
SONAR-BASED BURIED OBJECT DETECTION VIA STATISTICS
OF RECURRENCE PLOT QUANTIFICATION MEASURES
Joseph Milton, Benjamin Halkon and Sebastian Oberst
School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, Australia.
Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia.
e-mail: joseph.milton@uts.edu.au
Yan Kei Chiang and David Powell
School of Engineering & Information Technology, University of New South Wales, Canberra, Australia.

Active sonar has been successfully deployed for naval mine countermeasures (MCM) to detect, lo-
calise, and classify mines and mine-like objects (MLOs). One of the most challenging problems in
MCM operations is the detection and classification of (partially) covered objects; traditional image-
based sonar processing techniques cannot readily detect objects within the seabed. In this paper, a
processing technique that utilises recurrence plot quantification analysis, a class of nonlinear time
series analysis, is proposed for improved covered MLO detection in raw sonar signals. Recurrence
plots are binary, graphical visualisations of the recurrence matrix generated from time series data.
Following an embedding process to reconstruct a copy of the dynamics in phase space, recurrence
plot quantification analysis measures can be extracted and further statistically analysed. Using com-
putationally generated sonar signals extracted from simplified representations of real-world relevant
scenarios, this study explores the application of such an approach and its sensitivity to the user-defined
parameters for detecting the presence of an MLO, irrespective of the level of burial.
Keywords: Underwater acoustics, Recurrence plots, Buried object detection

1. Introduction

Since the early 20th century active sonar-based techniques have been widely used for underwater
object detection and localisation, with application across military, commercial and scientific industries
[1]. However, with the ever-increasing threat posed by naval mine warfare due to the vast number of
unrecovered mines, both historic and present day [2, 3], mine-like-object (MLO) classification is becom-
ing increasingly important, particularly in the cluttered littoral environment. In recent years, numerous
sonar scanning and signal processing techniques have been proposed which aim to increase the accuracy
of MLO classification [4]. Such techniques often rely on high resolution sonar imagery to visually de-
tect and classify MLOs based on their outer geometry [4, 5]. However, a persistent challenge for these
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image-based techniques remains detection and classification of MLOs when embedded within the seabed
as the sediment masks identifiable features.

To try to overcome this challenge, previous work has explored the use of lower frequency sonar
(2 - 20 kHz) to enhance the detection and classification of buried and partially buried MLOs [6, 7, 8].
Lower frequency sonar is better able to search beneath the sea floor as it can more readily penetrate
the sediment [9]. However, due to the longer wavelengths of low frequency sonar, these techniques can
struggle to create sufficiently high-resolution sonar images for image-based classification. The lower
frequencies are, however, better able to excite strongly scattering structural resonances within man-made
structures, including MLOs. This scattering yields information about the dynamics of the MLOs which
can be effectively used for object classification, often with reference to a large database of known acoustic
scattering responses [10]. Much of the previous work in this area has investigated exploiting the temporal
and spectral features of the returning sonar time series to detect and classify MLOs. However, these
features do not reveal all of the useful information contained within the time series.

Nonlinear dynamics tools and complexity measures, in particular nonlinear time series analysis
(NTSA), could provide insights into the contents of sonar time series that the temporal and spectral
methods may miss, especially when contaminated with noise [11]. NTSA studies the dynamics of a sys-
tem in some multidimensional phase space where all possible states of a system are represented along
phase space trajectories [12, 13]. Using this phase space it is possible to quantify certain dynamically
invariant properties of a system based on temporally discretised realisations of individual trajectories.
Thanks in particular to higher performance computing and storage in recent years, the technique has
found its way into numerous fields of research [14, 15, 16, 17, 18]. Numerous conceptual approaches
have been proposed to interpret these phase space trajectories. However, in this paper, recurrence plots as
suggested by Eckmann et al. [19] and their quantification analysis (RQA) as further developed by Zbilut
and Webber [20], then by Marwan et al. [21] are considered1. Section 2 will provide a detailed review of
NTSA and RQA.

In this paper, a signal processing approach that uses RQA to enhance the detection of MLOs within
sonar time series is proposed. Inspired by the study of femoral bone impaction in biomechanics [22],
this initial study will demonstrate, through statistical analysis that several RQA measures are sufficient
to significantly differentiate simulated sonar time series, developed based on work in [23], that contain
buried target scatter from those that do not. While this study provides an early proof of concept, it is
believed that by using RQA measures, additional insightful features of MLOs can be extracted from
sonar time series. Such features could include the MLO material type or thickness and may remove the
reliance on vast, detailed MLO databases, thereby making the processing robust to potential variability
in the MLO scattering signature.

2. Nonlinear time series analysis

The nonlinear time series analyses presented in this paper are based on the theory of dynamical sys-
tems; that is, the time evolution of a system is defined in some phase space [12]. In the multidimensional
phase space, all possible states of a system are represented along phase space trajectories, with each
possible state corresponding to a unique point along the trajectory. Using the phase space, one can quan-
tify certain dynamically invariant properties of a system based on temporally discretised realisations of
individual trajectories [12]. In reality, as is the case in this paper, measurement data are limited to a
finite number of scalar points in a time series; the phase space must therefore be reconstructed from the

1A comprehensive bibliography of RPs with theory and applications can be found here http://www.recurrence-
plot.tk/bibliography.php
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available discrete time series. State vectors can be reconstructed from scalar measurements by means of
the delay embedding technique [12, 13, 21]. Delay embedding essentially rearranges a scalar time series,
e.g., x(tn), into m-variate delay vectors, which can be defined through x(tn) as

x(tn) = [x(tn), x(tn + τ), ..., x(tn + (m− 1)τ)], (1)

where τ and m are the time delay and embedding dimension, respectively. These are calculated (in this
study) using the first minimum of the auto-mutual information and the false nearest neighbour of the time
series, respectively [12].

2.1 Recurrence plots

The work in this paper focuses extracting useful information from phase space trajectories by utilising
the concept of recurrences. The recurrent states of the trajectory xi can be represented graphically by the
binary recurrence matrix [21]

Ri,j(ε) = Θ(ε− ||xi − xj||), i, j = 1, ..., N, (2)

where N is the number of measured points, ε is a threshold distance which defines the size of the
neighbour a trajectory must revisit to be considered recurrent, and Θ(·) is the Heaviside function (i.e.
Θ(x) = 0, if x < 0, and Θ(x) = 1 otherwise). Thus for states that recur within an ε-neighbourhood, the
recurrence matrix is defined as

Ri,j =

{
1 : xi ≈ xj,

0 : xi ̸≈ xj,
i, j = 1, ..., N. (3)

In this study, the neighbourhood is defined using the fixed amount of neighbours (FAN) [15, 21].

2.2 Recurrence quantification

From the topological features of recurrence plots a variety of quantitative measures which relate
to characteristics of the system can be extracted. This conceptual framework is known as recurrence
quantification analysis (RQA) and has been widely used for real-time, time series analysis [24]. Several
recurrence quantities have been highlighted as potentially useful for the detection of MLOs. In the
following, similar to [22] where embedding parameters have been analysed, an approach that carries out
statistical analyses using six recurrence quantities will be explored for the detection of MLOs in a range
of simulated sonar time series. Table 1 lists the six recurrence quantities that will be used in this paper
and provides a short description of what each represents in relation to the recurrence plots and the phase
space.

3. Simulation based study

The acoustic scattering from five scenarios is evaluated using a finite element model. Each scenario
represents a simplified potential underwater environment that MCM operations might encounter, i.e.,
empty seabed (no MLO), MLO sitting proud on the sea floor or MLO at some level of burial within the
seabed. Figure 1 shows a cross-sectional schematic of the five scenarios investigated in this paper. From
multistatic sonar scatter evaluated using these models, the six recurrence quantities defined in Table 1
are calculated and a statistical analysis is carried out to determine whether significant differences exist
between the five datasets.
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Table 1: List of six RQAs with a short description of what each represents in relation to recurrence plots
and phase space.

Variable Description

Determinism (DET )
Relates to the percentage of recurrence points that form diagonal lines
(non-tangential motion)
Measures predictability

Entropy (ENTR)
Entropy of the diagonal line length
Decreases as the number of diagonals does

Laminarity (LAM )
States which remain fairly constant
Relates to vertical lines (tangential motion)

Mean line length (< L > )
Relates to the average diagonal line length
Decreases as a result of shorter average periods

Max line length (Lmax) Maximal diagonal line length
Max vertical line length (Vmax) Maximal vertical line length

Seabed

(a) Absent

Seabed

Target

(b) Deep-buried

Seabed

Target

(c) Flush-buried

Seabed
Target

(d) Half-buried

Seabed Target

(e) Proud

Figure 1: Cross-sectional schematics depicting the five simulated scenarios used to generate sonar time
series for the analysis.

3.1 Simulation setup

Earlier work produced analytically validated FE models for spherical shells scattering within different
fluid media [23]. In the work described here, these were developed further for a spherical stainless steel
shell of radius 50 mm and thickness 0.55 mm using full-wave simulations in COMSOL Multiphysics.
The interface between the seawater and the seabed has been modelled, with the shells positioned either
side of, or embedded within, the seawater-seabed interface, according to the five scenarios in Fig. 1.
The seawater and seabed domains were modelled using the Pressure Acoustics and Poroelastic Waves
modules, respectively. The Solid Mechanics module was used to model the structural response of the
shells. To enforce the Sommerfeld radiation condition, perfectly matched layers (PMLs) surrounded
both domains. All scenarios modelled were axially symmetric, enabling three-dimensional solutions
to be approximated with the reduced computational cost of performing two-dimensional, axisymmetric
simulations. Figure 2 shows a schematic of the modelled geometry for a shell positioned just beneath the
seawater-seabed interface, i.e. flush-buried case.

The modelling was implemented in the frequency domain with the outbound (i.e. to the target) sonar
taking the form of a plane wave normal to the seabed. The pressure waves were chirped from 2 - 20 kHz
in 20 Hz increments to propagate through the fluid domain with unit amplitude. The scattering spectra
were evaluated at 46 evenly spaced positions along a half-circular arc 1 m from the surface interface.
The scattering spectra were multiplied in the frequency domain by a model of the incident sonar pulse
with the resulting products inverse Fourier transformed to obtain time series. A linear, 3 - 7 kHz swept
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Figure 2: Schematic of half the spherical numerical model geometry.

cosine chirp, was used as the sonar pulse since the work in [23] indicated that this range excites strongly
scattering target resonances whether proud or buried. The resulting time series signals were then matched
filtered to enhance the scattered sonar returns that contain the target resonances. Figure 3 shows an
example of the scattered pressure evaluated along the arc at 37.5◦ from the horizontal for the absent and
proud scenarios. It can be observed that the introduction of the target results in a very subtle difference in
the scattered pressure time series; differences become increasingly hard to notice as the target becomes
further buried.
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Figure 3: Scattered pressure evaluated for the model with no target vs. the model with proud target.

3.2 Statistical analysis using recurrence quantities

In this section, the results of statistical analyses, which use recurrence quantities to distinguish sonar
returns containing target scatter from returns without, are presented. The six recurrence quantities listed
in Table 1 have been calculated at each of the 46 evaluation points for all five of the scenarios shown in Fig
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1. To establish if significant differences exist between the datasets, the recurrence quantities are grouped
for each scenario and then analysed using one-way ANOVA tests [22]. These are then combined with
a Tukeys test of significant difference multi-compare procedure, which was chosen as it is optimal for
balanced one-way ANOVA tests with equal sample sizes, as is the case here. Figure 4 shows the results
of the statistical analysis for each recurrence quantity. Each of the plots in Fig. 4 show the mean value
of each recurrence quantity and their 95% confidence intervals, for each scenario. Two group means are
significantly different if their intervals do not overlap; they are not significantly different if the intervals
do overlap.
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Figure 4: Results of the one way ANOVA tests for the recurrence quantities in each scenario. The group
means are represented by a circle and the 95% confidence interval by a line extending out from the circle.

The results in Fig. 4 show that, for all six recurrence quantities, there is no overlap of the confidence
intervals when a target is absent vs. when a target is present, irrespective of the level of burial. This
indicates a significant difference between the mean values of these recurrence quantities. Further, in the
simulations where a target is present, the mean value of the recurrence quantities cluster, showing no
significant differences and indicating that there are commonalities in the time series which are picked up
using RQA. This important finding demonstrates the potential for the use of RQAs in this way for the
detection and classification of buried MLOs.
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4. Conclusions

The concept of quantifying recurrence properties in phase space to characterise dynamical systems
has recently attracted considerable interest and has been successfully applied to many real-world prob-
lems [16, 22]. The work in this paper has investigated the potential of using RQA to enhance the detection
of buried and partially buried MLOs in sonar time series. The results showed that, using six recurrence
quantities, there were significant differences between the mean values when a target is present, irrespec-
tive of the level of burial, vs. when the target is absent. Furthermore, no significant differences were
found between the scenarios where a target was present, thereby indicating commonalities in the time
series that may be exploited for target detection and classification. The next steps, which are currently
ongoing, will be to investigate the robustness of the proposed MCM processing technique using both sim-
ulated and experimentally obtained datasets. Further work will look to utilise reconstructed recurrence
quantity time series to enable classification of MLOs, i.e. to differentiate between targets with different
properties in like scenarios.
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