to predict

HCCI performance, combustion and emission

characteristics.

Maurya and Kumar [109] To characterize the ringing operation of

hydrogen-fueled HCCI engine.

Developed a model for real-time identification of

ringing intensity for HCCI engine fueled with

hydrogen.

Bahri et al. [110] To examine the ringing operation of an HCCI

engine.

Proposed an ANN model to detect ringing operation

in real-time for HCCI application.

Bahri et al. [111] To investigate the combustion characteristic noise

level of an HCCI engine fueled with ethanol above

100 dB.

Developed a real-time ANN modeling using minimum

data of in-cylinder pressure.

Bendu et al. [112] To predict ethanol-fueled HCCI engine’s

performance and emission characteristics.

Used GRNN model for the first time to predict HCCI

engine performance and emission behaviors.

Bendu et al. [113] To optimize the performance and emission

behaviors of the HCCI engine fueled with ethanol.

Proposed a hybrid GRNN-PSO model for HCCI

application

Anarghya et al. [114] To study the HCCI engine’s behaviors using

various fuels and trapped residual gases method.

Used a radial basis function neural network (RBFNN)

and genetic algorithm utilizing CFD results.

Nazoktabar et al. [115] To develop a multi-zone HCCI model optimized

with a genetic algorithm.

Combined a control model with ANN that was

optimized using a genetic algorithm.

Nazoktabar et al. [116] To develop an HCCI controller to find the

optimum combustion phasing with minimized

emissions as a function of engine load.

Developed a multi-input multi-output controller

capable to remove emissions in power demand phase.

Leo et al. [117] To examine the use of gasoline premixing in

HCCI-DI engine fueled with waste cooking oil.

Used ANN with response surface methodology for

optimization.

Taghavi et al. [118] To predict HCCI’s SOC on the basis of the

mixture properties which takes into account

the input delays and network targets.

Used an ANN-GA method to predict the start of

combustion in HCCI engine.

Wick et al. [119] To develop ignition measurement algorithm of

HCCI engine using a wider database to predict

misfires.

Developed a novel algorithm to obtain dynamic

measurement data to be trained with ANN.
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ways. First was by advancing crank angle of 50% fuel burnt
(CA50) and the second was by decreasing burn duration. Since

all the extreme noise data points had CA50 smaller than 9
CAD aTDC, adjusting CA50 could provide a control knob
for the RI. In-cylinder pressure at 5, 10, 15 CAD aTDC (P5,

P10 and P15) and its maximum pressure (Pmax) had a strong
relationship with RI. Therefore, to develop an ANN model
Fig 12 Steady state test cases comparison between ex
that could predict RI, the in-cylinder pressure value of P5,
P10, P15 and Pmax were used. In addition to that, experimental

data from 155 steady-state points were also collected to evalu-
ate the model for two conditions: low and high-octane fuels.
The results showed that the proposed ANN model could pre-

dict RI with a reasonable agreement between experimental and
simulation results as shown in Fig. 12 where the error was less
perimental and predicted RI, re-plotted from [110].
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than 4.2%. This model could be employed to detect HCCI
ringing operation for combustion control appliances.

In their subsequent study, Bahri et al. [111] investigated the

combustion noise level (CNL) in an HCCI engine fueled with
ethanol. CNL can be used to estimate an engine’s noise level.
Despite its significant indicator, it is difficult to find a pub-

lished work investigating CNL for HCCI application. Bahri
et al. [111] examined extreme combustion level with CNL over
100 dB and developed an ANN noise level (ANL) model. It

was found that the CNL was strongly correlated with in-
cylinder pressure at 10, 15, 20 CAD aTDC and its Pmax.
Fig 13 Test cases comparison between experimen

Fig. 14 Typical GRNN architec
The ANL only gave less than 0.5% error. Fig. 13 reveals the
prediction of ANL for 50 steady-state test cases. The dashed
line in Fig. 13 indicates the boundary between misfire, normal

and ringing areas.
Back-propagation neural networks have been extensively

investigated for ANN application in the internal combustion

engine. However, such a model needs lengthy training time
and may experience local minima problem. If the predicted
values are not satisfying, the ANN will be restarted using dif-

ferent settings until the model give comparable results with the
actual values. To solve this problem, Bendu et al. [112] devel-
tal and predicted CNL, re-plotted from [111].

ture; . reproduced from [113]
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oped a general regression neural network (GRNN) model to
predict the HCCI engine’s performance and emission behav-
iors. GRNN works using a probabilistic functional network

with typical architecture is shown in Fig. 14. It has four layers
i.e., the input, radial, regression and output layer. The result
showed that the maximum error was merely 2%. Compared

to other ANN models, this study also revealed that the GRNN
needed less training data. In their subsequent study, Bendu
et al. [113] proposed a novel method by combining GRNN

with particle swarm optimization (PSO) to optimize the oper-
ating condition of an HCCI engine. The methodology is illus-
trated in Fig. 15. It was found that at 170 �C intake air
temperature, 72% engine load and 4% EGR, the HCCI engine

reached its optimum operating condition within a merely short
amount of time, 60–75 ms.

Using both ANSYS FLUENT simulations and neural net-

work models, Anarghya et al. [114] investigated the efficiency
and combustion qualities of the HCCI engine. Experimental
results using various fuel properties and decreased valve lifts

to trap the exhaust gases were applied to confirm the numerical
and neural network performance. Experiments with different
reference fuels (PRF30, PRF50, PRF70) and methanol to ver-

ify the CFD and ANN-GA measurements were conducted on
the 800-cc engine at various speeds and inlet air temperatures.
It was found the ANN-GA model provided satisfactory pre-
Fig. 15 Flowchart of the hybrid model GR
diction for HCCI’s combustion characteristics and emissions.
Reducing valve lifts have been found to delay the phasing of
combustion at the knock boundary.

Relying on the physical model to predict HCCI emissions
involves a complex process owing to its non-linear characteris-
tic. Its dependency on mixture charge properties makes the

process even more complicated. Nazoktabar et al. [115] devel-
oped a gray-box HCCI model by combining physical and
ANN model to minimize the data for the physics of the com-

bustion (Fig. 16). Here, the main inputs of the CA50 gray-box
model were the outputs from the physical model. The outputs
of the gray-box model were then used as the main inputs of the
gray-box emissions model. Furthermore, the IMEP demand

was introduced as the third parameter to determine the opti-
mum CA50 and minimum emissions trajectory as shown in
Fig. 17. To obtain optimal engine operating conditions, a large

excessive amount of experimental data is needed. However,
this study showed that by using a thermo-kinetic model cou-
pled with the genetic algorithm, the optimum engine operating

conditions could be obtained without the need of experiment
results. In their subsequent study, Nazoktabar et al. [116]
developed a multi-input multi-output controller for HCCI

engine that was capable to remove emissions in power demand
phase to find the optimum combustion phasing with mini-
mized emissions as a function of engine load. It was found that
NN-PSO developed by Bendu et al. [113].



Fig. 17 Gray-box model and controller layout; . reproduced from [115]

Fig. 16 Physical + ANN model for HCCI engine application; . reproduced from [115]
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the controller was able to quickly reject the disturbances in

merely fewer than five cycles with deviations being within
0.04 bar, 0.5 CAD and 0.03 for IMEP, CA50 and emissions,
respectively.

ANN does not require a detailed definition and comprehen-
sive system relationship. Through analyzing previous data, an
ANN model can discover the relationship between input and

output parameters. Leo et al. [117] developed ANN model to
predict HCC-DI engine fueled with waste cooking oil. This
study used WCO-diesel as the DI fuel and gasoline as the pre-

mixed fuel. It was found that the WCO in DI mode caused an
early start of combustion. The R values from the ANN model
were in the range between 0.9946 and 0.9996, while the R2 val-
ues were between 0.9952 and 0.9991. For the optimization pur-

pose, RSM was used, and it was reported at WCO-biodiesel
blend at part load gave the best optimal operating conditions.

While ANN was used successfully to analyze HCCI engi-

nes, the ANN-GA method that can predict HCCI’s start of
combustion (SOC) had not been examined on the basis of
the mixture properties which takes into account the input

delays and network targets. Taghavi et al. [118] used three
widely known optimization techniques; (1) the nonlinear
autoregressive network with exogenous inputs (NARXNET),
(2) multi-layer perceptron (MLP) and (3) radial basis function

(RBF). Experimental data were firstly obtained from Ricardo’s
one-cylinder engine. The networks were then trained and opti-
mized employing a genetic algorithm. It was found that the

suggested networks had optimum architectures and enhanced
predictive characteristics. Also, the regression ratio between
the MLP outputs and the accompanying experimental data

was improved from 0.8965 to 0.96166. This value was
increased from 0.7623 to 0.8399 using RBF after the optimiza-
tion. The results also showed that GA could significantly

reduce the time required to train the NARX from 3.12 s to
merely 0.46 s. This study implied that the neural network
architectures could be used as a promising strategy to predict

the non-linearity of the HCCI engine’s SOC.
One significant problem with the existing HCCI combus-

tion models is the prediction of outliers due to their stationary
measurement conditions. This is because a cycle-dependent

individual from the previous process could affect the subse-
quent depending on the feedback variables. Wick et al. [119]
developed a new transient measurement technique by setting

manipulated variables on a cyclic basis that relied on the pre-
vious cycle. Fig. 18 illustrates their first-order autoregressive
model combustion as a function of feedback and manipulated

variables. The new algorithm was then trained using ANN to
obtain dynamic measurement data. It was found that the mod-
els were able to predict misfires under certain circumstances by
considering the interaction between feedback and cycle indi-

vidual manipulated variables. Compared to conventional sta-
tionary measurement technique, the model developed with



Fig. 18 HCCI first order autoregressive model, . reproduced

from [119]
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dynamic training data could overcome one of the major prob-

lems in HCCI combustion models i.e., prediction of outliers.

3. Challenges in the application of artificial neural networks

ANN is a promising approach that can challenge conventional
simulation programs that are known for their expensive and
time-consuming procedures. An ANN model extracts data

and learns directly from them to solve non-linear and complex
problems, avoiding the use of complicated mathematical equa-
tions. However, the implementation of ANN for automotive

application tends to be repetitive. The same network type,
learning algorithm and training function are used time and
time again. This section presents the authors’ concluding
remarks and final comments.
3.1. Number of neurons and splitting dataset

There has been no established standard to determine the num-
ber of neurons in the hidden layer. Different cases have a dif-
ferent number of neurons. To avoid selecting an ANN

architecture randomly, the optimum network is usually
achieved by examining different neuron numbers, normally
between 1 and 25, by trial-and-error until the MSE gives the
desired lowest value (e.g. less than 0.001). Too few hidden neu-

rons may lead to a high error as a result of underfitting, while
too many hidden neurons, despite its relatively low error, may
result in overfitting. Therefore, most studies did a number of

trial-and-error testing by altering the neuron numbers. While
optimal network configuration may differ from one to
another, the approximate neurons number of the hidden

layer varies between 10 and 25. It can also be estimated using
the following equation [120];

N ¼ IþO

2

ffiffiffiffiffi
Pi

p
ð1Þ

where N is the number of neurons in the hidden layer, I and O

are the number of input and output parameters, respectively.
Pi is the number of training data. As for the split of dataset,
the size of the data influences the division. Generally, the data
are split randomly by 70%, 15%, 15% for training, test and
validation. However, with a large number of data, thousands

for example, 90% can be trained since even at the remaining
10%, there will be more significant data to test and validate
the model.

3.2. Performance and transfer function

To develop an ANN model, the network is subjected to two
processes: training and validation. In training, the network is

trained to estimate output values relative to the input data.
After the training process, another important step in ANN
modeling is validation or testing. While in training, the net-

work is conditioned to approximate output values using the
input data, in testing, the network is conditioned to stop the
training once the desired output values and accepted errors

have been obtained. Due to the importance of the validation
process, some types of errors have been proposed to evaluate
the ANN model performance.

This review article has shown that the two measurements

are commonly used as the evaluation criteria; mean square
error and correlation coefficient. MSE is a convenient way to
calculate average data change. It also has an excellent metric

for optimization. MSE assesses the discrepancy between pre-
dicted and actual values with a high MSE indicating a low-
accuracy prediction. Therefore, MSE should be minimized

and when its percentage starts to rise, the training is ceased.
The error of MSE can also be represented by the root mean
square error. Another evaluation criterion is the correlation

coefficient, R. An ANN model expects a higher R-value. In
addition to MSE and R, the absolute fraction of variance
(R2) and mean absolute percentage error (MAPE) are often
used. Also, other evaluation criteria such as KGE, NSE,

THEIL U2, MAAE and AAPE are used in some studies to
assess the ANN model’s accuracy as shown in Table 2.

Transfer or activation functions are not many. Despite

being only a few, selection of transfer function is critical since
ANN is susceptible to the input and output being used. There-
fore, variations in the use of activation transfer functions will

have different results. Normally, hidden layer transfer func-
tions are set to log-sigmoid (logsig) due to its self-limiting
behavior that can limit the output and make it easier to be dis-

tinguished. As for the functions for the output layer, the linear
(purelin) is normally selected.

3.3. Data normalization

The efficiency of an ANN model is influenced by the spread in
the dataset. Large differences in the output values will slow the
training process and reduce the fitting accuracy. To solve this

problem, normalization is often preferred. Some studies were
found to normalize their datasets either by fitting a normal dis-
tribution to a dataset or by changing a variable to a normal

variable. This is done by changing the nominal variable into
numeric value such as �1 to 1 or 0 to 1. However, instead of
using the range between 0 and 1, range of 0.1–0.9 or 0.05–
0.95 should be used to prevent ‘not a number’ (NaN) as a

result of dividing the value by zero and to obtain faster train-
ing as it prevents transformations of very small values, thus
avoiding the computation of activation functions for extreme

values without penalty on the accuracy. It is important to note
that normalization is particularly important when there is an
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assumption of the model, but ANN does not have any prede-
fined prediction. Also, normalization is prone to outliers.
Therefore, standardization may be better for ANN as it gener-

ates new unbounded data.

3.4. Hybridization of artificial neural networks with the
optimization method

To increase its prediction accuracy, the hybridization of ANN
is strongly recommended by combining it with optimization

methods. Study in ANN may reach its maturity and be satu-
rated if the same approach is implemented recurrently. With
the increasing computational power, the hybridization of the

ANN model with an optimization method can play an impor-
tant role in the future of neural networks application. This is
because ANN is merely a black box or mystery models learn-
ing approach, lacking physical concepts. It cannot explain the

relationship between input and output and unable to address
uncertainties, thus it cannot optimize the solution. To over-
come these limitations, several optimization approaches need

to be combined with ANN.
One of the best optimization methods is the genetic algo-

rithm. Conventional modeling using numerical techniques

have been widely utilized for optimization purpose in internal
combustion engines. Yet, it is difficult to avoid the local min-
ima using numerical techniques, depending on the prelimi-
nary chosen value. Also, the numerical technique is only

suitable for continuously differentiable functions. This is
where GA plays an important role as it can avoid the exis-
tence of local minima. GA can be used to optimize the

weights of the ANN model. It is a global optimization
method based on Darwin’s theory of evolution involving
Fig. 19 Flowchart of GA,
selection, crossover and mutation as depicted in Fig. 19.
GA algorithm is initialized with a random population. Indi-
viduals are then evaluated based on the fitness function to

fulfill certain criteria. The use of GA resulting in multi
Pareto-optimal solution has been most successfully imple-
mented to find the optimum dataset in an internal combus-

tion engine with multi-objective target [60].
Another optimization approach that is increasing in popu-

larity for engineering application is RSM. Currently, RSM

techniques are often used to optimize the desired engine
responses and operating conditions. Particle swarm optimiza-
tion is another promising optimization method. It was
invented by Kennedy and Eberhart in 1995, inspired by the

social nature of birds flocking [122]. An ANN model can be
combined with PSO. The fitness of the particle is examined
with ANN, while random particle inside the search space is

generated by the PSO. The birds in PSO are known as swarm,
while a bird in the swarm is called a particle. In their move-
ment, each bird or particle will change its position. The new

position is then updated along with its velocity (Fig. 20). Each
particle has its own best position. Since each particle’s new
position and velocity can be shared among particles in the

swarm, the global best position can be determined. When cou-
pled with ANN, the PSO method can help to achieve the opti-
mum dataset [123]. Other optimization algorithms such as ant
colony, killer whale and artificial beef colony algorithm are

also worth investigating. Another approach to finding the opti-
mum solution is the technique for order preference by similar-
ity to ideal solution (TOPSIS). This approach can be

incorporated with the ANN model, for instance, to find the
optimum engine input parameters to give high thermal effi-
ciency with low emissions.
. reproduced from [121]



Fig. 20 Structure of particle swarm optimization, . reproduced from [113]
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4. Implication of the present study

Having reviewed the papers for artificial neural networks

application in internal combustion engines (gasoline, diesel
and HCCI), the following implications should be taken into
consideration:

� Given the conventional trial-and-error method that is com-
monly performed in this area, a combination of ANN with

optimization methods is strongly recommended.
� The use of ANN in ICE application is case-specific with
restricted pertinency to a varied situation, thus developing
generic ANN models that can be applied to a wide range

condition worth investigating.
� Some published ANN models were built using inadequate
number of datasets. The amount of data for training, vali-

dation and test should be thoroughly established to achieve
significant results.

� Despite being very useful as a prediction tool, the use of

ANN for real-time engine monitoring has not yet been
extensively explored in spite of its huge potential. This is
particularly very beneficial to improve overall engine per-
formance and reduce harmful emissions using real-time

engine setting.

5. Future scope

Compared to the gasoline engine, the diesel engine is more
widely investigated to perform ANN modeling. This may be

attributed to the fact that diesel engine can be operated using
a number of alternative biofuels such as biodiesel, a research
area that has been increasingly popular due to the increasing

oil prices. Also, this review article has shown a growing trend
of ANN application in advanced combustion technology such
as HCCI engine. This is because of the complexity of HCCI

combustion that is difficult to be simulated using conventional
computer software. In addition to the HCCI engine, other
engines such as Stirling [124–127], flex-fuel and dual-fuel
engine [128–130] are also worth examining.
Most studies generally use two or three inputs (engine
speed, load, fuel blend) and overlook other important vari-

ables such as fuel’s physico-chemical properties. Fuel proper-
ties normally represented by density, kinematic viscosity and
calorific values are known to significantly affect the engine’s

characteristics. Also, performance, combustion and emission
behavior are investigated repetitively with output response
such as fuel consumption, thermal efficiency and emissions

being investigated frequently. Other engine responses includ-
ing combustion noise level, cyclic variations, vibration,
knocking and misfire characteristics are often disregarded.

These are parameters that are costly to experiment and diffi-
cult to understand due to their underlying principles and
complex relationship with other parameters. These are the
areas where ANN can play an indispensable role. Also, the

ANN applications for the internal combustion engine are
predominantly developed to solve fitting problems. Other
ANN functions such as pattern recognition, classification,

clustering or dynamic time series need further investigation
for automotive application. Pattern recognition for example.
This ANN feature may be beneficial in classifying the octane

or cetane number of a fuel that is known to significantly
affect the performance, combustion and emissions of an
internal combustion engine.

6. Conclusion

Different architecture is needed for different data. It is impos-
sible to generally apply one network architecture for all appli-

cations. Despite the variety of network type, algorithm and
learning function to choose from, it is important to note that
the success or failure of the algorithm relies heavily on the

parameters defined by the user. Also, ANN should be com-
pared with other soft computing approaches such as support
vector machine (SVM) and adaptive neuro-fuzzy inference sys-

tem (ANFIS). An ANN model aims to minimize error based
on the empirical risk minimization (ERM). This, however,
can result in convergent to local minima owing to the gradient

descent learning algorithm that can lead to overfitting even
with the well-trained ANN. In contrast, unlike ANN which
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follows ERM, SVM aims to minimize the upper bound of the
generalization error based on the principle of structural risk
minimization (SRM) by considering the empirical risk at the

same time, thus facilitating to find the global solution. There-
fore, to objectively present its prediction accuracy, the ANN
model needs to be compared with other artificial intelligence

methods.
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