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Many studies have demonstrated the fragility of calcareous sands even under small stresses. .is bears an adverse influence on
their engineering properties. A series of laboratory tests were carried out on poor-graded calcareous sands to investigate the
crushability mechanism. Einav’s relative breakage and fractal dimension were used as the particle breakage indices. .e results
show that the particles broke into smaller fragments at the low-stress level by attrition which was caused by friction and slip
between particles. In contrast, particles broke in the form of crushing at the relatively higher stresses. .e evolution of the particle
size was reflected by the variation in Einav’s relative breakage and fractal dimension. As testing commenced, the breakage index
rapidly increased. When the stress was increased to 400 kPa, the rate of increase in the breakage index was retarded. As the stress
was further increased beyond 800 kPa, the rate of increase in the fractal index became much smaller. .is elucidated that the well-
graded calcareous sands could resist crushing depending on the range of applied stresses. Based on the test findings, a new
breakage law is proposed.

1. Introduction

Calcareous sands are rich in calcium carbonate or other
insoluble carbonate products. .ese sands are mainly dis-
tributed in the continental shelf, the coastline of the tropical/
subtropical climate between latitude 30° north and 30° south,
the Southern China Sea, and the Red Sea. Calcareous sands
differ from those sourced from land in terms of the particle
shapes, internal porous structure, and the mechanical
properties [1, 2]. Owing to such variations, the particles are
easy to crumble even under the small stresses [3–6]. In the
field, the engineering structures constructed on the calcar-
eous sand are prone to undergo large differential settlement.
.erefore, it is of paramount importance to study the
breakage mechanism of the calcareous sand particles.

Particle breakage can significantly affect the strength
[7–11], permeability, and deformation [12–15] of coarse-

grained soils and can increase the uncertainty on the efficacy
of engineering applications. Many studies dealing with
particle breakage assessment have been proposed in the past
[16, 17]. Yu [18] explained the effect of particle fragmen-
tation in calcareous sand by its effect on consolidation and
shear properties, friction, and shear-induced volumetric
expansion of coral sand. Wang et al. [19] found that ir-
regularity in particle shape is a prerequisite for the gener-
ation of particle breakage in calcareous soils. Although the
relative crushing rate defined by Hardin [20] is widely used
[21–26], the concept of relative breakage is yet to be fully
explored. Einav [27] assumed that soil particles would
undergo complete fragmentation in the shear process and
defined the relative breakage in terms of the relative distance
of the current grain size distribution from the initial and
ultimate distributions. He modified Hardin’s crushing index
to put forward the relative fragmentation rate suitable for
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granular soil particles. Some scholars determined the par-
ticle size distribution before and after the particle breakage
of soil based on the fractal theory [26–28]. Hence, it is
feasible to quantitatively describe the particle breakage based
on the relative breaking rate and the fractal dimension.

Internationally, scholars have adopted a wide range of
methodologies/tools to study the crushing mechanism of
calcified sand particles, including cyclic triaxial shearing
[29], under drained and undrained triaxial compression
[30], dynamic image analysis [31], and uniaxial compression
[32], among others. In this paper, the uniaxial compression
tests were carried out on the poor-graded calcareous sands
collected from the Southern China Sea. .e particles before
and after the testing were screened to obtain the change in
particle size distributions. .e influence of the consolidation
stress on the crushing of the calcareous sands particles was
analyzed. .e micromorphology of calcareous sands with a
single particle size was studied by scanning electron mi-
croscope (SEM) tests, and the mode of particle breakage was
described. By using the fractal dimension and Einav’s
breakage rate, the grain breakage under the confined
compression testing was quantified. .e breakage charac-
teristics of the calcareous sand under different vertical
stresses were assessed. .e present study has the potential to
serve as a useful design guide for the structures founded on
calcareous sands.

2. Test Materials and Method

.e calcareous sand used in this study was collected from the
reef in Nansha Island, China. .e calcareous sand consisted
of coral broken branches and biological debris which had the
calcium carbonate content as high as 90%. Figure 1 shows
the images of characteristic particles of calcareous sands.
Before the test, the calcareous sand was washed and air-
dried..e particles larger than 4mm in size were removed to
minimize the effects of boundary conditions on test results.
.e particle size distribution curve of calcareous sand is
shown in Figure 2, which represents poor gradation. .e
relative density of the sand sample was obtained by the
pycnometer test. .e physical characteristics are summa-
rized in Table 1.

.e compression test was carried out by using con-
solidation apparatus as shown in Figure 3. .e samples
were prepared in-ring knife samples of 61.8mm × 20mm.
.e rate of deformation was controlled as 0.01mm per hour
as per the industry standard (GB/T50123, 1999). .e cal-
careous sand was subjected to compression tests at seven
different levels of vertical stress (50, 100, 200, 400, 800,
1600, and 3200 kPa). .e sample was sieved after the
completion of compression that lasted for 36 h. .e
screening of calcareous sand particles below 0.25mm in
size was ignored.

Scanning electron microscope (SEM) tests were con-
ducted to observe the microscopic images of the original
calcareous sand with different particle sizes (4, 3, 2, 1, 0.5,
and 0.25mm). In this experiment, the sputtering speed is
10mm/min and the sputtering time is 60 s. SEM diagrams of
samples are shown in Figures 4 and 5.

3. Test Results

.e particle size distribution of the calcareous sand samples
before and after tests was obtained. Figure 6 represents the
comparison between the particle size distribution under
different stress levels.

It was found that the percentage of coarser particles
decreased (while increasing the amount of finer fraction) as
the stress increased. .is indicated the increased amount of
breakage in coarser particles as the stress level increased.
Under each incremental stress level, the fraction of particles
smaller than 1mm increased mainly attributing to the
breakage of bigger particles. For the stress below 400 kPa, the
percentage mass of medium-sized particles (size 1–2mm)
appeared to vary, while as the stress exceeded 800 kPa, the
amount of medium-size particles increased. .e large par-
ticles were crushed after being compressed and split into
several medium- to smaller-sized particles. .e large-sized
particles undergo more breakage compared with smaller
particles. .is is due to their primary role in stress transfer
and development of large contact stresses resulting from the
relatively smaller number of interparticulate contact areas
available for the force-transfer. Under the low-stress levels
below 400 kPa, the finer grains occupy the empty void spaces
around coarser particles during particle reorientation and
rearrangement thereby inducing grain breakage. Besides, the
presence of a large number of asperities evident in coarse
angular particles makes them prone to breakage due to
intensive stress concentrations developed around the as-
perities..e dependence of particle shape on the particle size
has been discussed earlier [33, 34]. According to the data
plotted in Figure 6, the coarser particles above 2mm were
crushed even at the low-stress level of 50 kPa. With the
increase in stress, the larger amount of finer fraction implied
the substantial particle crushing. .is is consistent with the
results of existing studies [35].

Figures 4 and 5 are the SEM diagrams of calcareous sand
particles with single particle size. It was found that the
surfaces of calcareous sands were irregular and the internal
structure was porous. .is was evident from the compres-
sion test data in which the increased stresses led to a larger
finer fraction..e particle breakage at low-stress level was in
the form of attrition or crushing caused by friction and slip
between particles (refer to the location indicated in Fig-
ure 4), as well as the particle splitting as a result of specimen
compression occurred at the high-stress level.

4. Particle Breakage Index

In order to evaluate the degree of particle breakage of cal-
careous sands after compression, two parameters, viz.,
particle fractal dimension and Einav’s relative breakage rate,
were selected. .e particle fractal dimension increased with
the increased fine fraction. For the calcareous sand subjected
to elevated stress, the particles with large size reduced due to
evolution of breakage. .us, the change in the fractal di-
mension of a particle could indicate the measure of its
breakage. .e calcareous sands used in this paper are
granular material, and the relative breakage rate proposed by
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Einav [27] is suitable for describing the breaking degree of
calcareous sands.

4.1. Fractal Dimension. A large number of studies have
shown that geotechnical media represents obvious fractal
features [36–43]. .e use of the weight distribution of the
particle sizes is therefore appropriate. Based on the Sier-
pinski carpet (Sierpinski carpet) and the Menger sponge
(Menger sponge) fractal model, Tyler and Wheatcraft [44]
proposed the relationship between the soil smaller than
certain particle size and the fractal dimension of particles:

M(r<R)

MT

�
R

Rmax
􏼠 􏼡

3− D

, (1)

where R is the particle size, Rmax is the maximum particle
size,M is the mass of the particle size range of 0∼R, andMT is
the total mass of soil.

By taking the logarithm of both sides of Equation (1), the
fractal model could be rewritten as

ln
M(r<R)

MT

􏼢 􏼣 � (3 − D)ln
R

Rmax
􏼠 􏼡. (2)

By plotting ln(M(r<R)/MT) against ln(R/Rmax),
(3−D) can be evaluated from the gradient k of the graph and
then the fractal dimension can be determined as D� 3− k.
.e fitting results are shown in Table 2.

To obtain the relationship between the particle fractal
dimension of the sample under different stresses, it is
assumed that the particle fractal dimension before
crushing is Db, the particle fractal dimension after
crushing is Da, and the stress is P. .e linear regression
analysis is then performed on Da/Db and P/Pa where Pa is
the atmospheric pressure, as shown in Figure 7. It is
shown that a significant linear relationship exists between
Da/Db and P/Pa (R2 � 0.98). .e ratio Da/Db can be
expressed as follows:

Da

Db

� 1.002
P

Pa

􏼠 􏼡

0.0004

. (3)
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Figure 1: Characteristic particle photographs of calcareous sand.

0.01 0.1 1 10
0

20

40

60

80

100

Pe
rc

en
t p

as
sin

g 
(%

)

Grain size (mm)

Figure 2: Grain size distribution curve of calcareous sand.

Table 1: Physical parameters of calcareous sand.

Location Gs d10
(mm)

d30
(mm)

d60
(mm) Cu Cc

Nansha
Island 2.77 0.29 0.74 2.92 10.20 0.65

Figure 3: Consolidation test apparatus.
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4.2. Einav’s Relative Breakage. .e definition of Einav’s rel-
ative breakage [27] is shown in Figure 8. Based on the relative
breakage proposed by Hardin, Einav defined the area of initial
distribution F0 (d) to ultimate distribution Fu (d) asBp..e area
of initial distribution F0 (d) to current distribution F (d) is
expressed as Bt. Einav’s relative breakage can be determined by

Br �
Bt

Bp

�
􏽒

dM

dm
F(d) − F0(d)( 􏼁d

− 1
d d

􏽒
dM

dm
Fu(d) − F0(d)( 􏼁d

−1
d d

�
SABCA

SABDA
, (4)

where dM is the maximum particle size and dm is the
minimum particle size.

(a) (b)

Figure 4: SEM image in a single grain size calcareous sand particle at an amplification factor of 1000: (a) 0.5–0.25mm and (b) 0.25–0mm.

(a) (b)

(c) (d)

Figure 5: SEM images in a single grain size calcareous sand particle at an amplification factor of 300: (a) 1–0.5mm, (b) 2–1mm, (c) 3–2mm,
and (d) 4–3mm.
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Combined with Equation (4), Einav’s relative breakages
under different stress were calculated. Table 3 shows the
values of Einav’s relative breakage corresponding to each
stress level.

Figure 9 shows the relationships between the fractal
dimension, Einav’s relative breakage, and the vertical stress,
respectively. It was seen that the breakage indices, fractal
dimension, and Einav’s relative breakage showed a rapid

increase at an initial stage of compression (the slope of this
section is k1). As the stress continued to increase to 400 kPa,
the rate of increase in breakage reduced (the slope of this
section is k2). When the stress exceeded 800 kPa, the in-
creasing rate of breakage declined gradually (the slope of this
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Figure 6: Comparison between the particle size distribution under different stress levels.

Table 2: Fractal dimension D of calcareous sand samples at each stress level.

Stress P (kPa) Fitting equation Correlation coefficient R2 Fractal dimension D
0 ln(M(r<R)/MT) � (3–2.1098) ln(R/Rmax) 0.9663 2.1098
50 ln(M(r<R)/MT) � (3–2.1133) ln(R/Rmax) 0.9658 2.1133
100 ln(M(r<R)/MT) � (3–2.1139) ln(R/Rmax) 0.9662 2.1139
200 ln(M(r<R)/MT) � (3–2.1143) ln(R/Rmax) 0.9639 2.1143
400 ln(M(r<R)/MT) � (3–2.1150) ln(R/Rmax) 0.9641 2.1150
800 ln(M(r<R)/MT) � (3–2.1153) ln(R/Rmax) 0.9652 2.1153
1600 ln(M(r<R)/MT) � (3–2.1165) ln(R/Rmax) 0.9647 2.1165
3200 ln(M(r<R)/MT) � (3–2.1170) ln(R/Rmax) 0.9657 2.1170
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Figure 7: Linear fitting curves for (D)a/(D)b and (P)/(P)a.
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Figure 8: .e diagram of Einav’s relative breakage.
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section is k3). It was evident that the slope of each following
stage became steeper (i.e., k1>k2>k3), which indicated that
the increase in breakage was the most obvious during the
initial stage of loading. However, the change in breakage
index under subsequent incremental stress level was small.
Under the small incremental stress, only a small portion of
coarser particles underwent crushing (caused by friction and
slip between particles), while the amount of finer particles
remained relatively unchanged. It also indicated that within
a certain stress range, the well-graded calcareous sand could
resist crushing. But if the stress continued to increase, a large
number of particles underwent breakage. However, as evi-
dent from Figure 9, the stress had a great influence on the
initial state of samples (sudden change in value of breakage
index), which also showed that calcareous sand at each stress
level is accompanied by particle breakage, even at the low-
stress level of 50 kPa. .is could be verified by the variation
in amount of large particles before and after compression
testing of calcareous sand as evident from Figure 6.

According to the breakage data listed in Tables 2 and 3,
the relationship between Einav’s relative breakage and
fractal dimension is plotted in Figure 10. It could be seen that
all test points fell in a much narrower band, indicating a
unique relationship between Einav’s relative breakage and
the fractal dimension exist although the stress states of
different test points are different. .is relationship could be
expressed using the following power function:

Da � a × Br
b
, (5)

where a and b are constant. For the calcareous sand, a is
2.119 and b is 7.901× 10−4. It is evident that D and Br have
some intrinsic relation; therefore, it is reasonable to take
fractal dimension D as a quantitative index of particle
breakage [45].

.e relation between fractal dimension before crushing
and Einav’s relative breakage can be captured by substituting
Equation (3) into (5):

Db 1.002
P

Pa

􏼠 􏼡

0.0004
⎡⎣ ⎤⎦ � a × Br

b
. (6)

Einav’s relative breakage of calcareous sand under dif-
ferent stresses can be estimated by Equation (6) when the
fractal dimension before crushing and fitting parameters a
and b is known. Because the fragility of calcareous sand
particles posed challenges in the construction of airport
runway and other projects on Southern China Sea islands
and reefs, the present study is beneficial to the construction
of islands and reefs in the Southern China Sea and the value
of local materials.
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Figure 9: Relationship between breaking indexes and vertical stress (P): (a) fractal dimension (D); (b) Einav’s relative breakage.

R2 = 0.9592

0.05 0.10 0.15 0.20 0.25 0.30 0.350.00
Einav’s relative breakage

2.113

2.114

2.115

2.116

2.117

2.118

Fr
ac

ta
l d

im
en

sio
n 

Figure 10: Relationship between Einav’s relative breakage and
fractal dimension.

Table 3: Einav’s relative breakage of calcareous sand samples at each stress level.

Stress (kPa) 50 100 200 400 800 1600 3200
Br (%) 0.03 0.06 0.07 0.1 0.13 0.18 0.34
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5. Conclusions

Particle breakage of calcareous sands occurs under small
stresses commonly encountered in the field. A series of
laboratory tests were performed to determine the breakage
law of calcareous sands under such small stresses..e fractal
fitting of the laboratory test data and the determination of
Einav’s relative breakage were carried out..emain findings
of the study are summarized as follows:

(1) At the low-stress level, two modes of particle
breakage, viz, attrition and crushing (caused by the
friction and slippage between the particles) of par-
ticles occurred. In contrast, splitting in larger par-
ticles occurred at a relatively higher stress level.

(2) .e stress had a great influence on the initial state of
calcareous sand (increased breakage at initial loading
stage), which showed that calcareous sand at each
stress level is accompanied by particle breakage, even
at the low-stress level of 50 kPa.

(3) .e variation in the breakage indices, Einav’s relative
breakage, and fractal dimension both implied the
increase in finer fraction. At the outset of testing,
substantial particle breakage was evident which then
continued to occur as the stress increased to 400 kPa.
.e amount of particle breakage was then gradually
reduced as the stress increased beyond 800 kPa. .e
rate of increase became smaller, which showed that
the well-graded calcareous sand could resist
breakage.
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