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Abstract 12 

Plume chasing is cost-effective, measuring individual, on-road vehicular emissions. 13 

Whereas, wake-flow-generated turbulence results in intermittent, rapid pollutant dilution and 14 

substantial fluctuating concentrations right behind the vehicle being chased. The sampling 15 

duration is therefore one of the important factors for acquiring representative (average) 16 

concentrations, which, however, has been seldom addressed. This paper, which is based on the 17 

detailed spatio-temporal dispersion data after a heavy-duty truck calculated by large-eddy 18 

simulation (LES), examines how sampling duration affects the uncertainty of the measured 19 

concentrations in plume chasing. The tailpipe dispersion is largely driven by the jet-like flows 20 

through the vehicle underbody with approximate Gaussian concentration distribution for x  21 

0.6h, where x is the distance after the vehicle and h the characteristic vehicle size. Thereafter 22 

for x  0.6h, the major recirculation plays an important role in near-wake pollutant transport 23 

whose concentrations are highly fluctuating and positively shewed. Plume chasing for a longer 24 

sampling duration is more favourable but is logistically impractical in busy traffic. Sampling 25 

duration, also known as averaging time in the statistical analysis, thus has a crucial role in 26 
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sampling accuracy. With a longer sampling (averaging) duration, the sample mean 27 

concentration converges to the population mean, improving the sample reliability. However, 28 

this effect is less pronounced in long sampling duration. The sampling accuracy is also 29 

influenced by the locations of sampling points. For the region x > 0.6h, the sampling accuracy 30 

is degraded to a large extent. As a result, acceptable sample mean is hardly achievable. Finally, 31 

frequency analysis unveils the mechanism leading to the variance in concentration 32 

measurements which is attributed to sampling duration. Those data with frequency higher than 33 

the sampling frequency are filtered out by moving average in the statistical analyses. 34 

(283 words)     35 

Keywords: Measurement uncertainty; plume chasing; plume meandering; sampling reliability; 36 
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 38 

1. Introduction 39 

Vehicular exhaust consists of greenhouse gases and toxic pollutants that would lead to 40 

various detrimental health concerns, including respiratory symptoms, disease and cancer (Smit 41 

et al., 2019; Tayarani & Rowangould, 2020). In Hong Kong, road transport contributed 20%, 42 

53%, 10% and 13% to the annual emissions of nitrogen oxides (NOX), carbon monoxide (CO), 43 

respirable suspended particulate (PM10) and fine suspended particulate (PM2.5), respectively 44 

(HKEPD, 2019). Vehicular pollutant is crucial to pedestrian-level air quality because of its 45 

close proximity to stakeholders (Smit et al., 2019). Hence, roadside pollutant concentrations 46 

are usually much higher compared with ambient ones. The impact is more severe in cities due 47 

to huge population. Most air-pollution-related premature deaths are pertinent to vehicular 48 

exhaust (Caiazzo et al., 2013). It was estimated that vehicular exhaust resulted in 385,000 49 

premature deaths and around US$ 1 trillion in health damages worldwide in 2015 (Anenberg 50 

et al. 2019). In recent years, the increasing traffic volumes and high-rise, dense buildings 51 
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further worsen the roadside air pollution problem (Huang et al., 2021). Thus, proper control of 52 

vehicular exhaust, in particular the reliable identification of heavy on-road emitters, should be 53 

enacted.  54 

 55 

In view of depreciation, inappropriate maintenance, tampering or breakdown of engine 56 

components, in-use vehicles often violate emission regulations (Huang et al., 2020a). Road 57 

conditions, such as slope and traffic congestion, influence the emission directly (Davison et al., 58 

2020; Smit & Kingston, 2019), which, however, are hardly modelled in laboratories. In this 59 

connection, on-road sampling techniques, including portable emission measurement system 60 

(PEMS), on-road remote sensing, exhaust plume chasing, together with tunnel and roadside 61 

ambient measurements, have been developed (Huang et al. 2018). Tunnel and roadside ambient 62 

measurements are designed for group sampling but not individuals (Smit et al., 2010). Remote 63 

sensing is a non-intrusive way to identify heavy on-road emitters. However, its functionality is 64 

degraded by the short sampling episode (less than the turbulence timescale, seconds, in 65 

vehicular wakes) and the constraints of sampling locations (Wu et al. 2017). Among others, 66 

PEMS and plume chasing enable long-term (minutes) emission-data collection for a specific 67 

vehicle. The applicability of PEMS for fleetwide measurements is limited by its long turnover 68 

time (Franco et al., 2013). Practically, plume chasing realizes the on-road measurements of 69 

individual vehicles (Ježek et al., 2015). Another vehicle, which is equipped with rapid-response 70 

pollutant analysers, follows the target vehicle for (continuous) data collection during real-world 71 

driving conditions. Plume chasing is high throughput (compared with PEMS), facilitating 72 

massive on-road data collection for vehicle-fleet exhaust and emission technology (Wang et al. 73 

2020). In view of road safety, a minimum separation is required between the two vehicles 74 

(roughly 10 m). Nonetheless, this shortcoming can be overcome by towing a mobile laboratory 75 

after the targeted vehicle (Morawska et al., 2007). 76 
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Implementation of plume chasing, on the other hand, is complicated by the turbulent 77 

wake behind the target vehicle (Yang et al. 2018). After tailpipe exhaust, the plume undergoes 78 

dilution in two regimes (Morawska et al. 2007). Within the near-wake regime, the tailpipe 79 

discharge momentum and vehicle-induced turbulence dominate the initial, rapid plume 80 

dispersion. Afterward, in the far-field regime, the plume dispersion is driven by the prevailing 81 

wind (Chan et al., 2001). In view of intermittency, the sampling duration ∆τ should be long 82 

enough to capture representative statistical properties. The current recommended sampling 83 

duration for plume chasing is at least 2 minutes (∆τ  352h/U where h and U are the 84 

characteristic size and speed of the vehicle, respectively; Wang et al., 2020), which, however, 85 

is hardly realizable. Some of the emission parameters, such as engine power and vehicle speeds, 86 

are seldom constant. Moreover, the vehicle pair must travel a long distance together for one 87 

single test that arouses logistic concern. Apparently, a shorter sampling duration for plume 88 

chasing (but reliable readings) would be beneficial. Whereas, there is no study available for the 89 

drawback especially the sampling inaccuracy. The uncertainty of plume chasing in response to 90 

shortening sampling duration is analysed in this paper to bridge the knowledge gap.  91 

 92 

The data sensitivity to sampling duration in long-term, ambient air pollutant 93 

measurements has been studied for years. In annual averaging, it was mainly caused by 94 

synoptic scales or seasonal factors but not intermittency nor turbulent wakes (Brown and 95 

Woods 2014). On top of equipment precision, the measurement accuracy depends on sampling 96 

duration ∆τ and (unsteady) concentrations  (Ballesta 2005, Brown et al. 2008). Venkatram 97 

(2002) examined the effect of sampling duration based on a binomial model of pollutant 98 

concentrations. However, the setting was oversimplified that barely represented the real-world 99 

situation. The power law 100 



Xie et al. (2022) 

5 

max

p

T

 


 
  

  
 (1) 

was suggested to describe the dependence of maximum mean concentration max  on (a shorter) 101 

sampling duration  (peak-to-mean ratio; Santos 2019). Here,   is the mean concentration 102 

over a longer sampling duration T and p (a real number between 0 and 1) is the exponent 103 

(Singer 1963). Theoretically, T is long enough for asymptotically converged   though it is 104 

hardly defined in non-stationary turbulence (Santos et al. 2009). Nonetheless, it is practically 105 

employed as the reference to estimate the maximum mean concentration max  based on a 106 

shorter sampling duration  (Wilson 2010). However, the aforementioned studies have 107 

focused on (short-term) maximum but not the uncertainty induced by finite sampling duration. 108 

Apart from gaseous pollutants, similar findings have been arrived based on the transport of 109 

aeolian sediment (Ellis et al., 2012; Webb et al., 2019). Previous studies related to vehicular 110 

exhaust, by and large, have focused on the uncertainty of emission factor (EF; pollutant-to-111 

carbon-dioxide concentration ratio) rather than mean concentration (Tong et al., 2022; Wang 112 

et al., 2020; Zheng et al., 2016). EF could avoid temporal variance and turbulence interference, 113 

however, its validity is based on stoichiometric combustion. While it is hard to maintain on-114 

road complete combustion at all times, instrumentation issues, such as slow response time 115 

and/or short sampling duration, occur very often (Park et al. 2011), deviating from the above 116 

assumption. Besides, the determination of EF for individual pollutants from tailpipe emission 117 

depends on the reliable pollutant measurements in both plume and ambient (Wen et al., 2019). 118 

These uncertainties would degrade the quality of remote sensing. Under this circumstance, 119 

statistically robust measures of mean pollutant concentrations in plume chasing are alternative 120 

solutions.  121 
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Given a time trace of length T, the ideal sampling duration   should be long enough 122 

such that the mean concentration   is independent (quasi-steady state). Under homogeneous 123 

and stationery turbulence, this independence is achievable provided that the sampling duration 124 

is longer than the time scale of turbulence eddies (Santos et al., 2009). In the light of the 125 

intermittent vehicular wake in plume chasing, a proper sampling duration is hardly defined. 126 

Therefore, it is necessary to quantify the uncertainty of mean-concentration measurements 127 

induced by the sampling duration in plume chasing. Large-eddy simulation (LES) is adopted 128 

in this paper so the influence other than vehicular wake is excluded. 129 

 130 

This paper is organized as follows. Section 1 (this section) is the introduction. Next, the 131 

LES setup and the statistical methods for sampling uncertainty are described in Section 2. In 132 

Section 3, the fluctuating concentrations behind the tailpipe within the near wake are analysed. 133 

Their power spectra are then employed to elucidate the relationship between uncertainty and 134 

sampling duration. Finally, the findings and the conclusions are summarized in Section 4. 135 

 136 

2. Methodology 137 

2.1 Mathematical Model 138 

LES is an appealing tool investigating the spatio-temporal dynamics of flows and 139 

pollutant dispersion (eddy-resolving). It explicitly calculates much of the conservation of 140 

momentum and mass while models small portion of subgrid-scale (SGS) fluxes at a reasonable 141 

computational load (Chan et al. 2008). LES is advantageous in terms of calculating the 142 

unsteadiness and intermittency of flows and tailpipe dispersion (Li et al. 2007) so is adopted.  143 



Xie et al. (2022) 

7 

The LES used in this paper is the open-source computational fluid dynamics (CFD) 144 

code OpenFOAM 6 (Weller et al. 1998). It was validated in our previous study (Xie et al. 2020). 145 

The SGS motions are modelled by the Smagorinsky model (Smagorinsky 1963). The 146 

computational domain sizes 31.8h (streamwise) × 3.9h (spanwise) × 10.3h (height) while the 147 

model of the heavy-duty vehicle sizes 3.86h (length) × 0.89h (width) × 1.09h (height). The 148 

logarithmic law-of-the-wall (log-law) is used to model the flows near all the solid boundaries 149 

(the ground and the truck body). At the domain top and the spanwise extent, Neumann 150 

boundary conditions (BCs; ∂ /∂n  = 0 where n  is the normal to the boundary) for both flows 151 

and pollutant transport are applied. Dirichlet BCs of constant wind speed U and zero pollutant 152 

 = 0 are prescribed at the inflow. Turbulence is not prescribed at the inflow but is only induced 153 

by the flows around the vehicle. This configuration helps focus on tailpipe dispersion driven 154 

by wake-induced turbulence. An open BC is adopted at the outflow so all the pollutants are 155 

removed from the computational domain without any rebound. A point source of pollutant with 156 

a constant emission rate Q  is placed at the tailpipe exit (x = y = z = 0) to simulate vehicular 157 

exhaust. Here, x, y and z are the streamwise, spanwise and vertical coordinates, respectively. 158 

The spatial domain is discretized into 3.38 million unstructured hexahedra using the mesh 159 

generation utility snappyHexMesh (OpenFOAM 2018). Its mesh is refined toward the vehicle 160 

surfaces and the ground. The minimum and maximum cell volume is about 10-7h3 and 10-2h3, 161 

respectively. The second-order-accurate finite volume method (FVM) is used to discretize the 162 

gradient, divergence and Laplacian terms. The time increment is Δt = 0.15h/U and the LES is 163 

integrated for T = 510h/U in the time domain using the implicit, second-order-accurate 164 

backward differencing. 165 
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Fig. 1 (a) Digital model of the heavy-duty vehicle together with (b) computational domain 

and boundary conditions. 

 166 

2.2 Statistical Method 167 

The gaseous pollutant considered in this paper is passive and chemically inert that could 168 

be taken as carbon dioxide CO2. It is diluted by vehicle-induced turbulence in the wake with 169 

characteristic scales of length h and velocity U∞. In favour of detection sensitivity, sampling 170 

within the near wake is suggested where the concentrations are almost ten times larger than 171 

those in the far field (Xie et al. 2020). The sampling locations are aligned along the sampling 172 

line in the streamwise direction at the tailpipe level from (0.05h, 0, 0) to (h, 0, 0) to mimic 173 

plume chasing (Huang et al., 2020b). The definition of variables used in this paper is 174 

summarized in Table. S1. 175 

 176 

 177 

 178 
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2.2.1 Moving Average 179 

The concentrations  are normalized by the characteristic pollutant concentration 0 (= 180 

Q /Uh2). Time traces of dimensionless pollutant concentration Ci (= i/0) are probed from 181 

the LES dataset where the subscript i is the index of the data sample. Their moving average  182 

 
1

0

1 n

i ji
j

C C
n








    (2) 

represents the sample mean over the sampling duration Δτ (= (n-1)Δt, where n (> 1) is the 183 

number of data points within ∆τ). Here, the overbar   denotes time average. The sampling 184 

duration considered is in the range of 10∆t ≤ ∆τ ≤ 320∆t. It is noteworthy that 185 

 0 510iC T h U     is the population mean C . 186 

 187 

2.2.2 Uncertainty Analysis  188 

The relative deviation between the mean of each data subset (moving average) with 189 

sampling duration ∆τ and the population is 190 

 
 

i

i

C C

C


 

 
  . (3) 

To consolidate the uncertainty induced by the data subsets with sampling duration ∆τ the 191 

coefficient of variance  192 

   
 

1 2
2

1 2
1 1

2

0 0

1 1N N
i

i
i i

C C
CV

N N C


  

 

 

      
          

      

   (4) 

is adopted where N is the number of data subsets with sample mean C (∆τ)i. It is noteworthy 193 

that CV(Δτ = Δt) is equal to the fluctuating concentration intensity I. 194 
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For demonstration purposes, the sample mean  
i

C   is defined acceptable in this 195 

paper provided that its tolerance is within ±15% compared with the population mean C , i.e. 196 

|()i|  15%. To obtain a sample mean with specified confidence, the sampling duration ∆τ 197 

should be long enough so that more than 90% of the data in a new dataset C (∆τ)i are within 198 

the acceptable deviation. Therefore, the fraction of acceptable sample mean 199 

 
 No. of data subsets in which 15%

i
k

N

 


 
   (5) 

is studied. The specific criterion aforementioned was adopted elsewhere (Li et al. 2017).  200 

 201 

3. Results and Discussion 202 

3.1 Fluctuating Concentration 203 

Fig. 2a shows the population mean C , maximum Cmax and minimum Cmin of 204 

dimensionless pollutant concentration based on the entire LES dataset of sampling duration T. 205 

Liu et al. (2011) found that a dimensionless averaging time T* (= T×Uref/Lref where Uref and 206 

Lref are the reference scales of wind speed and length, respectively) in the range of 200 to 400 207 

is sufficient for reliable population mean C  around a high-rise building. The current 208 

dimensionless averaging time (T* = TU/h = 510) well exceeds the requirement. 209 

 210 

The initial dilution directly behind the tailpipe is dominated by the jet-like flows from 211 

the truck underbody. Simultaneously, the spanwise and vertical dispersion is attributed to the 212 

turbulence and instability generated by the shear within the jet-like flows (Xie et al. 2020). In 213 

this connection, the population mean concentration C  decreases monotonically for x ≤ 0.6h 214 

then keeps at a low level thereafter (Fig. 2a). For example, the population mean concentration 215 
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C  at x = 0.4h is almost 14 times larger than that at x = 0.8h. The region close to x = 0.8h is 216 

characterized by the strong entrainment and the upward flows within the major recirculation, 217 

driving the jet-like flows back to the vehicle body (Fig. S1a and S1b). A similar sharp drop in 218 

concentration (an order of magnitude) after a vehicle was also reported by Chang (2009).  219 

 220 

 221 

Fig. 2 Longitudinal profiles of (a) population mean C , maximum Cmax and minimum Cmin of 222 

dimensionless pollutant concentration together with (b) fluctuating concentration 223 

intensity I along the sampling line.  224 

 225 

In addition to the upward flows within the major recirculation, the fresh-air entrainment 226 

from the sides of the vehicle quickly dilutes the pollutant (Fig. S1a). It is concurred by the 227 

close-to-zero minimum concentration Cmin for 0.6h ≤ x ≤ h (Fig. 2a). Likewise, the maximum 228 

concentration Cmax elevates for x ≥ 0.6h though the population mean concentration C  keeps 229 

decreasing behind the tailpipe (Fig. 2a). For example, the maximum concentration Cmax is 230 

almost 6 times larger than the population mean C  at x = 0.8h. It is in turn suggested that the 231 

pollutant dispersion behind x = 0.6h is intermittent in response to the strong shear-generated 232 

turbulence within the major recirculation. 233 
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The fluctuating concentration intensity increases gradually in the streamwise direction 234 

for x ≤ 0.6h then soars thereafter, resulting in an elevated level (I  1) towards the end of the 235 

near-wake region (Fig. 2b). The peaked I is over unity so the fluctuations are comparable to 236 

the mean C . The initial increase in I is attributed to the recirculating flows. Moreover, the 237 

larger eddies augment turbulent mixing (widening plume coverage). A similar plume 238 

development with increasing I in the near-source region over open terrain was reported 239 

elsewhere (Yee and Biltoft, 2004). In the region 0.8h ≤ x ≤ h, the flow entrainment and the 240 

shear in-between the near and far wakes contribute much to the elevated fluctuating 241 

concentrations. 242 

 243 

   244 

Fig. 3 (a) Probability density function (PDF) of the relative deviations δi of instantaneous 245 

pollutant concentrations at the sampling points x = 0.2h, 0.5h and 0.8h directly behind 246 

the tailpipe. (b) Skewness and kurtosis of δi along the sampling line. 247 

 248 

The probability density functions (PDFs) of relative deviation (Δτ)i at x = 0.2h, 0.5h 249 

and 0.8h are depicted in Fig. 3a. In view of the gradually augmented fluctuating concentration, 250 

the range of the PDF spreads with increasing distance behind the truck. Besides, the PDF of 251 
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δ(Δτ)i at x = 0.2h and 0.5h is close to Gaussian distribution but at x = 0.8h is positively skewed. 252 

As such, most of the measured instantaneous concentrations at x = 0.8h are lower than the 253 

population mean C . The asymmetric PDFs are concurred by the skewness and kurtosis of 254 

δ(Δτ)i which are close to zero and 3, respectively, for x ≤ 0.6h (Fig. 3b). Thereafter, the 255 

increasing skewness and kurtosis indicate the positively skewed and leptokurtic PDFs. The 256 

sharp change in maximum relative deviation δmax from x = 0.5h to x = 0.8h is also notable (Fig. 257 

3a). It is attributed to the turbulence generated by the major recirculation and the entrainment. 258 

Likewise, the minor increase in maximum δmax (the upper range of δi shown in Fig. 3a) for 0.2h 259 

≤ x ≤ 0.5h is attributed to the plume development driven by the recirculation.  260 

 261 

3.2 Uncertainty Analysis 262 

The mean concentrations at different sampling duration  
i

C   are calculated by 263 

moving average based on the instantaneous (dimensionless) concentration Ci. The averaging 264 

time Δτ, which is also the sampling duration, cannot be too long, owing to the finite total 265 

sampling period T. Otherwise, the data are insufficient for the analysis of sample mean, leading 266 

to substantial inaccuracy. The sampling duration is limited to Δτ ≤ 320Δt that is roughly 9% of 267 

the total sampling period T. It also satisfies the requirement of averaging time Δτ that is less 268 

than one-third of the entire time trace T (Janik et al, 2012). Fig. 4 compares the time traces of 269 

the relative deviations δ(Δτ)i for different sampling duration at x = 0.8h. It is found that the 270 

instantaneous relative deviations δi are highly fluctuating whose maximum is up to δmax = 650%. 271 

It is in turn implied that the maximum concentration Cmax is up to 6.5 times larger than the 272 

population mean C . The variation of the relative deviations for sample mean δ(Δτ > t)i is less 273 

than that of the instantaneous value δ(Δτ = t)i. Increasing the sampling duration Δτ reduces 274 

the uncertainty of the sample mean concentrations. For example, the maximum relative 275 

deviation δ()max for Δτ = 160Δt is only 60%. The improved accuracy is attributed to the low 276 
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pass of sample mean  
i

C   with period shorter than the averaging time (sampling duration) 277 

Δτ by applying moving average. The average of sample mean concentrations  
i

C   obtained 278 

by moving average is very close to the population mean C . However, parts of the fluctuating 279 

signal, especially those short-term extremities, are filtered out (Fig. 4).  280 

 281 

  282 

Fig. 4 Time traces of the relative deviation δ(Δτ)i of pollutant concentrations. Sampling 283 

duration  = (a) t (instantaneous values); (b) 10t; (c) 40t; and (d) 160t by moving 284 

average behind the tailpipe at (x, y, z) = (0.8h, 0, 0). 285 
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Cumulative density functions (CDFs) measure the coefficient of variation CV(Δτ) by 286 

the slope of the curve core (Fig. 5). Steeper gradient suggests a smaller coefficient of variation, 287 

and vice versa. Moreover, it depicts the maximum relative deviation δ()max (along the x-axis 288 

of Fig. 5) at which the CDF reaches unity (Santos et al., 2005). Like Fig. 3, the CDF (Fig. 5) 289 

shows that the relative deviation for  = t at x = 0.8h is positively skewed, signifying frequent 290 

low-concentration and occasional high-concentration events. The sampling duration Δτ has a 291 

strong influence on the maximum relative deviation δ()max which decreases by almost ten 292 

times when the sampling duration is increased from  = t to Δτ = 160Δt. As shown in Fig. 293 

5, the curve core steepens with extending sampling duration , indicating a smaller coefficient 294 

of variation CV(Δτ) as well as more accurate sample mean concentrations  
i

C  . It is noticed 295 

that, with increasing sampling duration , the CDF gradually converges close to normal 296 

distribution that is in line with that reported elsewhere (Venkatram 2002).  297 

 298 

Fig. 5 Cumulative density functions (CDFs) of the relative deviation δ(Δτ)i of instantaneous 299 

concentrations (Δτ = Δt) and the sample mean concentrations averaged over Δτ = 10Δt, 300 

40Δt and 160Δt at (x, y, z) = (0.8h, 0, 0). Dashed lines denote the CDFs of corresponding 301 

normal distribution with the same mean and standard deviation. 302 
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   303 

   304 

   305 

Fig. 6 Relative deviations δ(Δτ)i of sample mean concentrations obtained by moving average 306 

over different sampling duration Δτ at x = (a) 0.2h; (b) 0.5h; and (c) 0.8h. Also shown 307 

are the frequency distribution of the absolute relative deviation |δ()i| at x = (d) 0.2h; 308 

(e) 0.5h; and (f) 0.8h with  = t, 10t, 40t, and 160t.  309 
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In Fig. 6a (x = 0.2h) and 6b (x = 0.5h), the relative deviation δ(Δτ)i is almost normally 310 

distributed considering its symmetry about zero (Fig. 3a). As shown in Fig. 6c, the positive tail 311 

diminishes with increasing sampling duration  so the relative deviation δ(Δτ)i at x = 0.8h 312 

tends to be normally distributed. It is also found that increasing the sampling duration  313 

narrows the range of the sample mean concentrations  
i

C  . On the contrary, the extreme 314 

sample mean concentration C()max rises sharply with shortening sampling duration.  315 

 316 

Figs. 6d, 6e and 6f depict the frequency distribution of the absolute relative deviation 317 

|δ()i| at the three sampling locations. As shown in Fig. 2a, the fluctuating concentration 318 

intensity I at x = 0.2h and 0.5h is lower than that at x = 0.8h. It is thus implied that at x = 0.2h 319 

and 0.5h (Fig. 6d, 6e), the fraction of the data close to the population mean C , such as |δ()i| 320 

 10%, is much higher than that at x = 0.8h (Fig. 6f) for the same sampling duration . Taking 321 

the data subset with sampling duration  = 160t as an example, almost 90% and 60% of the 322 

absolute relative deviation |δ()i| are less than 10% at x = 0.2h and 0.5h, respectively. On the 323 

contrary, only 20% of |δ()i|  10% at x = 0.8h where the fluctuating concentration intensity 324 

I is much larger. However, the fraction of instantaneous dimensionless concentrations 325 

 C t    within the same range is only 50% at x = 0.2h, 20% at x = 0.5h and 10% at x = 326 

0.8h. It is hence suggested that for the region close to the tailpipe with low fluctuating 327 

concentration intensity I, more accurate sampling is achievable using a shorter sampling 328 

duration . The difference in the sampling accuracy |δ()i| between x = 0.2h and x = 0.8h 329 

reduces after applying a longer sampling duration . It is because more short-term extremities 330 

are filtered out.  331 
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    332 

 Fig. 7 Coefficient of variance CV() for instantaneous concentration (Δτ = Δt) and sample 333 

mean with (a) sampling duration Δτ = 10Δt; 40Δt; and 160Δt along the sampling line 334 

together with (b) different sampling duration Δτ at the selected sampling locations. 335 

 336 

It is observed that increasing the sampling duration  reduces the uncertainty (Fig. 7a) 337 

in the entire major recirculation. The improvement is more obvious in the range of 0.6h ≤ x ≤ 338 

h where the concentrations are highly fluctuating in response to the underbody flows and 339 

sideward entrainment (Fig. S1). Although the sampling duration is extended to Δτ = 160Δt, the 340 

uncertainty in sample mean concentration for x  0.6h soars. Such a phenomenon is attributed 341 

to the instantaneous fluctuating dimensionless concentration Ci - C  in 0.6h  x  h that is 342 

tightly driven by the eddies in the major recirculation. Their effect is not negligible unless the 343 

sampling duration  is longer than the turbulence time scales. The coefficient of variance 344 

CV() decreases with increasing sampling duration Δτ (Fig. 7b). Its diminishing gradient 345 

indicates the importance of sampling duration Δτ to accuracy. Given a sufficiently long   346 

160Δt, the curves flatten so the sampling uncertainty is negligible. Further increasing the 347 

sampling duration Δτ, however, leads to costly measurement but limited accuracy improvement. 348 
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 349 

Fig. 8 Fraction k() of instantaneous concentrations and sample mean concentrations whose 350 

relative deviations are within ±15% (|δ()i|  15%). (a) Along the sampling line behind 351 

the tailpipe and (b) with different sampling duration Δτ at the sampling locations.  352 

 353 

  A key question is how long the sampling duration  is sufficient for reliable plume 354 

chasing. For demonstration purposes, the range of reliable sample mean concentration  
i

C   355 

is herewith defined as ±15% of the population mean C , i.e. |δ()i|  15%. The fraction k() 356 

of data sample within this range is compared in Fig. 8. The minimum sampling duration 357 

enabling a reliable sample mean is defined as the shortest averaging time under which k()  358 

90% (Li et al. 2017). The fraction k() for different sampling duration  decreases in the 359 

streamwise direction until x = 0.6h that remains at a low level thereafter (Fig. 8a). When 360 

adopting the (longer) sampling duration of Δτ = 160Δt, the data subset for sampling locations 361 

x  0.4h fulfils the 90% criteria but not for x  0.6h where k() is only about 40%. Therefore, 362 

plume chasing targeting within x ≤ 0.6h enables more accurate measurements for the same 363 

sampling duration . Indeed, the uncertainty could be further reduced if the sampling points 364 

are closer to the tailpipe. The acceptable sampling duration Δτ is shortened to 40Δt at x = 0.2h 365 

that is reduced by 5 times compared with 220Δt at x = 0.5h (Fig. 8b). Whereas, the 90% 366 
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criterion is not achievable at x = 0.8h for the range of sampling duration  tested. Unlike the 367 

other two sampling points, the dispersion at x = 0.8h is more affected by energetic eddies whose 368 

influence is hardly eliminated by averaging over a finite sampling duration. It is noteworthy 369 

that the sampling duration in the current sensitivity test is limited to Δτ ≤ 320Δt to ensure 370 

validity (Fig. 8b). Otherwise, the number of sample mean would be insufficient, degrading the 371 

subsequent error analysis of sample mean. Similar concern was reported elsewhere (Janik et al. 372 

2012). 373 

 374 

  3.3 Fast Fourier Transform 375 

Fast Fourier Transform (FFT) is adopted in this study to investigate the frequency 376 

characteristics of the tailpipe dispersion within the near wake. It transforms the data from time 377 

domain to frequency domain, providing the power associated with different frequencies 378 

(Richards 2003). Fig. 9 shows the power spectra of relative deviations of instantaneous 379 

concentrations δ()i at the three sampling locations. The frequency is normalized in the form 380 

of Strouhal number St = fd/U where f is the frequency and d the trunk width (McArthur et al. 381 

2016). The power generally increases with increasing frequency in the low-frequency regime, 382 

reaches its maximum in 0.03 ≤ St ≤ 0.1 and decreases thereafter. It finally keeps at a low level 383 

(≤ 10-3) for St  1. The unsteadiness in concentration is directly affected by the flow 384 

intermittency. Therefore, the spectra obtained from the concentration data help identify the 385 

dominant scales in the near-wake region.  386 
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Fig. 9 Power spectra of relative deviation δ( = Δt)i for instantaneous concentrations at the selected sampling locations at x = (a) 0.2h; (b) 0.5h; 

and (c) 0.8h. Also shown in (c) are the power spectra of relative deviations δ( = 40Δt)i for sample mean concentrations over Δτ = 40Δt 

obtained by moving average and the corresponding sample frequency f = 1/Δτ = 1/40Δt (dark solid line). The primary and secondary 

peaks for  = t are highlighted (circles in (c)).  

 387 

 388 

 389 
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The pollutant transport for x  0.6h is mainly driven by the jet-like flows from the 390 

vehicle underbody (Fig. S1a).  Therefore, the low-frequency motions, which is peaked at St = 391 

0.033, are more energetic (Fig. 9a and 9b). At x = 0.8h, a primary peak and a secondary peak 392 

are shown at St = 0.084 and St = 0.19, respectively (Fig. 9c). Alike Volpe et al. (2015), the two 393 

peaks are attributed to the wake pumping of major recirculation (St = 0.08) and the vortex 394 

shedding initiated at the two vertical edges of the vehicle (St = 0.19). Wake pumping is the key 395 

component in the unsteady recirculation. It is induced by the wake lengthening and shortening 396 

in response to the increasing entrainment into the near wake together with the vortex shedding 397 

induced by the major recirculation (Richards 2003, Rao et al. 2019). 398 

 399 

The power spectra of relative deviation of the instantaneous concentrations δi and the 400 

sample mean concentrations δ( = 40Δt)i are compared to examine the effect of moving 401 

average in the frequency domain (Fig. 9c). In fact, moving average applies a low-pass filter on 402 

the data in the time domain. It damps out the signal with frequency higher than 1/Δτ (cut-off 403 

frequency). The power of low-frequency signal is less affected. The power spectral density 404 

(PSD) of sample mean obtained by moving average decreases by a factor of sin2(f)/(f) 405 

compared with the original ones. The difference diminishes when the product of frequency f 406 

and duration  is larger than unity (Arya, S. P., 1999). As shown in Fig. 9c, the sampling 407 

duration, which can capture the dominant frequency at x = 0.8h, should be higher than 70Δt. 408 

Such sampling duration is roughly the transition point for CV() to stabilize with increasing 409 

  (Fig. 7). More high-frequency signals could be averaged out with longer . If  is long 410 

enough to capture the dominant frequency (signals with most energy), the improvement in 411 

measurement accuracy would be slowed down. The results suggest that a short sampling 412 
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duration Δτ only captures the high-frequency signal. Sampling signal of dominant frequency is 413 

crucial to the measurement accuracy of mean concentrations. 414 

 415 

It is known that the spectra of fluctuating concentration depend on the distance from 416 

the point source (Mylne and Mason 1991). In the vicinity of a tailpipe, the turbulence 417 

characteristic length scale (wake-induced) is usually longer than the plume width (Xie et al. 418 

2007), resulting in plume meandering. Eddies dominate the transport as long as the plume 419 

coverage is comparable to or larger than the turbulence characteristic length scale. Trunk 420 

dimension is the characteristic length scale in the near-wake region after a heavy-duty vehicle. 421 

The plume transport is mainly driven by the vehicular wake, especially the wake pumping and 422 

the vortex shedding from the longer trunk edges.    423 

 424 

3.4 Implication to plume chasing 425 

The results reported above collectively show that, in plume chasing deployment, 426 

increasing the sampling duration helps filter out parts of fluctuating signal as well as reduce 427 

sampling uncertainty. The sample mean often fluctuates substantially for a short sampling 428 

duration. As such, it would possibly deviate much from the population mean. The sample mean 429 

varies less with extending sampling duration. Therefore, a longer sampling duration is more 430 

favourable for a reliable sample mean as well as the tailpipe emission. As shown in the 431 

frequency analysis, the sampling accuracy could be affected by the dominant frequency. If the 432 

sampling duration is long enough to capture the signal at the dominant frequency (inverse of 433 

sampling duration smaller than the dominant frequency), the sampling accuracy would be 434 

improved substantially. An even longer sampling duration, which is longer than the inverse of 435 

the dominant frequency, however, would slow down the improvement in sampling accuracy. 436 
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The threshold sampling duration is defined as the shortest time period over which the fraction 437 

of data sample satisfying |δ()i|  15% reaches 90%. The threshold sampling durations are 438 

40Δt and 220Δt, respectively, at x = 0.2h and x = 0.5h after the truck. However, it is much 439 

longer at x = 0.8h that is beyond the range of sampling duration being investigated in this paper. 440 

For a 4-m-high truck driving at a speed of 10 m sec-1, the sampling duration should be at least 441 

2.4 sec at x = 0.8 m or 13.2 sec at x = 2 m. A shorter sampling duration is required to obtain a 442 

reliable sample mean in the region close to the tailpipe. In view of the elevated fluctuating 443 

concentration intensity in the region after x = 0.6h, a longer sampling duration is needed. 444 

Therefore, in the plume chasing after a heavy-duty vehicle, it is suggested to sample within the 445 

region x  0.6h. Moreover, the measurements would be more reliable if the sampling point is 446 

closer to the tailpipe. 447 

 448 

4. Conclusions 449 

 450 

 In order to investigate the effect of sampling duration  on vehicular pollutant 451 

measurement, LES is carried out for a heavy-duty vehicle to collect the spatio-temporal 452 

behaviours of pollutant concentrations at the tailpipe level within the near-wake region. The 453 

sampling uncertainty is then examined by statistical analysis. Based on the results reported 454 

above, the conclusions could be drawn as follows.  455 

 456 

 Within the near-wake region, the fluctuating concentration intensity I increases slowly for 457 

x  0.6h. It experiences a sharp increase thereafter due to the augmentation of fluctuating 458 

concentration by the major recirculation. Afterward, a positively skewed distribution after 459 
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x = 0.6h is developed, indicating that the instantaneous concentrations could have a notable 460 

deviation from the population mean C . 461 

 A longer sampling duration would result in the loss of the high-frequency fluctuating 462 

components, leaving the low-frequency signal. Thus, the coefficient of concentration 463 

variance CV() would decrease with increasing sampling duration (i.e. more accurate 464 

sample mean). However, the improvement in sampling accuracy gradually diminishes if 465 

the sampling duration is longer than 160Δt. It is noteworthy that, even a long sampling 466 

duration is adopted, the sampling accuracy degrades for x ≥ 0.6h because of the elevated 467 

fluctuating concentration intensity I. 468 

 Sampling duration also affects the distribution of sample mean concentration C (Δτ)i. For 469 

a longer sampling duration, the maximum sample mean C (Δτ)max and the minimum C470 

(Δτ)min approach the population mean C , improving the sampling accuracy. However, the 471 

improvement lessens for prolonging sampling duration Δτ. Increasing the sampling 472 

duration helps the distribution of sample mean C (Δτ)i that is alike the normal distribution 473 

with increasing sampling duration. 474 

 The minimum sampling durations are 40Δt at x = 0.2h and 220Δt at x = 0.5h. However, at 475 

x = 0.8h, the minimum sampling duration is even longer than the entire time period T being 476 

collected in this study. A shorter sampling duration is needed to acquire a reliable sample 477 

mean concentration in the region close to the tailpipe. 478 

 From the FFT analysis, it is found that the variance of sample mean is attributed to the 479 

signal with frequency lower than the sampling frequency (= 1/Δτ). This indicates that 480 

sampling at the dominant frequencies could reduce the sampling uncertainty to a large 481 

extent. 482 

 483 
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The aforementioned findings collectively enrich our understanding of how the sampling 484 

uncertainty of plume chasing varies with the sampling duration  behind the tailpipe within 485 

the near-wake region. In this study, the variation of uncertainty is mainly attributed to the 486 

pollutant source and the turbulence of vehicular wake. In practice, vehicular emission in the 487 

wake region could also be affected by some other factors, such as engines, acceleration, and 488 

brakes. This paper only focuses on the turbulence effect induced by the vehicle body. Further 489 

studies could combine with the sampling uncertainty in field measurements to advance the 490 

contribution from different factors. Although it is advised to sample pollutant concentrations 491 

within the near-wake region, practically the safe distance apart should be at least 10 m (≥ 2h in 492 

this paper). In this connection, it is worthy to look into the sampling accuracy beyond the near 493 

wake.    494 
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Supplementary Materials 661 

Table. S1 Nomenclature. 662 

Symbol Definition 

h, d Height and width of the trunk 

U Vehicle speed (inflow velocity in LES) 

t = 0.15h/U Time increment in LES 

 = (n - 1)t 
Sampling duration (averaging time in statistical 

analysis) 

n ( 1) Number of data samples in the sampling duration  

T Reference time interval (a longer time period) 

p Exponent of power law in Eq. (1) 

T = 510h/U Total sampling period (length of time-series data) 

i 
Pollutant concentration from the LES results (i is the 

index of data signal) 

  Mean concentration over the sampling duration  

Q  Pollutant emission rate (constant) from the tailpipe 

2

0 Q U h   Characteristic pollutant concentration 

0i iC    Dimensionless pollutant concentration 

 
1

0

n

i ji j
C C n




   Sample mean concentration obtained by moving 

average over  whose first data point starts at point i 

 
0i

C C T


    Population mean concentration over T  

   
i i

C C C       
 

Relative deviation between sample mean  
i

C   

and population mean C  concentrations 

   i ii
t C C C         Relative deviation of instantaneous concentration Ci 

   
1 2

1
2

0

N

i
i

CV N  




 
     

 
  Coefficient of variance in sample mean 

N 
Number of data samples in the subsets of sample 

mean  

k() 
Fraction of acceptable sample mean satisfying |()i| 

 15%  

I = CV(t) Fluctuating concentration intensity  

f Frequency of fluctuating concentration 

St = fd/U Strouhal number  
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 663 

 664 

Fig. S1 Shaded contours of dimensionless pollutant concentration Ci (= i/0) overlaid with 665 

streamlines on (a) x-z plane at the centreline (y = 0) and (b) x-y plane at the tailpipe 666 

level (z = 0). 667 

 668 


