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Abstract 24 

Air pollution remains one of the major health threats around the world. Compared to 25 

adults, foetuses and infants are more vulnerable to the effects of environmental toxins. 26 

Maternal exposure to air pollution causes several adverse birth outcomes and may lead 27 

to life-long health consequences. Given that a healthy intrauterine environment is a 28 

critical factor for supporting normal foetal brain development, there is a need to 29 

understand how prenatal exposure to air pollution affects brain health and results in 30 

neurological dysfunction. This review summarised the current knowledge on the 31 

adverse effects of prenatal air pollution exposure on early life neurodevelopment and 32 

subsequent impairment of cognition and behaviour in childhood, as well as the potential 33 

of early-onset neurodegeneration. While inflammation, oxidative stress, and 34 

endoplasmic reticulum are closely involved in the physiological response, sex 35 

differences also occur. In general, males are more susceptible than females to the 36 

adverse effect of in-utero air pollution exposure. Considering the evidence provided in 37 

this review and the rising concerns of global air pollution, any efforts to reduce pollutant 38 

emission or exposure will be protective for the next generation.  39 
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1. Introduction  46 

Air pollution refers to chemicals or particles in the air coming from anthropogenic or 47 

natural sources that are hazardous to the health of living creatures (Landrigan et al., 48 

2018). Increasing emissions from the fast-growing modern industry, urbanisation, and 49 

road traffic, in addition to the traditional biomass fuel, have been affecting the air 50 

quality in both developed and developing countries (Bell and Davis, 2001). According 51 

to the World Health Organization (WHO), more than 90 percent of the global 52 

population breathes air that does not meet WHO standards, and seven million people 53 

die each year as a result of the negative health effects of polluted air (Fowler et al., 54 

2020).   55 

Increasing evidence has shown that air pollutants can cause systemic oxidative stress 56 

resulting in inflammatory and hemodynamic responses, causing multiple organ 57 

dysfunctions, including the brain (Araujo, 2010; Brook, 2005). It has been found that 58 

air pollution is associated with several neurological disorders, especially in children 59 

and the aging population (Cacciottolo et al., 2017; Chen and Schwartz, 2009; 60 

Lopuszanska and Samardakiewicz, 2020; Oliveira et al., 2019; Tallon et al., 2017). 61 

Such adverse impacts are not restricted to those who directly breathe in the pollutants, 62 

but also affect the growing foetuses whose mothers are exposed to polluted air. In-utero 63 

exposure to air pollutants can cause myriad adverse birth outcomes and increase the 64 

susceptibility to the development of certain diseases later in life (Gluckman et al., 2008). 65 

However, studies on early-life brain development and cognitive defects due to prenatal 66 

exposure to air pollutants are still limited. 67 

This review summarised the current discoveries on how in-utero exposure to air 68 

pollutants influences early-life neural development and cognitive functions, and how 69 

sex affects the responses. We also discussed the potential mechanisms involved in this 70 

process.  71 

2. The sources of air pollution and the major health impacts 72 

Air pollution, particularly outdoor air pollution, has gained more and more attention in 73 

the past decades, which poses significant public health risks. The global increase in 74 

morbidity and mortality due to polluted air has brought substantial social and economic 75 
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costs (Costa, 2018; Lelieveld et al., 2015; Lelieveld et al., 2019). Pollutants emitted 76 

primarily by traffic and industrial fuel combustion contain a complex mixture of various 77 

substances, depending on the source and area, including several noxious gases (nitrogen 78 

oxides (NOx), sulphur dioxide (SO2), carbon oxides (COx), ozone (O3), liquids, and 79 

particulate matters (PMs) (Costa et al., 2019). Because of the increased consumption of 80 

fossil fuels in both developed and developing countries, air pollution has become a 81 

major concern in both industrial areas and major cities, as global industrialisation and 82 

urbanisation have increased. (Bell and Davis, 2001; Mannucci and Franchini, 2017).  83 

Tiny airborne particles in the polluted air, particularly solid PMs, can reach the lung 84 

alveoli where gas exchange occurs. Based on where they can reach in the respiratory 85 

tract, PM is classified according to the size, such as PM10 (particles less than 10 86 

micrometres in diameter, thoracic particles) which deposits in the nose and throat, PM2.5 87 

(particles less than 2.5 micrometres in diameter, fine particles) which can enter the 88 

bronchial regions, and PM1 (particles less than 1 micrometres in diameter, ultrafine 89 

particles) which goes even deeper into the alveoli (Brown et al., 2013; Franck et al., 90 

2011; Xing et al., 2016). The fine and ultrafine particles are associated with the most 91 

significant burden on human health. 92 

Following the exposure to heavily polluted air, respiratory responses, such as coughing 93 

and dyspnoea, are common, which became the primary focus of the early studies. 94 

However, fine and ultrafine particles can enter the bloodstream in the alveoli and exert 95 

direct adverse effects on the cardiovascular system, making air pollution one of the top 96 

risk factors for cardiovascular and cerebrovascular diseases (Lee et al., 2014). In 97 

addition, a growing body of studies has also linked air pollution to other adverse 98 

impacts, such as cancers and metabolic disorders (Clementi et al., 2019; Eze et al., 2015; 99 

Turner et al., 2020). Furthermore, increasing evidence from human and animal studies 100 

shows that air pollutants indirectly affect the central nervous system (CNS) by two 101 

means; 1) local inflammatory response in the lung tissues, which release pro-102 

inflammatory cytokines to induce systemic inflammation to affect the brain (Block and 103 

Calderon-Garciduenas, 2009); 2) small size particles crossing the blood-air barrier in 104 

the alveoli and later blood-brain barrier via circulation to access glial cells and neurons 105 

in the brain. In humans, it has also been suggested that the inhaled pollutants can 106 

directly enter the brain through nasal olfactory bulbs before reaching the deep lung 107 
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sections due to their small sizes and migrate to remote brain regions (Balasubramanian 108 

et al., 2013; Cheng et al., 2016; Garcia et al., 2015; Hopkins et al., 2014; Lucchini et 109 

al., 2012). There, pollutants cause the inflammatory responses in resident inflammatory 110 

cells, such as perivascular macrophages microglia, releasing pro-inflammatory 111 

cytokines to affect nearly neurons (Kraft and Harry, 2011; Mumaw et al., 2016; Xu et 112 

al., 2013). The indirect and direct effects of pollutants on the brain can induce 113 

inflammatory responses and impair brain function (Babadjouni et al., 2017; Costa et al., 114 

2020). 115 

3. Foetal exposure to air pollution  116 

Air pollution is particularly detrimental during pregnancy by harming the foetus 117 

resulting in poor birth outcomes, increasing the risk of lower respiratory tract infections, 118 

and in extreme cases, infant mortality (Goshen et al., 2020; Padula et al., 2020; Yang 119 

et al., 2020). Evidence has shown an increased risk of preterm birth associated with 120 

increased concentrations of air pollutants. However, two studies have shown that even 121 

exposure to low-level air pollution in the week before delivery can cause preterm birth 122 

(Ghosh et al., 2021; Siddika et al., 2020). In addition, two recent publications have also 123 

indicated that there is no safe level of PM exposure to human health (Danesh Yazdi et 124 

al., 2021; Khomenko et al., 2021). Therefore, any level of PM2.5 pollution can be 125 

harmful to pregnant women and their unborn children. 126 

The effects of exposure to air pollution at different stages of fetal development can vary, 127 

although, in humans, such exposure often occurs throughout the whole pregnancy as 128 

pregnant women unlikely to move houses during this period. According to human 129 

cohort studies, exposure to polluted air in the first trimester can interrupt placental 130 

formation leading to foetal underdevelopment, and increase the risks of pre-eclampsia 131 

and preterm birth (Michikawa et al., 2017). PM exposure during this stage may also 132 

affect later cognitive functions, since it is a critical window for neurogenesis, which 133 

needs to be examined in future studies. Exposure to polluted air in the second trimester 134 

may increase the risk of asthma, while exposure in the third trimester is associated with 135 

small for gestational age babies (Percy et al., 2019), allergic rhinitis (Deng et al., 2016; 136 

Lavigne et al., 2018). An animal study suggested PM exposure during the human 137 

equivalent of the third trimester impaired learning and short-term memory functions, 138 
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with males more affected than the females (Allen et al., 2014). In other studies, male 139 

rodents also showed increased depression-like, aggression, and deficits in social 140 

communication in response to continuous in-utero PM exposure, akin to observations 141 

in humans (Davis et al., 2013; Sobolewski et al., 2018; Yokota et al., 2016). Therefore, 142 

exposure to polluted air in all three trimesters is associated with adverse birth outcomes. 143 

How in-utero air pollution exposure influences foetal development is not fully 144 

understood, with two routes proposed, the direct and indirect impacts.  145 

Recent studies have suggested that ambient fine PMs can cross the human placental 146 

barrier from the maternal circulation (Bongaerts et al., 2020; Bove et al., 2019). PMs 147 

presented in the foetal side of the placenta suggest their potential to circulate in foetal 148 

blood and directly affect all foetal organ systems (Bongaerts et al., 2020; Bove et al., 149 

2019). On the other hand, inhaled air pollutants depositing in the mother’s lung can 150 

induce oxidative stress and inflammatory response in the placenta to affect its functions 151 

(Kannan et al., 2006; Seltenrich, 2016; van den Hooven et al., 2012). As such, oxygen 152 

and nutrient transport to the foetus can be impaired to cause foetal underdevelopment 153 

and low birth weight (Cao et al., 2019; Rich et al., 2015; Zhao et al., 2021). The 154 

inflammatory cytokines in the maternal circulation may also be transported to the foetal 155 

blood to cause foetal systemic inflammatory responses, delaying foetal development 156 

(Kannan et al., 2006; Seltenrich, 2016; van den Hooven et al., 2012). 157 

4. In-utero exposure to air pollution and brain health  158 

The foetal period, as the very beginning of life, is a critical window for brain 159 

development. Adverse in-utero and early-life environmental conditions can 160 

significantly increase the susceptibility to certain neurological diseases later in life 161 

(Gluckman et al., 2008). Human epidemiological studies and animal studies strongly 162 

suggest that exposure to air pollution is associated with structural damage and 163 

functional impairment to the CNS (Costa et al., 2019). Epidemiologic studies have 164 

shown that prenatal exposure to certain air pollutants is associated with brain 165 

developmental and cognitive disorders (Table 1). Studies on several birth cohorts in 166 

New York City found that exposure to Polycyclic Aromatic Hydrocarbon (PAH)s 167 

during pregnancy is associated with a 6.8% reduction in body weight and a 3% 168 

reduction in head circumference at birth, and reduced white matter surface of the left 169 
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hemisphere in childhood (Perera et al., 2003; Perera et al., 2005). These developmental 170 

disorders in the brain resulted in a lower mental Development Index at age 3, lower 171 

intelligence quotient (IQ) scores at age 5, slower processing speed at age 7, as well as 172 

symptoms of anxiety, depression, and inattention at age 6-7 (Perera et al., 2006; Perera 173 

et al., 2012; Peterson et al., 2015). Another cohort study in Poland also reported that 174 

prenatal exposure to PAHs is associated with decreased IQ scores at age 5 and the 175 

abovementioned abnormal neurocognitive behaviours in the New York City cohort 176 

studies (Edwards et al., 2010; Jedrychowski et al., 2015; Perera et al., 2013). Animal 177 

models of prenatal PAH exposure are consistent with these human observations 178 

(Saunders et al., 2002; Wormley et al., 2004).  179 

Exposure to polluted air is positively linked to the development of Autism Spectrum 180 

Disorder, a neurodevelopmental disorder characterised by impaired communication 181 

and social ability (Geschwind, 2011). Several epidemiological studies reported the 182 

association between prenatal air pollution exposure and the risk of developing Autism. 183 

In a case-controlled study named “Childhood Autism Risks from Genetics and the 184 

Environment (CHARGE)”, exposure to traffic-related air pollution, NO2 (odds ratio 185 

(OR): 1.81), PM10 (OR: 2.17) and PM2.5 (OR: 2.08) during pregnancy was strongly 186 

associated with the pathogenesis of Autism compared to the control group (Kerin et al., 187 

2018; Volk et al., 2013). Another cohort study recruited 148,722 birth information and 188 

regional air quality data in 1995-2006, found that risks of Autism were increased with 189 

pregnancy exposures to most toxins in polluted air, including butadiene, meta/para-190 

xylene, lead and perchloroethylene, which provided population-based evidence that in-191 

utero exposure to air pollution is linked to the increased risk of Autism (von Ehrenstein 192 

et al., 2014).  193 

Air pollution is also a risk for other neurological disorders. A Korean Mother and 194 

Children Environmental Health (MOCEH) study found that prenatal exposure to high 195 

levels of PM10 was linked to abnormal Mental Developmental Index, and NO2 exposure 196 

was linked to the impairment of psychomotor development between 1-2 years of age 197 

(Kim et al., 2014). In a Spanish study, maternal exposure to NO2 during pregnancy 198 

adversely affected infant mental development, with impaired attention function at 4-5 199 

years of age (Guxens et al., 2012; Sentis et al., 2017). Maternal exposure to PM2.5 in 200 

the 3rd trimester has been shown to decrease corpus callosum volume, which is 201 
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associated with hyperactivity in children (Mortamais et al., 2019). Animal studies also 202 

confirmed that in-utero PM2.5 exposure decreased the volumes of both lateral ventricle 203 

and corpus callosum in mice (Allen et al., 2017; Klocke et al., 2017). Studies in China 204 

found that maternal exposure to higher ambient PM10 levels in the first trimester can 205 

cause neural tube defects (OR: 1.57), and increase the risk of anencephaly if the 206 

exposure occurs three months before and after the conception (OR: 1.74) (Xia et al., 207 

2020; Zhang et al., 2020). This suggests a critical window to ensure normal early neural 208 

development. 209 

 210 

While molecular changes in the brain caused by in-utero exposure to air pollution is 211 

difficult to obtain in human, animal studies shed some light on the potential 212 

mechanisms leading to impaired motor-cognitive functions. Prenatal exposure to diesel 213 

exhaust particles in mice altered the expression of pro-inflammatory cytokines and N-214 

methyl-D-aspartate receptor subunit in the hippocampus, associated with increased 215 

anxiety and spatial memory dysfunction in adult male offspring (Ehsanifar et al., 2019). 216 

Maternal exposure to a high dose of PM2.5 impaired the development of the cerebral 217 

cortex in mice (Zhang et al., 2018). Prenatal exposure to low level PM2.5 also caused 218 

aberrant hyperactivity of the dopamine pathway and suppression of the glycine pathway 219 

in the brain, which correlated with the hyper-activities in those mice (Cui et al., 2019). 220 

In rabbits, prenatal exposure to diesel exhaust PMs interrupted the homeostasis of 221 

neuromodulators in olfactory tissues, which impaired their smell function (Bernal-222 

Meléndez et al., 2019). 223 

5. Sex differences in response to in-utero exposure to air pollution 224 

Sex dimorphism is commonly observed in many neurological disorders. Studies have 225 

shown that boys are more susceptible to the adverse effects of prenatal exposure to air 226 

pollution (especially in the 3rd trimester) on cognitive and behavioural disorders, such 227 

as the development of Autism (Jo et al., 2019; Raz et al., 2015). Animal studies also 228 

confirmed this male preference for Autism-like behaviours in response to in-utero 229 

exposure to air pollution (Church et al., 2018; Li et al., 2018). Another study on prenatal 230 

exposure to traffic-related black carbon showed that boys' memory function and 231 

learning ability are more affected than girls (Cowell et al., 2015).  232 
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Animal studies have also provided evidence on the possible risk of other neurological 233 

conditions. A recent study in mice showed depressive behaviour and decreased 234 

neurogenesis in the dentate gyrus of the hippocampus in male mice with in-utero PM 235 

exposure (Haghani et al., 2020). The male-specific neurodevelopmental disorder and 236 

cognitive impairment have been associated with transcriptome changes in serotonin 237 

signalling, endocytosis, Gαi, cAMP signalling, as well as inflammatory pathways 238 

(Haghani et al., 2020). In-utero exposure to high levels of PMs can also impair motor 239 

coordination and cause impulsive behaviour in males, by affecting several 240 

neurotransmitters in various brain regions, including dopamine, serotonin, and 241 

noradrenaline levels (Yokota et al., 2009; Yokota et al., 2013). 242 

However, females are not unaffected by direct exposure to air pollution, especially in 243 

those genetically susceptible to certain neurological disorders. A Mexican cohort study 244 

showed that when exposing healthy children to high levels of ozone and PM2.5, young 245 

girls with Apolipoprotein E (APOE) 4 heterozygous allele were at the highest risk of 246 

having low IQ scores (Calderon-Garciduenas et al., 2016). The limitation of this study 247 

is that it was unable to separate the prenatal and postnatal exposure, which may interact 248 

with each other to exaggerate the effects on cognitive function. The sex difference in 249 

response to air pollution may also be pollutant-type dependent. According to a study on 250 

acute respiratory disorders, ozone, NO2, and PM2.5 impact differently on females and 251 

males (Shin et al., 2021). Males are more affected by NO2 and PM2.5, and females are 252 

more susceptible to the adverse effects of ozone on respiratory disorders (Shin et al., 253 

2021). However, how individual pollutant affects brain development and cognitive 254 

function is unclear in the setting of in-utero exposure, which can be focused on in future 255 

studies. 256 

6. The potential mechanisms 257 

Fine particles, especially PMs, can damage the blood-placental barrier to access foetal 258 

organs. In an animal study, following maternal exposure to a low dose of carbon black 259 

nanoparticle, the brain resident macrophages in perivascular areas were reduced, and 260 

the end-feet of astrocytes were swelling, which can impair the protective function of 261 

the blood-placental barrier, allowing PMs to enter the foetal brain (Onoda et al., 2014). 262 

In addition, in response to in-utero PM exposure, the expression of genes involved in 263 
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angiogenesis, cell migration, proliferation, chemotaxis, and growth factor production 264 

was changed in the brain of male mice offspring at 6 weeks of age (Onoda et al., 2017b). 265 

In adult mice offspring’s brains, protein levels of presynaptic protein synaptophysin 266 

were also increased, associated with impaired spatial memory function (Kulas et al., 267 

2018). 268 

The potential mechanisms of how maternal air pollution exposure during pregnancy 269 

influences brain development and cognitive performance remain largely unknown. 270 

However, limited animal studies have identified inflammation, oxidative stress, and 271 

endoplasmic reticulum (ER) stress as potential mechanisms, which are also involved in 272 

other types of intrauterine toxins, such as tobacco cigarette smoke (Chen et al., 2021).  273 

Neuroinflammation has been recognised as a leading risk factor associated with 274 

neurological diseases (Block et al., 2007). As a multifaced environmental toxin, inhaled 275 

air pollutants, such as PMs, by the mothers during pregnancy can induce both foetal 276 

systemic inflammatory response and neuroinflammation in the developing brain. The 277 

source of systemic inflammation may arise from the foetal lung, liver or cardiovascular 278 

system, which can be transferred into the brain (Block and Calderon-Garciduenas, 2009; 279 

Morris et al., 2021). Due to immature or impaired blood-brain barrier function, PM 280 

itself can enter the foetal brain to activate the inflammatory responses in the astrocytes 281 

and microglia, which subsequently release proinflammatory cytokines locally and 282 

activate the classical inflammatory pathways (Gomez-Budia et al., 2020; Kulas et al., 283 

2018; Zheng et al., 2018), such as JNK and NF-κB (Kulas et al., 2018; Zheng et al., 284 

2018). Inflammatory responses in the astrocytes and microglia can further impair 285 

oligodendrocytes to damage myelination in the white matter, leading to reduced white 286 

matter size (Allen et al., 2017; Klocke et al., 2017; Klocke et al., 2018; van Tilborg et 287 

al., 2016). Such responses can directly affect normal neural development, by inducing 288 

apoptosis, reducing neural density, affecting pruning, and impairing synaptic budding 289 

and plasticity (Ferro et al., 2021; Jiang et al., 2018; Sanz and Garcia-Gimeno, 2020; 290 

Szepesi et al., 2018).  291 

In addition, the complex chemical composition of PM makes it possess strong oxidative 292 

potentials, which can induce the production of reactive oxygen species (ROS) in the 293 

mother’s lungs and remote organs where they travel via circulation, including foetal 294 

organs (Daellenbach et al., 2020). Without a mature immune system and endogenous 295 
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antioxidant defence mechanism, direct PM exposure through foetal circulation is likely 296 

to induce oxidative stress responses in the foetal brain, resulting in abnormal neural 297 

development in certain brain regions, such as the hippocampus that affects learning and 298 

memory functions  (Lee et al., 2018; Perrone et al., 2010). Both in vivo and in vitro 299 

studies have confirmed increased brain levels of reactive oxygen species in different 300 

cell types following exposure to air pollutants (Costa et al., 2017; Costa et al., 2020; 301 

Morris et al., 2021). The vulnerability of foetal and neonatal brains to oxidative stress 302 

has been well-reviewed in the literature, due to their high demand in energy turnover 303 

that generates a large amount of free radicals and immature redox signalling that 304 

counteracts increased oxidants (Buonocore et al., 2011; Cobley et al., 2018; 305 

Ikonomidou and Kaindl, 2011). Furthermore, oxidative stress can trigger inflammatory 306 

responses in astrocytes and microglia, which subsequently release proinflammatory 307 

cytokines locally and activate the inflammatory pathways (Gomez-Budia et al., 2020; 308 

Kulas et al., 2018; Zheng et al., 2018). On the other hand, neuroinflammation can 309 

further exacerbate oxidative stress. Thus, oxidative stress may play a vital role in the 310 

adverse impact of in-utero PM exposure on the development of neurological disorders.  311 

As PMs are potent oxidants, the endogenous antioxidants produced by the mothers may 312 

not be sufficient to protect the unborn child  (Daellenbach et al., 2020). A cohort study 313 

compared antioxidant levels in antecubital blood and cord blood from healthy pregnant 314 

women, which showed similar antioxidant capacity between maternal blood and cord 315 

blood (1.97 ± 0.50 vs 1.76 ± 0.50 mmol Trolox equiv/L, respectively) (Erdem et al., 316 

2012). PM induced systemic oxidative stress in the mothers may overconsume their 317 

endogenous antioxidants (Wang et al., 2021). Indeed, another study demonstrated that 318 

maternal exposure to PM2.5 can reduce the antioxidant capacity in foetal blood, making 319 

the foetus more vulnerable to PM2.5 in foetal circulation (Lee et al., 2020). As such, 320 

increased inflammatory response and oxidative stress were also observed in the 321 

offspring with prenatal PM2.5 exposure (Wang et al., 2021). Thus, maternal circulating 322 

antioxidants during pregnancy may not be sufficient to protect the foetus. While 323 

antioxidant treatment can reduce mitochondrial dysfunction related oxidative stress by 324 

PM exposure in vitro (Wang et al., 2021), no study has investigated whether such an 325 

approach during pregnancy can protect foetal brain development and promote normal 326 

neurocognitive behaviours in those with in-utero exposure to air pollution.  A Brazilian 327 

study assessed the correlation between antioxidant intake (based on β-carotene, 328 
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vitamins (A, C, E), and trace minerals (zinc, magnesium, selenium)) during pregnancy 329 

and prenatal PM2.5 exposure induced wheezing frequency (Chiu et al., 2022). While 330 

higher maternal intake of such micronutrients during pregnancy led to reduced 331 

wheezing numbers after birth, such practice cannot prevent prenatal PM exposure-332 

associated asthma risks, but only reduce the severity (Chiu et al., 2022). Therefore, 333 

further investigation is needed to determine which antioxidant and at what dose range 334 

can prevent adverse health outcomes due to prenatal PM exposure, especially the 335 

neurocognitive effects.    336 

ER stress is also considered one of the potential mechanisms of brain impairment 337 

following prenatal exposure to air pollution. ER stress is mainly induced by the 338 

accumulation of misfolded proteins in the ER membranes, which are unable to be 339 

cleared by the autophagy process. Protein misfolding is common with 340 

neuroinflammation. Inflammation leads to abnormal clearance of these misfolded 341 

proteins in the ER membrane, which in turn induces more inflammation and oxidative 342 

stress in glial cells (Onoda et al., 2020). One study found increased accumulation of β-343 

sheet protein, mostly consisting of misfolded proteins, in the brain perivascular area 344 

with astrogliosis and denaturation of macrophages, suggesting impaired clearance 345 

(Onoda et al., 2017a). The increase in ER stress-related markers is also found in the 346 

macrophages and astrocytes in this brain area, which has been suggested as a risk of 347 

neurodegeneration in later life (Onoda et al., 2020). However, it is unclear whether ER 348 

stress also occurs in the neurons to directly damage their integrity. Nevertheless, long-349 

term exposure to high levels of air pollutants, including PM2.5, NO2/NOx, and CO, has 350 

been suggested as a strong risk factor for the development of dementia (Peters et al., 351 

2019). An animal study also suggests that chronic exposure to even low-level PMs can 352 

be harmful to the brain by exacerbating Alzheimer’s disease-related brain injury (Lee 353 

et al., 2021). In vitro study also confirmed that PM induced ER stress can also activate 354 

CHOP/Caspase12/DR5/Caspase8 pathway to induce apoptosis and neuronal death 355 

(Zhang et al., 2022).  Future studies can investigate whether prenatal PM exposure can 356 

accelerate cognitive decline and early onset of dementia and neurodegenerative 357 

disorders in adulthood, such as Alzheimer’s disease. 358 

Direct PM exposure has been shown to impair the learning ability and memory function 359 

in both school-age children and elderlies aged 60 and above (Clifford et al., 2016). 360 
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However, no human or animal study has reported the potential intergenerational effects 361 

on neurodevelopmental and cognitive outcomes. An animal study using rabbits showed 362 

intergenerational effects of in-utero exposure to traffic pollution on the metabolic 363 

disorder in the 3rd generation (Valentino et al., 2016). Although without direct evidence, 364 

it can be postulated that epigenetic regulation may play a role in PM exposure caused 365 

intergenerational effects. PM2.5 exposure is known to cause DNA methylation and 366 

histone acetylation (Ferrari et al., 2019; Ji and Khurana Hershey, 2012; Real et al., 367 

2021). Several epigenome-wide analyses in cord blood from newborns with prenatal 368 

PM10 and PM2.5 exposure found DNA methylation of genes involved in cell cycle, 369 

apoptotic, embryogenesis, postnatal development, neurotransmitter transport, ER stress, 370 

tumour suppression, lung function, and risk of asthma (Gruzieva et al., 2019; Isaevska 371 

et al., 2022; Park et al., 2022). Such study design can exclude the impact of postnatal 372 

direct inhalation of PMs by the newborns to more accurately reflect the 373 

prenatal/maternal effects. Nevertheless, DNA methylation at this early stage of life can 374 

affect foetal and postnatal development and be passed to the next generation via 375 

maternal nuclei or/and mitochondrial DNA to affect neurodevelopment and cognitive 376 

outcomes in future generations. However, there is no direct evidence linking epigenetic 377 

changes by prenatal PM exposure to abnormal brain function, representing a significant 378 

knowledge gap, in addition to the molecular mechanism of the intergenerational effects, 379 

which need to be addressed in future studies. 380 

7. Conclusion and future perspectives 381 

Air pollution is a significant threat to developing brains at the very beginning of life, 382 

even at low levels. Prenatal exposure to air pollutants adversely affects foetal 383 

neurodevelopment, with male offspring more susceptible to cognitive and behavioural 384 

disorders. Current guidelines for pregnant women still focus on nutrition balance and 385 

avoiding toxins like alcohol and tobacco cigarettes, without mentioning air quality. 386 

While policy-makers need to develop strategies to protect our air quality, health 387 

professionals and educators also need to raise public awareness of the importance of air 388 

quality to unborn children. 389 
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Table 1. Summary of human cohort studies on the effects of prenatal air pollution exposure  

Pollutants Location Participants Major conclusion Reference 

PAHs New York, USA Pregnant African and 
Dominican-American women  

Prenatal exposure to PAHs adversely affects children’s 
IQ scores, and is associated with slower processing 
speed, attention-deficit/hyperactivity disorder by 
disrupting the development of left hemisphere white 
matter. 

(Perera et al., 
2003) 
(Perera et al., 
2005) 
(Perera et al., 
2006) 
(Perera et al., 
2009) 
(Peterson et al., 
2015) 

PAHs Krakow, Poland 
A cohort of pregnant Caucasian 
women enrolled in Krakow 
study 

Prenatal exposure to high levels of PAHs is associated 
with decreased IQ scores at 5 years of age.  
The combination of prenatal exposure to high levels of 
PAHs and maternal demoralisation adversely affects 
children’s behaviours.  
Breastfeeding (for at least 6 months) shows a protective 
effect against prenatal PAH exposure. 

(Edwards et al., 
2010) 
(Perera et al., 
2013) 
(Jedrychowski 
et al., 2015) 

Woodsmoke, 
CO 

Rural western 
highland, 
Guatemala 

39 mother-child dyads 
participated in 
RESPIRE/CRECER study From 
March to June 2010 

Maternal CO exposures in the 3rd trimester is associated 
with child neuropsychological performance inversely 

(Dix-Cooper et 
al., 2012) 

NO2, Benzene Spain Pregnant women from the 
INMA cohort 

Prenatal exposure to air pollutants adversely affects 
mental development in infants.  

(Guxens et al., 
2012) 
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The exposure to NO2 is associated with impaired 
attentional function in children at 4-5 years of age. 

(Sentis et al., 
2017) 

TRAP, NO2, 
PMs California, USA ASD and control children from 

CHARGE study 

Prenatal exposure to traffic-related air pollution, NO2, 
and PMs is associated with Autism. 
NO2 and PM10 exposure is associated with cognitive and 
adaptive functions in Autism patients. 

(Volk et al., 
2013) 
(Kerin et al., 
2018) 

PM10, NO2 Korea 520 mother–child pairs from 
MOCEH study in 2008 

Prenatal exposure to air pollution results in delayed 
neurodevelopment in early childhood. 

(Kim et al., 
2014) 

BC, PM2.5 
Eastern 
Massachusetts, 
USA  

1,109 mother–child pairs in 
Project Viva cohort between 
1999–2002 

Prenatal exposure to traffic-related 
pollution negatively influences the performance across a 
range of cognitive domains in the age of 6.6-10.9 (mean, 
8.0) years 

(Harris et al., 
2015) 

NO2, PMs Rome, Italy 719 newborns in the GASPII 
project enrolled in 2003–2004 

Prenatal exposure to NO2 and traffic intensity was 
inversely associated with the verbal development 

(Porta et al., 
2016) 

Air pollutants Mexico 718 Mexican mother-child pairs 

Prenatal exposure to air pollution is associated with 
impaired cognitive development trajectories in the first 7 
years of life. 
Indoor environmental pollutants cause more adverse 
effects on cognitive development. 

(Gonzalez-
Casanova et al., 
2018) 

PM2.5 Barcelona, Spain Children enrolled in the 
BREATHE project 

Prenatal exposure to PM2.5 may be associated with 
decreased volumes of lateral ventricles and corpus 
callosum in children 

(Mortamais et 
al., 2019) 

PM2.5 Southern 
California, USA 

246420 mother-child pairs from 
pregnancy cohort study in 
California 

Prenatal PM2.5 exposure-associated Autism risk is 
stronger in boys (Jo et al., 2019) 

PM10 Liaoning, China Infants registered in Maternal 
and Child Health Certificate 

PM10 exposure is positively associated with the risk of 
neural tube deformation and anencephaly during both 

(Xia et al., 
2020) 
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Registry of Liaoning Province preconception and early pregnancy (Zhang et al., 
2020) 
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