Partial Reflections: Interactive environments for musical
exploration

Andrew Johnston, Ben Marks, Linda Candy & Ernest Edmonds

This paper describes an ongoing project to develop interactive environments for
musicians that encourage musical exploration. A process of developing software
such as this, where requirements are highly dynamic and unclear is outlined and
two musical compositions and associated interactive environments entitled 'Partial
Reflections' are described.

environments, targeted at musicians, that encourage musical

exploration. This work is practice-led, in that we aim to identify

successful and unsuccessful design criteria by developing these
environments concurrently with musical compositions, reflecting on the
process of their design and having musicians provide feedback on their
effectiveness. This paper describes some of the strategies we have used
to attempt to engage users of our software and stimulate creative
exploration.

In this paper we describe ongoing work to develop interactive

1. Past work

There are, of course, a very large number of applications designed for
musicians, including software for editing recorded music, transforming
live music in real-time, notating music, teaching aural skills, etc, etc.
Many of these applications are in wide use in many contexts, including
recording and teaching studios, classrooms, live performances and
individual practice. Therefore, in order to clarify the focus of the work
described in this paper, we state here that we are interested in software
that:

® responds in real-time. That is, it responds directly and
immediately to live audio input;

® provides some kind of audio-visual representation of or response
to the music;

® s suitable for use by individual musicians in performance and
practice;

® encourages musical exploration; and

® may also be suitable for use as a teaching aid.

There is a body of past work that broadly fits these categories although

it is not as comprehensive as the body of work in areas such as digital
recording and editing software for example. It is possible to group
existing real-time musical/visual software into two broad categories.
Firstly, there are those which attempt to provide unambiguous feedback
to the musician so that they may discover characteristics of their playing
they were unaware of. This software acts like a teacher who "tells it like
it is" as the musician plays. Just as an electronic tuner, for example,
provides musicians with feedback on whether or not they are in tune
relative to the equal-tempered scale, computer software can provide this
information and more on screen. Such software usually produces visual
representations of the musical input in the form of graphs, spectrograms
and other well-known mathematical visualisations.

The program "Sing and See" (Thorpe 2002) uses this style of display,
including real-time graphs showing pitch and harmonic characteristics of
live audio. As the name suggests, this software is intended to provide
singers and their teachers with visual feedback to enhance their
understanding of their performances. Other programs such as Voce Vista
(Miller and Schutte 2002) and WinSingad (Langner et al. 2000) have
similar features and visual style.

The second type of software has less defined goals. Whereas the
'unambiguous feedback' software aims to provide the musician with
impartial measurements of their playing, this software is instead
intended to stimulate musical exploration and responds to live music in
more unusual, evocative, and ambiguous ways. Software of this type is
sometimes found in interactive artworks or electro-acoustic performance
pieces.

An example is the "Singing Tree" by Oliver et al. (1997), which, like
"Sing and See", provides a visual response to live singing but with a
very different style. Singers using this program (designed as an
interactive installation for a gallery) sing into a microphone which is
connected to a computer. If the singer produces a stable pitch, then a
video is played which gives the impression of moving forwards towards
an identifiable goal- an opening flower for example. If a steady pitch is
not maintained the video reverses. In addition to the visuals, audio
accompaniment is also provided- the steady pitch being accompanied by
consonant string, woodwind and vocal harmonies and unstable pitches
by dissonant, percussive sounds. This style of software is specifically
intended to encourage a playful approach to music making.

We do not suggest that one style is superior to the other and expect that
many musicians will find a place for both styles of software in their
practice. No two musicians approach their art (and craft) in exactly the
same way, and individual musicians take different approaches at
different times in their practice, so there is unlikely to be one 'super tool’
which will suit all musicians at all times. Our work, however, is of the

type that aims to stimulate exploration rather than provide unambiguous
feedback.

2. Goals of our work.

Our aim is to develop software that provides a supportive environment
for musical exploration. We use the broad term 'musical exploration’
deliberately so as to include improvisation as well as more formally
composed music. Also, this exploration may take place in different
contexts - in the privacy of the practice studio, in live performance or in
teaching for example.

The work we describe here is a result of a collaboration between a
composer/musician (the 'composer') and a technologist/musician (the
'technologist'). The composer has a masters degree in composition and
performance, specialising on the trombone. In addition he has
extensive professional experience in a wide range of musical ensembles,
including contemporary music ensembles and symphony orchestras.
The technologist has an undergraduate degree in music performance
(also trombone) and professional performance experience in many
ensembles. He has also completed a masters degree in computing and
currently works as a lecturer in a faculty of Information Technology.

An important realisation at the outset was that there are no clear pre-
existing requirements for software of this kind. Literature on creativity
support provides high-level guidelines (eg. Nickerson 1999) but this is
not a well-defined problem awaiting technical solution. Rather, the
problem of developing software for encouraging exploration in musicians
would itself seem to demand an exploratory approach.

Because of this, we take a design approach that draws on participatory
design and agile software development techniques and philosophies.
Namely, we engineer a situation where musical compositions and
software co-evolve. This works as follows:

1. Potentially interesting ideas are brainstormed.

2. Initial simple prototype 'sketches' of interactive musical
environments are produced.

3. The composer explores these sketchy prototypes by
improvising with them and developing the improvisations into
initial compositional sketches.

4. Further refinements to the software are suggested by the
composer as he develops his composition and as these
refinements are implemented, they in turn cause him to modify
and expand on the composition.

The outcome of this iterative process is a composed piece of music for
trombone and interactive software. In addition, by carefully

documenting and reflecting on the process we identify characteristics of
the design of the software that seem to aid musical exploration and
engagement.

This exploratory design method is in contrast to the ‘'waterfall” approach
to software development where the requirements and design are
decided up front and the software development does not commence
until it has been decided exactly what will be built. This approach is
problematic in situations such as ours when requirements are highly
dynamic and unclear, as evaluation and feedback can only take place
once the software has been completed. The iterative approach to
development instead recommends developing the software in small
chunks and refining the design and requirements based on frequent
feedback and direct design input from users. This is the approach
recommended by the so-called ‘agile’ software development methods
(Beck 2000, Cockburn 2002) among others.

3. Use of virtual physical models

We began to use physical models as the basis of our software very early
on in the project. The term 'physical models' in this sense does not
refer to actual physical objects that exist in the real-world, but rather to
the building of 'virtual models' made up of masses and links that move
around the computer display.

During the development of our work work, we hit upon a particular style
of interactive music software which made use of physical models
(Momeni 2006, Henry 2004). In this approach, the software
incorporates a physical model which may be thought of as a kind of
virtual sculpture. The software designers build the sculpture by
positioning various masses in virtual space and specifying their physical
qualities such as mass. They may also link these masses together with
virtual 'springs' of certain lengths, rigidity, etc. Because this sculpture
obeys the laws of Newtonian physics, it responds in ways that appear
natural when forces are applied to it. In our case, the forces are
mapped to characteristics of the music that is played. So, for example,
if the loudness of the input sound is mapped to the quantity of force
exerted on the sculpture then playing a loud note will cause a large
amount of force to be applied to the model and, depending on it's
structure, it may bounce around the screen, change shape and so on.
In our work, these movements also cause the computer to output
sounds.

To put it simply, the musician's live sound exerts force on parts of the
physical model/virtual sculpture which causes it to move in physically
plausible ways. Figure 1 shows a high-level view of how this works.
Note that while it does not necessarily have to be the case, in our work
the visual output is a direct representation of the physical model itself.

The intention is that the musician has a feeling of direct control over the
“virtual sculpture' with their playing and that the audience (in situations
where there is an audience) can readily perceive this.

Musical
feature
extraction

@

Model

Audio
output

Figure 1 - Block diagram showing the use of a physical model to map between
musical input and audio/visual output.

We took the decision to use physical models as the basis of our software
for a number of reasons. The most important in terms of providing an
engaging experience for musicians using the software appear to be:

® The musician has a feeling of control over the visuals, and
through the visuals, the sounds produced by the computer;

® There is a readily apparent link between the acoustic sound and
the computer-based audio-visuals';

® Because the models respond in the same way as everyday
physical objects, the behaviour of the models is intuitively
understandable by the musician;

® Because the movements of the model which produce sound are
based on realistic physical motions, the resulting sounds have
an 'organic' quality.

4. Partial Reflections 1

The piece we describe in this paper is a two movement work entitled
'Partial Reflections'. The first movement of this work has been described
in detail elsewhere (Johnston, et al 2005), but we provide a brief
overview here to contextualise the fuller description of the second
movement which follows. The virtual physical model which forms the
basis of the software for this movement is a simple structure comprising
12 spheres linked together by elastic 'springs' (figure 2).

XEHE

)
o

DEO@E@RO@@EE

HC

Ha(m(

=
s

@

Figure 2 - The physical model for Partial Reflections I

Each sphere in the model is associated with a particular pitch-class (or
note) and by playing into the microphone connected to the computer the
musician can exert forces on the model. If the player plays a G for
example, then the sphere at the bottom of the model is pushed with a
force that is proportional to the volume of that note. When no notes
sound the model returns to its resting position, hanging down from the
top of the screen.

Movements of the spheres also cause audio to be output by the
computer. The software stores the frequency of each note played by the
musician and this frequency is associated with the appropriate sphere.
For example, if the musician plays an A with a frequency of 440Hz, then
the A sphere is assigned that frequency. If they subsequently play a
lower A with a frequency of 220Hz then this replaces the value of 440Hz
previously assigned to the A sphere. As the spheres move around, they
generate pitches at their assigned frequency. The faster they move, the
louder their pitch sounds.

The effect of this is that by carefully selecting pitches and volumes the
composer can influence the timbre (or tone) of the computer output. As
such, the music which was composed for this software and trombone
(or, perhaps more precisely, trombone augmented by this software)
made much use of mutes and instrumental techniques such as
multiphonics in order to generate many different timbres and explore
the effect of these on the visual behaviour of the model and on the
resulting sounds.

5. Partial Reflections I1

Overall, the first movement is slow and smooth and emphasises
changing timbres. In contrast, we wanted the second movement to
have strong rhythmic drive, be energetic and generally have a 'spikey'
character. The decision was therefore made that, unlike the first

movement with its emphasis on longer notes with changing timbres, the
software for second movement would ignore all sounds other than the
very beginnings of notes - the moment of articulation or 'attack'.
Because the trombone has a very large range of potential styles of
articulation, this still leaves the musician with considerable room for
exploration.

The underlying physical model for the software for this movement is
again quite simple, and again comprised 12 spheres - each one
associated with a pitch-class®>. Each sphere is linked to a fixed central
point with a very short 'spring'. Figure 3 shows the arrangement. The
model is configured so that as soon as the software is started the 12
spheres begin oscillating very rapidly about the fixed point. In this
initial state the length of the springs is so short that it is not really
possible to see how many spheres there are (see figure 4).

Figure 4 - Photograph of performer and visual display just before playing
commences.

When the performer plays, the computer detects the onset of the note
(ie. the moment of articulation) and determines its pitch class and
volume. These are used to direct force onto the physical model, with
the pitch-class selecting which sphere will have force applied to it and

the volume determining how much force is applied. The louder the
detected note, the greater the force.

Force is always directed in the direction that will cause the sphere to
spin anticlockwise. For example, if the sphere is currently positioned at
"3 o'clock" then the force will be directed in an upwards direction. If it is
positioned at "2 o'clock" then force will be directed both an upwards and
to the left. The effect is that by playing notes the musician can spin the
spheres anticlockwise around the fixed point. The louder they play each
note, the faster the associated sphere will spin.

As a result of the spheres spinning more rapidly, they are pushed out
from the central point. To illustrate, if the performer were to play a
series of short, loud Cs, then the C sphere would rapidly accelerate and
move out into a higher orbit around the central point. When the
performer stopped playing Cs, it would gradually spin back down to the
central point. (In our model the friction is very low, so the spheres
rarely if ever stop spinning completely. When force is stopped they
instead obit rapidly at a very low altitude around the central point.)

As with the first movement, the software for the second movement
produces sounds. We have stated earlier that the pitch-class of each
note is identified and that each spinning sphere is associated with a
particular pitch-class. The first 100ms of each note is recorded by the
software and is linked to a sphere. Each time the sphere completes a
half turn, the software plays back the recorded sound linked to that
sphere with one additional modification: the higher the orbit, the slower
the playback. The effect of slowing the playback is to lower the pitch of
the played-back note. So, if the sphere has a very high orbit (because it
has had a lot of force exerted on it) then the note that plays back every
half rotation will be pitched quite low.

An example may help to clarify this behaviour. When the software
starts the spheres are spinning rapidly around a central point at a very
low altitude. If the performer plays a Bb several things happen:

1. The Bb sphere has force exerted on it in proportion to the
volume of the Bb;

2. The first 100ms of the attack are recorded and associated with
the Bb sphere;

3. In response to the force, the Bb sphere is pushed out into a
higher orbit;

4. Every half turn, the 100ms of recorded Bb is played back, but
with pitch shifted down by an amount proportional to the
distance of the sphere from the central point;

5. When the performer stops playing Bbs the Bb sphere will
gradually spin back into the central point and as it does so the
pitch will gradually increase.

Musically, the notated composition developed along with this software is
fast-paced and makes use of many different types of articulation. In
addition to pitched notes, the performer also makes use of unpitched
percussive attacks at times (such as in the top line of music in figure 5).

By o = ~
Ton, gt] e ey
: Le 2 '!'IUI T 1 1 1 1 | | L 1

t tktk tkt k t tk h tkt h tk t kit k tss)

= = = > =t

£ S £, 2 e

Thn = : : o = i ig
Thn. ﬁ:-r‘:ﬁﬁ:kﬁdqlc‘g

Figure 5 - Excerpt from the second movement of 'Partial Reflections' for trombone
and interactive virtual sculpture..

6. Conclusions and future work

We have described in some detail two musical works that we have
developed as part of a project to design interactive environments that
encourage musical exploration. In the process, we have discussed the
need to take an exploratory approach to the design of the software itself
and have outlined some of the design criteria that have emerged so far.

Future work will involve evaluation of the existing software by a number
of musicians to see whether the environments we have developed really
do encourage musical exploration.

Notes

1 The compositions that emerged from the collaboration could from this
perspective be seen as solo works for 'augmented trombone' - a
trombone that has direct and clearly discernible sonic links to objects on
screen, which in turn have links to sounds produced electronically.

2 It is of course quite possible to divide the octave into more or less
than 12 pitch classes. To date we have stuck with tradition, but this is a
likely area for future experimentation.

Acknowledgements

Our thanks to the developers of Pure Data, GEM and Physical Modelling
for Pure Data (PMPD) for creating the software which made this work
possible.

This research/work was partly conducted within the Australasian CRC for
Interaction Design, which is established and supported under the
Australian Government’s Cooperative Research Centres Programme.

References

Beck, K. (2000), Extreme Programming Explained: Embrace Change, Addison-
Wesley, Reading, MA.

Cockburn, A. (2002), Agile Software Development, Addison-Wesley.

Henry, C. (2004), Physical Modeling for Pure Data (PMPD) and Real Time
Interaction with an Audio Synthesis, in Sound and Music Computing '04.

Johnston, A., Marks, B. & Edmonds, E. (2005), Spheres of Influence' - An
Interactive Musical Work, in Yusuf Pisan, ed., Interactive Entertainment (IE2005),
Creativity and Cognition Studios Press, Sydney, Australia, pp. 97-103.

Langner, J., Kopiez, R. & Stoffel, C. (2000), Realtime analysis of dynamic shaping,
in 6th International Conference on Music Perception and Cognition.

Miller, D.G. & Schutte, H.K. (2002), Documentation of the Elite Singing Voice,
online at http://www.vocevista.com/contents.html

Momeni, A. & Henry, C. (2006), Dynamic Independent Mapping Layers for
Concurrent Control of Audio and Video Synthesis, Computer Music Journal 30(1),
49-66.

Nickerson, R.S. (1999), Enhancing Creativity, in Robert J. Sternberg, ed.,
Handbook of Creativity, Cambridge University Press, Cambridge, pp. 392-430.

Oliver, W., Yu, J. & Metois, E. (1997), The Singing Tree: Design of An Interactive
Musical Interface, in Proceedings of Designing Interactive Systems, ACM Press New
York, NY, USA, Amsterdam, The Netherlands, pp. 261-264.

Thorpe, W. (2002), Visual feedback of acoustic voice features in singing training, in
Proceedings of the 9th Australian Speech Science & Technology Conference, 3-5
December 2002, Melbourne, pp.349-354.

