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ABSTRACT: BN/CC isosterism has been widely investigated 
as a strategy to expand carbon-based compounds. The intro-
duction of BN units in organic molecules always results in novel 
properties. In this work, we reported the first synthesis and 
characterization of 1,6;2,3-bis-BN cyclohexane, an isostere of 
cyclohexane with two adjacent BN pairs. Its ring flipping bar-
rier is similar to that of cyclohexane. Protic hydrogens on N in 
1,6;2,3-bis-BN cyclohexane show higher reactivity than its iso-
meric bis-BN cyclohexane. This compound exhibits an appeal-
ing hydrogen storage capability of >9.0 wt%, nearly twice as 
much as the 1,2;4,5-bis-BN cyclohexane.  

Due to the neighboring positions in the periodic table, bo-
ronnitrogen (BN) bond is isoelectronic with carboncarbon 
(CC) bond. Replacing CC bonds with BN bonds, forming 
BN/CC isostere, has been explored to create molecules featur-
ing different chemical and physical properties.1 Due to differ-
ent electronegativity, there is appreciable bond polarity in BN 
in comparison with CC, which is the fundamental reason for 
the distinct properties in the BN-containing compounds than 
their carbonaceous counterparts.2-4 For example, hexagonal 
boron nitride is insulating while graphite is highly conducting.5, 

6 BN-containing chemicals show promising potential in many 
fields of applications, such as bioactive agents,7-10 hydrogen 
storage,11-18 and functional materials.19-26 Among these, cyclic 
BN-containing compounds have received considerate atten-
tions due to their tunable properties. 27-32  

One exemplary case of BN/CC isosterism can be seen from 
cyclohexane and its BN derivates. In 1,2-BN cyclohexane (Fig-
ure 1, A) one CC bond is replaced by BN.33 Compared with 
cyclohexane, 1,2-BN cyclohexane features reduced activation 
barrier for ring inversion. Dehydrogenation of 1,2-BN cyclo-
hexane under thermal activation leads to trimerization. In an-
other BN isostere of cyclohexane, 1,2;4,5-bis-BN cyclohexane 
(Figure 1, B),34 two BN bonds are separated by individual car-
bon atoms. This compound releases hydrogen at room temper-
ature with a ruthenium complex as the catalyst. B can be an ef-

fective precursor to form a graphene-like boron-carbon-nitro-
gen monolayer with homogeneous stoichiometry, which can be 
a useful material for electronic applications.35 Despite their sig-
nificance in fundamental chemistry and materials science, the 
reported BN/CC isosteres are still limited, which is likely due 
to the difficulties in synthesis.36, 37 The co-existence of hydridic 
and protic hydrogens make cyclic BN compounds highly reac-
tive, so their purification and isolation can be challenging. 

 

 

Figure 1. Cyclohexane and its BN isosteres.  

There exist many combinations in numbers and positions of 
BN bonds relative to CC or BN in the substituted carbona-
ceous compounds. For example, in BN isosteres of cyclohexane 
with two BN units, there can be different arrangements of BN 
bonds such as BNNB, NBBN, BNBN, B-N-C-N-B and 
BNCBN. Inspired by the high hydrogen capacity and the 
curiosity into potential exotic properties, we decided to synthe-
size BN isosteres of cyclohexane with BNNB (1,6;2,3-bis-
BN cyclohexane, C). Heteroatomic connectivity will affect the 
stability and reactivity of BN-containing compounds. Accord-
ing to our computational results, the free energy of C is much 
higher than that of bis-BN cyclohexane, with a difference of 
~43.0 kcal/mol at G3B3 (Table S1). This high free energy indi-
cates potential high reactivity of C, which makes synthesis chal-
lenging. Meanwhile, we expect C to release hydrogen under 
milder conditions, in comparison to B, which releases hydro-
gen merely above 200 oC in the absence of catalysts.34 In this 



 

work, we report the first synthesis of 1,6;2,3-bis-BN cyclohex-
ane (Figure 1, C), the first BN/CC isostere of cyclohexane with 
two adjacent BN fragments. C thermally releases hydrogen 
starting from ~100 oC, or catalytically in acetonitrile at room 
temperature.  

Scheme 1. Synthesis of 1,6;2,3-bis-BN cyclohexane  

 

As illustrated in Scheme 1, starting from compound 1, 2-
(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, C 
was synthesized in three steps. Following the method reported 
by Srebnik and co-workers,38 1 was first converted to 2 with a 
yield of 74%. A reduction reaction then led to the formation of 
3, which subsequently reacted with hydrazine dihydrochloride 
to give the desired product. C was isolated via chromatography 
and crystallization with an overall yield of 42%. The structure 
of C was confirmed by nuclear magnetic resonance (NMR) 
spectroscopy (Figure S1-S4), elemental analysis and single-
crystal X-ray diffraction analysis (Table S2-S7). To the best of 
our knowledge, C is the first BN isostere of cyclohexane with 
two adjacent BN units, whose structure is shown in Figure 2. 

 

Figure 2. Crystal structure of 1,6;2,3-bis-BN cyclohexane. 
Thermal ellipsoids are drawn at the 50% probability level. 

C adopts a chair conformation in the solid state similar to cy-
clohexane, A,33 and B.34 All hydrogen atoms can be found on the 
residue density map. The BC, CC, BN, NN bond lengths all 
lie in the expected ranges for the corresponding single bonds. 
The BN bonds of C (av. 1.63 Å) are slightly longer than those 
of A (1.6140(12) Å) and B (1.5959(11) Å). The CB bonds of C 
(av. 1.60 Å) are consistent with that of A (1.6088(12) Å) and B 
(av. 1.61 Å). The NN bond of 1.456(5) Å in C is slightly shorter 
than that of the acyclic hydrazine-borane adduct 
H3BNH2NH2BH3 (1.470 Å)39. (See Table S8 for comparison). 

We studied if the BNNB linkage in C affects the confor-
mational dynamics in comparison with other isosteres. Varia-
ble temperature NMR experiments were therefore conducted 
(Figure 3). At 273 K, 1H NMR spectrum showed a sharp signal 
at 6.87 ppm for the NH2 unit. The rate of ring flip slowed down 
as the temperature was lowered. At 213 K, the diastereotopic 
NH protons become non-exchangeable on the NMR time scale, 
thus leading to two distinguishable 1H signals. The coalescence 
happened at ~230 K. The free energy for activation (∆𝐺(C)‡) of 
C from chair to twisted boat interconversion is estimated40 to 
be 10.1 kcal/mol (Table S9), which is comparable to that of cy-
clohexane (10.5 kcal/mol), but higher than that of 1,2-BN cy-
clohexane (8.8 kcal/mol).33 The difference in the ring flipping 
energy barrier is likely related to the bond lengths of the ring 
skeleton.33, 41, 42 For instance, longer BN bond of 1,2-BN cyclo-
hexane (1.6140(12) Å) than CC bonds in cyclohexane (1.51 to 
1.53 Å) (Table S8) should reduce the ring strain and steric hin-
drance, resulting in a lower flipping energy barrier.33, 41, 42 In 
our case, C possesses two longer (BN 1.626(6) Å and 1.631(6) 
Å) but one shorter (NN bond 1.456(5) Å) bonds with respect 
to the cyclohexane skeleton, which combined leads to a flipping 
energy barrier comparable to that of cyclohexane. 

 

Figure 3. 400 MHz 1H NMR signal of the NH2 group of C in THF-
d8 at different temperatures. 

The physical and chemical properties of C are quite different 
from its isosteres, including cyclohexane, A, and B. For in-
stance, C is a white solid at room temperature, whose rapid de-
composition with heating stopped us from getting its melting 
point.  C slowly reacts with moisture in air with >95 % conver-
sion within 43 h (Figure S5S7). In stark contrast, cyclohexane 
and 1,2-BN cyclohexane are inert to moisture, and their melting 
points are 6.47 oC and 6263 oC, respectively.33 Meanwhile, B 
sublimes at temperatures between 150 oC and 200 oC, and has 
good stability to moisture.34 In addition, C decomposes slowly 
in the anhydrous aprotic solvent at room temperature, with a 
complete decomposition taking around 22 days in THF and 29 
days in acetonitrile, respectively (Figure S8S13). In contrast, 
A and B are stable in aprotic solvents and inert to water. 

The co-existence of hydridic H(–B) and protic H(–N) typi-
cally enables facile hydrogen formation under mild condi-
tions.33, 34, 43-46 As an organic derivative of ammonia borane, 
compound C catches our attention due to its high hydrogen ca-
pacity. If all the eight nitrogen- and boron-bound hydrogens of 
C are available for H2 release, 1 eq. compound C can release 4 
eq. H2, meaning a hydrogen storage capability of 9.4 wt%. We 
investigated its hydrogen release under two different condi-
tions. First, we studied its catalytic dehydrogenation in sol-
vents at room temperature. After numerous attempts, the hy-
drogen release was only around 1.47 eq. from 1 eq. compound 



 

C when Pt/C was used (Table S10 and Figure S14), far less than 
4 eq. Then we resorted to thermal dehydrogenation. 

Thermogravimetric analysis (TGA) and differential scanning 
calorimetry (DSC) were carried out to investigate the dehydro-
genation progress by heating to 600 oC. As shown in Figure 4a, 
the first weight loss was exothermic which started at about 100 
oC and ended at about 180 oC. When dwelled at 180 oC, ~9.55 
wt% weight loss was observed (Figure 4b). Temperature pro-
grammed desorption-mass spectra (TPD-MS) results (Figure 
S15 and S16) indicated that gases released before 180 oC were 
predominantly H2 with trace amounts of diethyl ether and pen-
tane (residual from the preparation), nitrogen and ammonia. 
This is why the actual weight loss was higher than the theoret-
ical hydrogen capacity of 9.4 wt%. For temperatures higher 
than 180 oC, traces amount of diborane, methane, ethane and 
nitrogen were observed, indicating the slight decomposition of 
the six-membered rings. 

Figure 4. TGA/DSC results with (a) heating to 600 oC and (b) 
heating to 180 oC with a 2 h dwell. 

We also investigated the dehydrogenation products ob-
tained after heating at 140 oC and 180 oC for 2 hours via FTIR. 
There are typical NH stretching (3245 - 3113 cm-1), NH bending 
(1582 cm-1), BH stretching (2326 to 2219cm-1), BH torsion 
(1166 and 1126 cm-1), CH stretching (2909 - 2791 cm-1), and 
BN stretching (1368, 764 and 700 cm-1) in the IR spectra (Fig-
ure S17) of C.47 Intensities of N–H and B–H bands decreased 
with heating while B–N band became stronger. Based upon 
solid state 11B NMR spectra (Figure S18), C first transformed 
into intermediates consisting of both sp2 and sp3 B, and finally 
mainly sp2 B with a broad signal typically observed for hydro-
gen-free BN units.18  Solid state 1H NMR (Figure S19) and 13C 
NMR spectrum (Figure S20) of final dehydrogenated products 
show signals related to CH2 which is consistent with FTIR re-
sults. This phenomenon indicates that H2 formation is likely 
driven by (N–)HH(–B) dihydrogen bond interactions with the 
subsequent formation of B–N bond, which is consistent with 
previous studies.16 We were unable to isolate crystals of inter-
mediates from the dehydrogenation mixture.  

 

Figure 5. Electrostatic potential calculated at M062X/6-
31+G(d) mapped on the electron density isosurface [-0.08 

0.15]: Blue refers to the positive regions; red refers to the neg-
ative regions. The unit for electrostatic potential is a.u. 

B only releases a limited amount of hydrogen via thermal ac-
tivation, and the hydrogen capacity of C is nearly double of B, 
which releases 4.7 wt% H via catalysis in solvent (Table S11). 
To understand the underlying reason for the difference, we 
conducted computational studies on these cyclohexane-like 
structures. The electrostatic potential calculated at M062X/6-
31+G(d) (Figure 5) shows that the regions around NH frag-
ments in C bear more positive electrostatic potential, while the 
negative potential regions of BH fragments are similar among 
these BN cyclohexane isomers. Hs on N in C are more positively 
charged compared those in B, as indicated by the Merz-Singh-
Kollman charge analysis (Figure S21). As a result, stronger di-
hydrogen bond interactions are expected in C which leads to 
dehydrogenation at lower temperatures for C in comparison 
with B. This is also consistent with the calculated proton affin-
ities and hydride affinities (Table S12).  

The final dehydrogenation product is polymeric and has 
poor solubility in solvents, and therefore we have not been able 
to decipher its exact structure (Figure S22-24). Based on FTIR, 
NMR and TGA results, we believe the dehydrogenation product 
is a polymeric product with an empirical formula of C2N2B2 
Hn(n < 4.3). In the compound, nearly all the hydrogens are 
linked to carbon atoms. Currently, the most widely applied re-
generation from BN based polymeric product involves a diges-
tion reaction to form -NHx followed by a reduction reaction to 
form -BHx. The current regeneration involves three steps, in-
cluding alcoholysis, reduction using LiAlH4 and cyclization us-
ing hydrazine salt (Figure S25 and S26). The overall yield is 
about 52%. However, this method is expensive and not practi-
cal for large scale applications. Inspired by other work related 
to regeneration,48, 49 more research is needed to develop a cost-
effective and sustainable regeneration method. Compared with 
ammonia borane, C releases considerable amount of H2 with-
out induction and does not foam during thermal decomposi-
tion. C can be regenerated under relative mild conditions with 
good efficiency.  

In summary, we prepared a novel BN isoelectronic isomer of 
cyclohexane, namely 1,6;2,3-bis-BN cyclohexane, and investi-
gated its properties. It adopts the same chair conformation in 
the solid state as cyclohexane. Replacing four CH2 fragments 
with BH2NH2NH2BH2 does not obviously affect the en-
ergy barrier for the ring flip of this six-member ring structure. 
C shows excellent capability for hydrogen release. Under ther-
mal activation, it released > 9.0 wt% H, which is about twice of 
other isoelectronic BN cyclohexane. This work demonstrates 
the potential of BN/CC isosterism in creating novel molecules 
with unique properties.  
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