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Abstract

Meta-learning aims to leverage experience from previous tasks to achieve an
effective and fast adaptation ability when encountering new tasks. However,
it is unclear how the generalization property applies to new tasks. Probably
approximately correct (PAC) Bayes bound theory provides a theoretical
framework to analyze the generalization performance for meta-learning with
an explicit numerical generalization error upper bound. A tighter upper
bound may achieve better generalization performance. However, for the
PAC-Bayes meta-learning bound, the prior distribution is selected randomly
which results in poor generalization performance.

In this paper, we derive three novel generalization error upper bounds for
meta-learning based on the PAC-Bayes relative entropy bound. Furthermore,
in order to avoid randomly prior distribution, based on the empirical risk
minimization (ERM) method, a data-dependent prior for the PAC-Bayes
meta-learning bound algorithm is developed and the sample complexity and
computational complexity are analyzed. The experiments illustrate that the
proposed three PAC-Bayes bounds for meta-learning achieve a competitive
generalization guarantee, and the extended PAC-Bayes bound with a data-
dependent prior can achieve rapid convergence ability.
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1. Introduction

Machine learning models often require training with a large number of
samples, for example, the image classification issue [1, 2, 3, 4]. Traditional
machine learning algorithms mainly focus on a single task. But it is generally
difficult to collect so much labelled data. So how to train a model when only a
small amount of data is available? More to the point, since humans can learn
new skills much faster and more effectively, how can we build such a model,
which can reflect aspects of human learning? That is what meta-learning
sets out to achieve. Meta-learning – or “learning to learn [5]” – is capable
of accurately adapting or generalizing to new tasks and new environments
that not encountered during training time. Using the experience acquired on
previous tasks, meta-learning can adapt to new tasks quickly, even in the face
of scant data.

Although meta-learning algorithms provide a powerful inductive bias
based on various tasks, even with those which comprise only limited data,
its generalization performance is poorly understood. How to evaluate the
performance of a learnt meta-learning model when faced with new tasks is
also an important issue. PAC-Bayes theory, known as generalization error
bounds theory, provides a theoretical analysis framework for estimating the
generalization performance of the machine learning model.

With high probability, PAC-Bayes bound provides the numerical general-
ization error upper bound for a learnt model. Different from the traditional
neural networks which directly optimizes the empirical risk function, PAC-
Bayes bound optimizes the neural network by minimizing both the empirical
risk function and a regularization item, which is in proportion to the diver-
gence between the prior distribution and posterior distribution of parameters.
Therefore, this theory is more resistant to over-fitting. Compared to other
generalization theory, PAC-Bayes bound can be directly used to train a neural
network by selecting the generalization error upper bound as the training
objective instead of the empirical loss. As shown in Figure. 1, based on the
PAC-Bayes theory, the empirical test error is lower than the generalization
error upper bound statistically.

PAC-Bayes theory is also extended to provide a theoretical framework
for the generalization performance analysis of meta-learning, which yields a
numerical generalization error upper bound for meta-learning that holds with
arbitrarily high probability. Specifically, for meta-learning by minimizing
an objective function derived from extended PAC-Bayes bounds, a gradient-
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Figure 1: With a high probability 1−δ, the empirical test error is lower than the PAC-Bayes
generalization error upper bound. The solid line indicates the generalization error upper
bound, and the dashed line represents the empirical test loss. As shown in this figure, the
higher the confidence probability, the looser the error upper bound.

based meta-learning algorithm [6] is developed to achieve better generalization
performance and avoid overfitting.

For the PAC-Bayes theory, tighter bounds achieve a better generalization
performance guarantee, therefore it is still an important issue to develop tighter
generalization error upper bound theory. Generally, in PAC-Bayes theory,
generalization error upper bound is primarily determined by the divergence
between prior and posterior distributions. Obviously, the choice of prior
distribution affects the performance of the PAC-Bayes bound significantly.
However, in PAC-Bayes meta-learning theory, prior distribution is selected
randomly before learning, which leads to a looser generalization error upper
bound.

Motivated by the previous discussions, three novel generalization error
bounds for meta-learning are presented. Furthermore, a data-based approach
to adjust prior distribution is developed, and the specific implementations of
these algorithms are given. The sample complexity and computational com-
plexity of the proposed algorithm are also analyzed. The main contributions
are concluded as follows:

• Tighter generalization error upper bound achieves better generalization
performance. To improve generalization performance, three novel PAC-
Bayes meta-learning bounds are proposed, including meta-learning
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PAC-Bayes λ bound, meta-learning PAC-Bayes quadratic bound and
meta-learning PAC-Bayes variational bound;

• In the original meta-learning PAC-Bayes theory, the prior distributions
are selected randomly, which leads to a loose generalization error bound.
Therefore, based on the ERM method, a PAC-Bayes bound for meta-
learning with a data-dependent prior approach is developed; Instead of
the random prior weight distribution, a data dependent prior attains
fast convergence ability;

• The computational complexity of the proposed algorithms is also an-
alyzed, and an empirical demonstration illustrates that the proposed
algorithms achieve a competitive generalization guarantee and better
convergence performance.

The rest of this paper is organized as follows. The literature review, which
is related to meta-learning and PAC-Bayes bound, is investigated in Section 2.
Then, the classical PAC-Bayes bounds for both single task and meta-learning
are introduced in Section 3. Section 4 investigates three novel PAC-Bayes
bounds for meta-learning, based on the PAC-Bayes relative entropy bound
theory. A PAC-Bayes bound for meta-learning with a data-dependent prior
is further developed in Section 5. The implementation details are described
in Section 6. Section 7 provides numerical examples to verify the proposed
algorithms. Finally, Section 8 draws some conclusions.

2. Related work

The literature review related to the generalization performance analysis of
meta-learning approaches is addressed in this section. These can be divided
into three categories: meta-learning algorithms, PAC-Bayes theory and its
applications in meta-learning.

2.1. Meta-learning algorithms

Meta-learning algorithms can be divided into three major categories
[7]: black-box algorithms, non-parametric methods and optimization-based
algorithms.

Black-box adaptation meta-learning is to train a neural network to represent
a meta-learner. With the aim of achieving a fast adaptation ability, [8] a meta-
learning algorithm is presented with memory-augmented neural networks,
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which can summarize and store important knowledge. When facing new
learning tasks, the memory-based method can extract certain skills it has
learned to assist in the current process. To access past experiences, a simple
neural attentive-learner (SNAIL) is proposed in [9]. By using the attention
architectures established in the meta-learner, SNAIL can determine which
pieces of information it needs to select from the experience it has gathered.
SNAIL architectures are easier to train than traditional RNNs, such as LSTM.

Non-parametric methods try to utilize a non-parametric learner as a meta-
learner instead of parametric models. Non-parametric methods are simple
and perform well in few-shot learning. [10] proposes a Siamese neural network,
which contains two sub-networks with the same weights. During the training
phase, the two sub-networks can extract features from two different input
vectors, and then compute the distance between the two feature vectors.
Matching networks are another non-parametric method, which is presented in
[11]. In order to learn from a few examples, the matching network framework
learns a net structure that maps a few labelled training datasets and an
unlabelled instance to its label. Combined with recent advances in attention
and memory, the matching networks enable rapid learning. Furthermore, [12]
proposes a prototypical network, where the classification problem is regarded
as finding the prototype center of each category in the semantic space and
then predicting the category of the new sample using the nearest neighbor
classifier. This method mainly combines the prototype network with the
clustering algorithm.

Optimization-based meta-learning algorithms, different from the two afore-
mentioned algorithms, learn to train the parameter vector to represent the
meta-learner through optimization. In the traditional gradient descent ap-
proach, optimization update rules, for example the learning step, are still
hard to design. [13] considers this issue as a learning problem, allowing the
optimization algorithms to learn to exploit the update rules structure in an
automatic way. Furthermore, [14] proposes another LSTM-based meta-learner
model by combining gradient descent and the LSTM algorithm, which is
applied to train neural networks. To extract common knowledge from previous
tasks so as to achieve a fast adaptation ability, [15] proposes a model agnostic
meta-learning (MAML) algorithm. The key idea of MAML is to learn a set
of initialization parameters that allows the efficient learning of new tasks.
However, MAML requires the computation of a second-order derivative which
may exhibit instabilities. Therefore, [16] presents a scalable meta-learning
algorithm, called Reptile, which does not calculate any second derivatives.
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Furthermore, [17] addresses the training of MAML and proposes several tricks
to improve the stability of MAML.

One of the majority challenges in few-shot learning is task ambiguity. [18]
proposes a probabilistic MAML, which tries to incorporate a parameter distri-
bution with a neural network that is trained via a variational lower bound. To
improve the robustness of MAML, [19] propose a Bayesian MAML algorithm.
Compared with a point estimate or a simple Gaussian approximation in the
fast adaptation phase, this algorithm is capable of learning a very complex
uncertainty structure. The Bayesian MAML outperforms vanilla MAML
in terms of accuracy and robustness. Furthermore, based on the Bayesian
inference framework and variational inference, [20] proposes a new Bayesian
task-adaptive meta-learning (Bayesian TAML) algorithm for imbalanced and
out-of-distribution tasks. In addition, several improved MAMLs are also
introduced, such as Alpha MAML [21], meta-learning with latent embedding
optimization [22] and Bayesian hierarchical modeling-based MAML [23].

2.2. PAC-Bayes theory

The first PAC-Bayes theory was established by McAllester [24], which
provides generalization error upper bounds for the performance of randomized
learning algorithms. Then, this method was subsequently used to analyze the
generalization-error bound of the stochastic neural network [25]. PAC-Bayes
bound theories were meant for a wide range of approximate Bayesian GP
classification issues [26], [27]. Then work in [28] tries to explain the general-
ization in neural networks from the view of norm-based control, sharpness
and robustness, and attempts to build a connection between sharpness and
PAC-Bayes theory. The systemically undertaken study is addressed in [29] to
train stochastic neural networks based on the PAC-Bayes bounds. Further-
more, PAC-Bayes bound also is applied in twin support vector machines at
[30] and domain adaptation at [31].

The PAC-Bayes theory is only suitable for bounded loss function and i.i.d
data. PAC-Bayesian bounds tailored for the sub-Gaussian or sub-Gamma
loss family, such as negative log-likelihood function, is also developed by
[32] and [33]. However, these algorithms require a distribution parameter,
such as a variance factor and a scale parameter. Therefore [34] proposes an
exponential bound under the assumption that the first three moments of
the loss distribution are bounded. By introducing the special boundedness
condition, [35] expands the PAC-Bayesian theory to learning problems with
unbounded loss functions.
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Recently, there has been a gradually increasing interest in research on
overparameterized deep neural networks and SGD. [36] studies the generaliza-
tion of randomized learning algorithms. trained with SGD. Inspired by [25],
[37] obtains nonvacuous generalization numerical bounds for deep stochastic
neural network classifiers with many more parameters than are present in the
training data. The first non-vacuous generalization bound for compressed
networks applied to the ImageNet classification problem is provided in [38].
Moreover, [39] further investigates the relationship between generalization
performance and SGD.

As previously mentioned, the PAC-Bayesian bound is only valid for stochas-
tic classifiers, although a growing body of literature attempts to construct
PAC-Bayes bounds on deterministic classifiers. To address this gap, [40] de-
velops a PAC-Bayesian transportation bound, by unifying the PAC-Bayesian
analysis and the chaining method. This generalization error bound relates to
the distance between any two predictors, both for stochastic classifiers and
deterministic classifiers. A new perturbation bounds for feedforward neural
networks is derived based on the sharpness of a model class in [41]. In addi-
tion, [42] presents a general PAC-Bayesian framework for the deterministic
and uncompressed neural networks by leveraging the noise-resilience of deep
neural networks on training data.

To achieve tighter generalization error bounds, [43] proposes two alterna-
tive prior distributions: one is to learn a prior distribution from a separate
training data set which is not used to compute the bound, and another is to
consider an expectation prior. [44] further investigates the PAC-Bayes bound
with localized prior distribution defined in terms of the data generating distri-
bution. Under the stability of the hypothesis, a Gaussian prior distribution,
informed by the data-generating distribution and gathered at the expected
output, is proposed for the SVM classifier [45]. More discussion can be seen
in [46] and [47]. Furthermore, because data distribution is usually unknown,
[48] develops a PAC-Bayes bound via ϵ-differentially private data-dependent
prior.

2.3. PAC-Bayes bound for meta-learning

[49] provides a generalization error bound within the PAC-Bayes framework
for lifelong learning. Furthermore, two principled algorithms are implemented,
namely parameter and representation transfers. More recently, [6] developed
a theoretical framework for meta-learning, allowing extended various PAC-
Bayes bounds to meta-learning. To add to this, [50] considers the scenario
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in which a common model set is used for model averaging via a model
selection procedure that accounts for the model’s uncertainty. Two data-
based algorithms are proposed to obtain ideal priors for model averaging.
Furthermore based on the algorithm stability and mutual information theory,
the corresponding generalization error bounds are also proposed in [51] and
[52]. These generalization theories are all follow the same task distribution
assumption, [53] develops another two another PAC-Bayesian bound which
can relax this assumption.

3. Preliminaries: PAC-Bayes theorem

In this section, the rigorous definitions for the standard PAC-Bayes bound
and the PAC-Bayes meta-learning bound are introduced, which are given in
Lemma 1 and Lemma 2, respectively.

3.1. Risk functions

Before introducing the PAC-Bayes theory, the following concepts and
notations are introduced.

3.1.1. Single classifier case

In the classical supervised learning model setting, a set of dependent
samples S = {zi}mi=1 is randomly drawn from the unknown data distribution
D, each sample Zi = (Xi, Yi) consisting of an input Xi and its corresponding
label Yi, where X ⊂ Rd and Y ⊂ R. The learning objective is to find a classifier
h ∈ H that predicts the label by minimizing the loss function {ℓ(h, z)}, where
H is considered as the hypothesis space and ℓ(h, z) : H × Z → R is the
loss function which are used to measure the performance of classifier h. For
the classification problems, the loss function is always bounded in [0, 1].
Furthermore, the expected error of the classifier h in the data distribution D
can be written as er(h,D)

er(h,D) = Ez∼Dℓ(h, z). (1)

Since the real data distribution D is unknown, generalization error er(h,D)
cannot be calculated. Therefore, the empirical error êr(h, S) gives an observ-
able estimation

êr(h, S) = 1
n

∑n
i=1 ℓ(h, zi). (2)
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Under the general neural network conditions, in order to minimize the em-
pirical risk êr(h, S), a single classifier h ∈ H is selected. However, this may

cause that the learned classifier ĥ over-fit the training dataset S . Various
methods can be used to avoid over-fitting, including adding a complexity
regularization.

3.1.2. Classifier distribution case

Similar to the Bayesian neural network, under the PAC-Bayes framework,
learning algorithms will output a classifier distribution Q over the hypothesis
space H, instead of a single classifier h. The prior classifier can also be
initialized as a prior distribution P . During the classifying phase, one can
sample a classifier h from the classifier distribution Q.

Then generalization error er(Q,D) over posterior distribution Q and
unknown data distribution D is defined as

er(Q,D) ≜ E
h∼Q

er(h,D). (3)

This generalization error er(Q,D) is also cannot be calculated, therefore,
empirical error êr(Q,S) is given as

êr(Q,S) ≜ E
h∼Q

er(h, S). (4)

3.2. PAC-Bayes bounds for a single task

PAC-Bayes theory provides a framework for the theoretical generalization
performance analysis of a learnt model, which means the upper bound of the
generalization error er(Q,D). Based on the prior distribution P , PAC-Bayes
theory tries to learn a posterior distribution Q(S, P ) from training data S.

Lemma 1 (single-task PAC-Bayes bound [25]). Let P ∈ M be some prior
distribution over H. Then for any δ ∈ (0, 1], the following inequality holds
uniformly for all posterior distributions Q ∈ M with a probability of at least
1− δ

kl(er(Q,D)∥êr(Q, S)) ≤
D(Q∥P) + log(2

√
n

δ
)

n
. (5)

Here, D(Q∥P ) is a divergence measure to measure the difference between
two distributions, kl is known as the binary KL divergence, which is the
divergence of two Bernoulli distributions with parameters q, q′ ∈ [0, 1]

kl (q∥q′) = q log
(

q
q′

)
+ (1− q) log

(
1−q
1−q′

)
. (6)

9



As previously discussed, the generalization error er(Q,D) cannot be
calculated because of the unknown data distribution D. With an arbitrarily
high probability, PAC-Bayes theory shows that the generalization error can
be bounded by the summation of empirical loss, and a regularization element
involves the distance between prior distribution and posterior distributions.
It also means that the empirical test error of the test samples sampled from
the same data distribution D is lower than this error upper bound with high
probability.

Generally, a PAC-Bayes generalization theory attempts to balance the
empirical risk êr(Q,S) and a regularization term and the discrepancy between
the prior distribution P and posterior distribution Q. Here, we should
emphasize that prior distribution P is selected randomly before training,
which must not be dependent on the training data. The prior distribution
P is used chiefly to measure the distance of hypothesis space H. Obviously,
the choice of prior distribution P significantly affects the performance of the
PAC-Bayes bound significantly.

Remark 1 Compared with classical neural network algorithms which are
trained by minimizing the empirical loss function êr(·), in the PAC-Bayes
theory, one can directly select the generalization error upper bound (the right
side of this bound) as the training objective to achieve generalization per-
formance guarantee. Furthermore, in the PAC-Bayes theory, the training
objective includes empirical loss and the regularization item, which can avoid
over-fitting.

Remark 2 From PAC-Bayes theory, if we use finite samples S to train the
model using the PAC-Bayes rule, then the generalization error upper bound of
the learnt model is decided by the empirical loss êr(Q,S) and the regularization
term. This means that in the testing phase the test error is lower than this
error upper bound with high probability.

3.3. PAC-Bayes bounds for meta-learning

In this subsection, the PAC-Bayes bounds for meta-learning is introduced.
Similar to the PAC-Bayes bound for a single task, the PAC-Bayes meta-
learning bound also provides the generalization error upper bound for the
meta-learning algorithm, as shown in Lemma 2.

In the meta-learning framework, following the same setting in [15, 6, 54], T
represents the task distribution, loss function is defined as ℓ. In the meta level,
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Figure 2: Simplified framework for PAC-Bayes meta-learning bound. Based on the hyper
prior P, meta-learner aims to learn a hyper posterior Q(P ) by utilizing the observed
tasks. When encountering new tasks, base learner samples a prior distribution P from the
hyper-posterior Q(P ). Then capitalizing on observed samples of the new task, base learner
infers a posterior distribution Q(S, P ).

each observed task τi sampled from the task distribution T , the corresponding
sample set Si are generated from the unknown data distribution Si ∼ Dmi

i ,
where mi is the number of training samples for task i.

As previously mentioned, in the PAC-Bayes meta-learning theory the
classifier is set as a distribution. In the meta level, based on the predefined
hyper prior P, the meta-learner aims to extract common knowledge from
the observed tasks and learn a hyper posterior Q. When encountering a new
task, one can sample a prior distribution P from the hyper-posterior Q as
the initialization, then based on this prior information P and the new task’s
training data S, the base learner learns the posterior information Q.

The performance of hyper-posterior Q can be measured by the expectation
loss of prior P when learning new tasks, the so-called generalization error

er(Q, τ) ≜ E
P∼Q

E
(D,m)∼T

E
S∼Dm

E
h∼Q(S,P )

E
z∼D

ℓ(h, z). (7)

While er(Q, τ) is still not commutable in practice because of the unknown
task distribution and data distribution, nevertheless, we can estimate this by
the empiric error

êr (Q, S1, . . . , Sn) ≜ E
P∼Q

1
n

∑n
i=1 êr (Q (Si, P ) , Si) . (8)

Different to the single task, the generalization error and empirical error in
meta-learning relate to the expectation of P over hyper-posterior distribution
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Q. Then, the PAC-Bayes meta-learning bound proposed in [6] is introduced
as follows

Lemma 2 (Classical meta-learning PAC-Bayes bound [6]). Let P ∈ M be
some hyper-prior distribution over H, and Q be a base learner. Then for any
δ ∈ (0, 1], the following inequality holds uniformly for all hyper-posteriors
distributions Q ∈ M with a probability of at least 1− δ

er(Q, τ) ≤ 1
n

∑n
i=1 E

P∼Q
êr (Qi (Si, P ) , Si)

+ 1
n

∑n
i=1

√(
D(Q||P)+ E

P∼Q
D(Q||P )+log

2nmi
δ

)
2(mi−1)

+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
.

(9)

Meta-learning comprises two parts: the meta-learner extracts common
knowledge (prior knowledge) from different observed tasks, and the base
learner aims to adapt new tasks. Therefore the PAC-Bayes meta-learning
bound also includes two regularization items: task complexity regularization
item and sample complexity regularization term. The first task complexity
term is the average of task-complexity terms of observed tasks, created by
the finite number of samples in each observed tasks. This term converges
to zero in the face of a large number of samples in each task. The second
is an environment (or sample) complexity term, which is caused by a finite
number of observed training tasks. Obviously, this term converges to zero if
an infinite number of tasks is observed from the task environment.

4. PAC-Bayes meta-learning bounds

PAC-Bayes theory provides a theoretical framework for the generaliza-
tion performance analysis in meta-learning. By selecting the PAC-Bayes
bound as the training objective, one can develop a deep neural network with
guaranteed generalization performance. Therefore, the tighter bound can
achieve enhanced results. Motivated by this, in this section, based on the
PAC-Bayes relative entropy theory, we propose three novel PAC-Bayes bounds
for meta-learning, including meta-learning PAC-Bayes λ bound (Theorem 3
in Section 4.1), meta-learning PAC-Bayes quadratic bound (Theorem 4 in
Section 4.2), and meta-learning PAC-Bayes variational bound (Theorem 5 in
Section 4.3).
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As shown in Lemma. 1, due to the binary KL divergence kl, this general-
ization error upper bound cannot be directly used as the training objective to
guide the training of neural network. Therefore, utilizing different inequality,
three novel PAC-Bayes meta-learning bounds are proposed.

4.1. Meta-learning PAC-Bayes λ bound

Theorem 3 (meta-learning PAC-Bayes λ bound). Let P be some hyper-prior
distribution, and Q be the posterior distribution, which is also called as the
base learner. Then for any δ ∈ (0, 1] and λ ∈ (0, 2), the following inequality
holds uniformly for all hyper-posteriors distributions Q ∈ M with probability
at least 1− δ

er(Q, τ) ≤ 1
n

∑n
i=1

1
(1−λ0/2)2

E
P∼Q

êr (Q,Si)

+ 1
n

∑n
i=1

D(Q||P)+ E
P∼Q

D(Q||P )+log
4n

√
mi

δ

miλ(1−λ/2)2

+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
.

(10)

With the reasonable selection of λ, this meta-learning PAC-Bayes bound can
attain a tighter generalization error bound. The proof of this meta-learning
bound is shown as follows.

Similar with the single task PAC Bayes theory, the Meta-learning PAC-
Bayes λ bound also achieves fast convergence rate with O( 1

mi
). Furthermore,

based on the PAC Bayes quadratic bound in Eq. 32, the another PAC-Bayes
meta-learning quadratic bound is proposed.

4.2. Meta-learning PAC-Bayes quadratic bound

Theorem 4 (meta-learning PAC-Bayes quadratic bound). Let P be some
hyper-prior distribution, and Q be the posterior distribution, which is also
called as the base learner. Then for any δ ∈ (0, 1], the following inequality
holds uniformly for all hyper-posteriors distributions Q ∈ M with probability
at least 1− δ

er(Q, τ) ≤ 1
n

∑n
i=1(

√
E

P∼Q
êr(Q,Si) + ϵi +

√
ϵi)

2

+
√

1
2(n−1)

(D(Q||P) + log 2n
δ
).

(11)

Here the ϵi =
1

2mi
(D(Q||P) + E

P∼Q
D(Q||P ) + log

4n
√
mi

δ
).
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As aforementioned, when the generalization error is smaller (especially
er(Q,D) < 1/4), this bound is tighter (see [29]) than the PAC-Bayes λ
bound. When generalization error er(Q,D) varies, different bounds can enact
alternative different generalization performances. Motivated by this, [55]
proposes a variational KL bound. with the fast convergence rate O( 1

n
).

With different situations, different bounds may lead to different generaliza-
tion performances. One can combine the two above-mentioned meta-learning
bounds by a function which is defined piecewise to improve performance.
The variational KL bound can take the minimum value of Theorem 3 and
Theorem 4, ensuring it is tight in both regimes. Prompted by PAC-Bayes
variational bound, meta-learning PAC-Bayes variational bound is derived as
follows:

4.3. Meta-learning PAC-Bayes variational bound

It has been proved that when the generalization error is smaller (especially
er(Q,D) < 1/4), this bound is tighter (see [29]) than the classical PAC-Bayes
bound. However its convergence rate O( 1√

m
) is slower than the PAC-Bayes

λ bound. When generalization error er(Q,D) varies, different bounds can
enact alternative different generalization performances.

Contrasting with the two previously described PAC-Bayes bounds, PAC-
Bayes variational bound can take a minimum of two bounds, which might
achieve a tighter generalization error for upper bound.

Theorem 5 (meta-learning PAC-Bayes variational bound). Let P be some
hyper-prior distribution, and Q be the posterior distribution, which is also
known as base learner. Then for any δ ∈ (0, 1], the following inequality holds
uniformly for all hyper-posteriors distributions Q ∈ M with probability at
least 1− δ

er(Q, τ) ≤ 1
n

∑n
i=1 E

P∼Q
êr (Q,Si)

+ 1
n

∑n
i=1 min

(
εi +

√
εi
(
εi + 2 E

P∼Q
êr (Q,Si)

)
,
√

εi
2

)
+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
.

(12)

Here εi =
1
mi

(
D(Q||P) + E

P∼Q
D (Q||P ) + log

4n
√
mi

δ

)
.

The proof of those theorems have been attached in Appendix.
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5. PAC-Bayes bounds with data-dependent prior

For the PAC-Bayes theory, the generalization error upper bound depends
mainly on the regularization item involving the distance between prior dis-
tribution P and posterior distribution Q. However, the prior distribution is
chosen randomly, with a view to measuring the parameter space. Especially in
meta-learning, the generalization error bound involves both hyper-prior and
hyper-posterior distributions, which are hard to converge. Seeking to solve
this issue, as show in Figure 3, in this section we aim to learn a localized prior
distribution through the ERM approach on a part of the training samples.
Then the remaining data will be used to optimize generalization error bound.

Localized Prior
𝑃 𝐷𝑃

𝜃

Random Prior
𝑃𝜃0

PAC-Bayes
Bound

ERM

Posterior
𝑄𝜃

Training data

𝑅𝑖

∖𝑆𝑖 𝑅𝑖

𝐷( || )𝑃 𝐷𝑃
𝜃

𝑄𝜃

𝐷( || )𝑃𝜃0
𝑄𝜃

Training
Objective

Training
Objective

Figure 3: A simplified framework for PAC-Bayes bound with a data dependent prior. The
generalization error upper bound is dominated by the distance between prior distribution
and posterior distribution as well as the distance between the hyper-prior distribution
and hyper-posterior distribution. The original prior distribution is selected as the random
prior distribution, which leads to loose PAC-Bayes bound. Therefore we learn a localized
prior distribution through the ERM approach on a part of the training samples, then the
PAC-Bayes meta-learning bound is optimized based on this data dependent prior, which
can achieve fast convergence ability.

Akin to the classical PAC-Bayes bound with data-dependent prior, for the
meta-learning, we try to propose a novel extended PAC-Bayes bound with
data-dependent prior. Specifically, during the training phase of meta-learning,
the corresponding dataset of training task i is also divided into two separate
datasets. Based on the ERM approach, one can learn a data-dependent prior
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distribution over a section of the training samples

Pθ = argmin E
h∈Pθ

eremp(h, S), (13)

where eremp(h) =
1
n

∑n
i=1 ℓ (h,Ri), n is the number of all training tasks, Ri

is the sample subset of task i selected from the whole dataset Si, providing
information which can be used to calculate data-dependent prior. The
remaining data Si\Ri of task i is applied to evaluate the generalization
error bound for meta-learning. In practice, expectations over distribution
P are difficult to calculate. Therefore, the Monte Carlo method deemed
most effective in obtaining the numerical results of (13). Furthermore, prior
distribution P is selected directly from hyper posterior distribution Qθ. So
the learned parameters Pθ is designated as the initial mean parameter of
Qθ. The extended PAC-Bayes bound with data-dependent prior can then be
shown as follows:

Theorem 6 (Meta-learning PAC-Bayes bound with data-dependent prior).
Let Q : Zm × M → M be a base learner, and let P be some predefined
hyper-prior distribution. Then for any δ ∈ (0, 1] the following inequality holds
uniformly for all hyper-posterior distributions Q with probability at least 1− δ,

er(Q, τ) ≤ 1
n

∑n
i=1 E

P∼QD

êr (Q,Si\Ri)+

+ 1
n

n∑
i=1

√
D(QD||P)+ E

P∼QD
D(Q(P,Si\Ri)||P )+log

2nmi
δ

2(mi−1)

+
√

D(QD||P)+log 2n
δ

2(n−1)
.

(14)

Similarly, in the testing phase, when encountering new tasks, one can also
learn a data-dependent prior P through the ERM approach.

Remark 7 Compared to random prior distribution, data dependent prior
distribution can be considered as a weakly informative prior, which is more
closer to the optimum parameters posterior distribution. Therefore, this
algorithm can achieve fast convergence performance.

6. Algorithms implementation and its performance analysis

Meta-learning PAC-Bayes bound tries to provide a generalization perfor-
mance guarantee for the learned model with an arbitrarily high probability.
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In this section, we mainly focus on how to utilize PAC-Bayes theory to design
neural network with generalization performance guarantee, and analyzing the
algorithm complexity of designed neural network.

6.1. Algorithms implementation

In this section, the specific algorithm implementation of the PAC-Bayes
meta-learning bound is introduced . Different from the traditional neural
network, which directly optimizes the empirical loss function, we can directly
minimize the generalization error upper bound (or the right side of the bound)
to achieve a generalization performance guarantee.

6.1.1. Training objectives

Based on the proposed three meta-learning PAC-Bayes bounds, the corre-
sponding three training objectives are developed by selecting the generalization
error upper bound as the training objective:

Theorem 3 and Theorem 4 lead to the meta-learning PAC-Bayes λ objec-
tive

Jλ(θ) =
1
n

∑n
i=1

1
(1−λ0/2)2

E
P∼Q

êr (Q,Si)

+ 1
n

∑n
i=1

D(Q||P)+ E
P∼Q

D(Q||P )+log
4n

√
mi

δ

miλ(1−λ/2)2

+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
,

(15)

and meta-learning quadratic PAC-Bayes objective

Jquad(θ) =
1
n

∑n
i=1

(√
E

P∼Q
êr
(
Q,Si

)
+ ϵi +

√
ϵi

)2

+

√
1

2(n−1)

(
D(Q||P) + log 2n

δ

)
.

(16)

Here the ϵi =
1

2mi

(
D(Q||P) + E

P∼Q
D (Q||P ) + log

4n
√
mi

δ

)
.

By comparison, the training objective from Theorem. 5 takes the following
form

Jvaria(θ) =
1
n

∑n
i=1 E

P∼Q
êr (Q,Si)

+ 1
n

∑n
i=1 min

(
εi +

√
εi
(
εi + 2 E

P∼Q
êr (Q,Si)

)
,
√

εi
2

)
+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
,

(17)
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where the εi =
1
mi

(
D(Q||P) + E

P∼Q
D(Q||P ) + log

4n
√
mi

δ

)
. Obviously this

PAC-Bayes meta-learning bound includes three different items, empirical loss
function and two regularization items.

6.1.2. Empirical loss function

In the training objective, the empirical loss function êr(·) is selected as
bounded cross-entropy loss function.

As a rule, the standard loss function used on multi-class classification
problems is the cross-entropy loss function ℓ : Rk × [k] → R defined by

ℓCE = −
∑k

c=1 yo,c log(po,c), (18)

where yo,c is the binary indicator (0 or 1) if class label c is the correct
classification for observation o, k is the number of class and po,c is the predicted
probability observation o of class c. It is obviously that this loss function is
unbounded loss function. However, the proposed meta-learning PAC-Bayes
bound is only available for bounded loss function. Here, a “bounded cross-
entropy” loss function is applied (See [29]) as the surrogate loss for training
in all experiments with Jλ, Jquad and Jvaria. Specifically, the loss function
is clipped to [0, log( 1

pmin
)], where pmin is the lower bound of the network

probabilities.

6.1.3. Stochastic neural network

In this paper we mainly focus on the stochastic neural network [56], where
each weights are independent distributions. For simple, we initialize the
weight distribution as the Gaussian distribution. In the meta-learning setting,
as shown in Fig. 2, there consists of meta-level and base-level. Similarly the
specific forms of hyper-prior distribution P, hyper-posterior distribution Q
and weights distribution of the stochastic neural network are selected.

For the meta-learning PAC-Bayes bound, the hyper-prior distribution P
is set as a zero-mean Gaussian distribution

P ≜ N (0, κ2
PINP×NP

) , (19)

where κP > 0 is constant and NP is the number of neural network parameters
w.

Correspondingly, the hyper-posterior distribution Q, which consists of all
distributions over RNP , is defined as a family of isotropic Gaussian distribu-
tions as follows

Qθ ≜ N
(
θ, κ2

QINP×NP

)
, (20)
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Algorithm 1 Meta training phase, without data-dependent prior

Input: Datasets of n training tasks: S1, ..., Sn.
Output: Learned meta-learner with parameter θ.
1: Initializing hyper-prior P, hyper-posterior Q, prior model θ, posterior

model ϕi, i = 1, ..., n;
2: while not done do
3: for task i, i = 1, ..., n do
4: Sample mini-batch from datasets Si, i = 1, ..., n
5: Calculate D(Qϕi

∥Pθ)(24)
6: Calculate E

P∼Q
êr (Q,Si) by Monte-Carlo method

7: end for
8: Compute the training objective J (see 15, 16 or 17)

9: Gradient step using

[
∇θJ
∇ϕi

J

]
10: end while
11: return θ;

where κQ > 0 is also a predefined constant. Therefore the KL divergence
between the hyper-prior distribution P and hyper-posterior distribution Q
equals

D (Qθ∥P) =
∥θ∥22+κ2

Q

2κ2
P

+ log κP
κQ

− 1
2
. (21)

In the PAC-Bound theory, a probability neural network is applied, which
means all weights w are stochastic variables drawing from prior or posterior
distribution. In this paper, we define that each weight wi in the neural
network as it obeys Gaussian distribution. The prior Pθ and the posteriors
Qϕi

, i = 1, . . . , n, are defined as factorized Gaussian distributions

Pθ(w) =
∏d

k=1N
(
wk;µP,k, σ

2
P,k

)
, (22)

Qϕi
(w) =

∏d
k=1N

(
wk;µi,k, σ

2
i,k

)
, (23)

where d is the number of neural network parameters and n is the number of
tasks. The corresponding KL divergence between prior Pθ and the posteriors
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Algorithm 2 Meta training phase, with data-dependent prior

Input: Datasets of n training tasks: S1, ..., Sn.
Output: Learned meta-learner with parameter θ.
1: Initializing prior model θ;
2: Separate training datasets Si into two parts Si/Ri, Ri, i = 1, ..., n;
3: while not done do
4: Sample mini-batch from datasets Ri, i = 1, ..., n
5: Calculate E

h∈Pθ

eremp(h, S) (13)

6: Gradient step using ∇θJ
7: end while
8: Initializing hyper-posterior Q with learned parameter θ, prior model P ,

posterior model Q, i = 1, ..., n;
9: while not done do

10: for task i, i = 1, ..., n do
11: Sample mini-batch from Si/Ri, i = 1, ..., n
12: Calculate D(Qϕi

∥Pθ)(24)
13: Calculate E

P∼Q
êr (Q,Si) by Monte-Carlo method

14: end for
15: Compute the training objective f (see 15, 16 or 17)

16: Gradient step using

[
∇θJ
∇ϕi

J

]
17: end while
18: return θ;

Qϕi
, i = 1, . . . , n, is

D (Qϕi
∥Pθ) =

1
2

∑d
k=1

(
log

σ2
P,k

σ2
i,k

+
σ2
i,k+(µi,k−µP,k)

2

σ2
P,k

− 1
)
.

(24)

As we started earlier, the prior distribution Pθ̃ is sampled from hyper-
posterior distribution Qθ. Practically, it follows that the prior distribution
parameters θ̃ = θ + εP , εP ∼ N

(
0, κ2

QINP×NP

)
. In other words, prior dis-

tribution Pθ̃ sampling from hyper-posterior distribution Qθ means adding
Gaussian noise εP to the parameters θ during training. The specific pseudo
code is shown in Algorithm 1 and Algorithm 2 for both random prior and
data-dependent prior respectively.
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Remark 8 Without loss of generality, the initialization prior distributions
of each network parameters are selected as Gaussian distribution. Utilizing
the reparameterization trick, it is obviously that the posterior distributions of
each parameters are also Gaussian distributions, which makes it convenience
to calculate the KL divergence between prior and posterior distributions. For
more details, please see [56, 57].

6.2. Computational complexity analysis

In this section the computational complexity of this algorithm is analyzed,
Similar to [56], the stochastic neural network (SNN) is applied in this paper,
where each weight is assigned a distribution (Gaussian distribution here). By
utilizing the reparameterization trick, each posterior weight distribution is
still a Gaussian distribution. Therefore, the number of network parameters
is twice that of other neural networks with the same structure. During the
training phase there are two ways to decide the weight, one is that each
weight can be sampled randomly from its distribution, or one can select the
mean of the Gaussian distribution as the weight. Once the weight is decided,
there is no difference between the SNN and classical deterministic neural
network. The computational complexity of sampling is O(N). Furthermore
in our algorithm, the loss function is selected as the PAC-Bayes generalization
error upper bound, thus its computational complexity is O(N2).

7. Experiments

In this section, the performance of our proposed meta-learning PAC-Bayes
bound algorithms is illustrated using image classification tasks solved by
stochastic neural networks. Specifically, we conduct our procedure in two
different environments based on the MNIST dataset, these being permuted
pixels and permuted labels. For the permuted pixels environment, each task
is constructed by a shuffle of image pixels with 60000 training samples and
10000 testing samples. For the permuted labels environment, each task is
generated by a permutation of image labels with the same number of training
and testing samples as produced in the permuted pixels environment.

For the shuffled pixels experiment, the neural network structure selected
is a fully connected neural network (FCN) with 4 layers (3 hidden layers and
a linear output layer) and 400 units per layer. For the permuted labels exper-
iment, the neural network structure is designated as a 4-layers convolutional
neural network (CNN), comprising 2 fully convolution layers ,each with 5× 5
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kernels, and 2 full connected layers. For all experiments, ReLU activations
are used. The optimizer is selected as Adam, with a learning rate of 10−3.

For both of two experiments, each initialized log-var log σ2
P of weights is

drawn from N (−10, 0.01). The hyper-prior and hyper-posterior parameters
are κP = 2000 and κQ = 0.001 respectively. In the meta-learning PAC-Bayes
bound, the confidence parameter chosen is δ = 0.1. The source code is
available at GitHub1.

In this section, we focus on the performance of the three proposed meta-
learning PAC-Bayes bounds. For the meta-training phase, we run the total
training of 50 epochs, maximal number of tasks in each meta-batch being 16,
while 10 tasks are used for the meta-learner to learn. For the testing phase,
we run a total testing of 20 epochs, using 20 tasks to confirm the meta-learner
performance. We select 128 as the data batch size for training and testing.
Specifically we mainly address on three issues using several experiments:

1. How does the number of tasks influence the model performance and
neural network weight distributions?

2. Does the proposed three meta-learning PAC-Bayes bounds achieve a
competitive generalization performance guarantee?

3. Does the meta-learning PAC-Bayes bound with a data dependent prior
achieve fast convergence ability?

For a baseline, we measure the performance of learning from scratch using
a stochastic network with no transfer from the meta-training tasks (See Table.
1). In the data-dependent prior experiment, the baseline is random prior.

Table 1: Comparing test error of various methods in both shuffled pixels and permuted
labels environments (± indicates the 95% confidence interval).

Shuffled pixels Permuted labels
Scratch 2.38± 0.13 1.48± 0.08

fλ 2.48± 0.12 0, 78± 0.11
f 2.57± 0.09 0.93± 0.10
f 2.31± 0.15 0.88± 0.11

1Codes are available on https://github.com/tyliu22/

Meta-learning-PAC-Bayes-bound-with-data-depedent-prior.git
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Figure 4: Model parameter analysis by layers, log(σ2) represents the weight uncertainty of
each layer. (a) Prior model parameter analysis for shuffled pixels environment; (b) Prior
model parameter analysis for permuted labels environment.

7.1. How does the task number influence the model performance and network
weight distributions?

First, we investigate the weights of the stochastic neural network. As
shown in Figure 4(a), the average log-variance parameter of each layer’s
weights is analyzed. The higher the average log(σ2) is, the more flexible are
the weights are. In the shuffled pixel experiment, the lower layers perform with
high variance which can extract the feature of shuffled-pixels image robustly,
while the higher layers perform with a low variance which corresponds with
fixed labels. In contrast, in the permuted label experiments, as shown in
Figure 4(b), the higher layers perform with high variance which can adapt
robustly to the permutation of the image label, and the lower layers’ low
variance performance corresponds to the fixed-image samples.

Next, the influence of a different number of training tasks on performance
is analyzed, in relation to the generalization error bound, empiric loss and
empiric error. In Figure 5, it is clear that, as the number of training tasks
increases, the learned model achieves improved generalization performance
and accuracy.

7.2. Does the proposed three meta-learning PAC-Bayes bounds achieve a
competitive generalization performance guarantee?

We also compare five meta-learning PAC-Bayes bounds in two different
MNIST environments, namely the consist of meta-learning McAllester PAC-
Bayes bound (fclassic), meta-learning Seeger PAC-Bayes bound (fSeeger), meta-
learning PAC-Bayes λ bound (fλ), meta-learning PAC-Bayes quadratic bound
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Figure 5: The average performance of learning new tasks with different number of training
tasks. (a) The average generalization error bound of learning new tasks; (b) The average
empiric loss of learning new tasks; (c) The average empiric error of learning new tasks.

(fquad) and meta-learning PAC-Bayes variational bound (fvaria). As shown
in Table 2, the performance of various training objectives in the training
phase with a random prior model is analyzed, in terms of bound, task
complexity, meta complexity, empirical loss and estimated error. Figure 6(a)
demonstrates that the proposed three meta-learning PAC-Bayes achieve a
competitive bound, especially for the PAC-Bayes variational bound.

Furthermore, the performance of a learned meta-learner on new tasks
with five training objectives is also established. Table 3 shows the specific
result of generalization performance and accuracy in the testing phase. As
shown in Figure 6(b), the proposed meta-learning PAC-Bayes λ bound and
meta-learning PAC-Bayes variational bound perform a tighter generalization
error bound. In addition, these two training objectives lead to improved
accuracy.

7.3. Does the meta-learning PAC-Bayes bound with a data dependent prior
achieve fast convergence ability?

Here, the meta-learning PAC-Bayes bounds with data-dependent prior
algorithms are verified on the permuted MNIST dataset. We experiment both
with priors gathered at randomly set weights and priors learnt using ERM
on a part of the dataset. Specifically, training data is randomly divided into
two separate datasets: 30% is used to learn a prior model using the ERM
approach and the remaining data is applied to train the meta-learner. We
run about 10 epochs in the training phase and 30 epochs in the testing phase
to build the prior.
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objective is PAC-Bayes quadratic bound).
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First, the discrepancy between the prior model with randomly initialized
weights and the learned data-dependent prior model is compared in Figures
7(a) and Figure 7(b). It is obviously that, compared with the random prior
model, the nature of the parameter learned in the data-dependent prior
model is closer to the finally posterior model, which means it can achieve
enhanced convergence performance. Besides, as shown in Figure 8, where
the convergence performance between a random prior model and a data-
dependent prior model during the training phase is analyzed. Obviously, the
meta-learning PAC-Bayes bound with a data-dependent prior demonstrates a
faster convergence ability with a series of epochs, in terms of the generalization
error bound, accuracy, empiric loss, task complexity and meta-complexity.

Furthermore, five meta-learning training objectives on two different MNIST
environments are substantiated (See Table 2 and Table 3). As shown in Figure
6(e) and Figure 6(f), comparison between the two classical meta-learning PAC-
Bayes bounds, the proposed meta-learning PAC-Bayes λ bound and meta-
learning PAC-Bayes variational bound achieve a competitive generalization
performance. The same conclusions can also can be drawn in the testing
phase as shown in Figure 6(g) and Figure 6(h).

7.4. Ablation studies

In the Section, we focus on the study and evaluation of two most important
hyperparameters: Confidence probability 1− δand training data rate for data-
dependent prior.

Results on the impact of confidence probability 1 − δ are depicted in
Fig. 9(a). It is shown that PAC-Bayes bound varies with the change of
1 − δ influence the generalization error upper bound. Figure 4 shows the
PAC-Bayes bound varies with the change of 1− δ. We find that the higher
the confidence probability, the looser the error upper bound.

The training data rate for data-dependent prior measures how the training
dataset is split into two separate datasets. As shown in Fig. 9(b), the split
rate has a significant influence on the model performance. Large split rate
may cause the learnt prior trapped in local minimum and over-fitting. The
study shows that 20% data can be utilized to learn data-dependent prior, the
remaining 80% data is then used to train model.
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Figure 9: Ablation analysis of meta-learning with data-dependent prior.

8. Conclusions and future work

In this paper, the meta-learning PAC-Bayes bounds with data-dependent
prior algorithms are explored. The proposed theory can be applied to develop
a practical algorithm, which can achieve a balance between model accuracy
and generalization performance. First, based on the PAC-Bayes relative
entropy bound, the meta-learning PAC-Bayes λ bound and meta-learning
PAC-Bayes quadratic bound are derived. Furthermore, to achieving improved
generalization performance, the meta-learning PAC-Bayes variational bound is
also investigated. These bounds have been applied to develop a practical meta-
learning model with a generalization performance guarantee and reduced
overfitting. Next, in order to improve the convergence ability, it is also
proposed that the ERM approach and the meta-learning PAC-Bayes bounds
with data-dependent prior algorithms are combined.

The results of our experiments in two different MNIST environments,
namely shuffled pixels and permuted labels, demonstrate that meta-learning
PAC-Bayes λ bound and meta-learning PAC-Bayes variational bound can
achieve competitive performances in terms of generalization error upper bound
and estimation accuracy in both training and testing phases. Moreover,
meta-learning PAC-Bayes bound with a data-dependent prior has a rapid
convergence ability.

In future work, one could further investigate different prior distributions,
such as a distribution-dependent prior, to achieve greater accuracy. Thus, how
to learn a more efficient prior distribution is still an important issue. Besides,
fast convergence rate algorithm can achieve better convergence performance
with less training data or tasks. Thus meta learning fast rate PAC-Bayes
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bound with convergence rate O( 1
n
) could be further investigated.
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Appendix

8.1. Proof of Theorem 3

In this section, a briefly proof of the extended PAC-Bayes λ bound is
introduced.

Let n be the number of training tasks. The samples of task i are zi,j, j =
1, ..., K,K ≜ mi, over the data distribution Di. The bounded loss function
is defined as ℓ(h, z). We define the prior distribution P , which is sampled
from hyper-prior distribution P. The posterior distribution is defined as
Q = Q (Si, P ), which is sampled from hyper-posterior distribution Q. Here as
exemplified in [6], ‘tuple hypothesis’ is defined as f = (P, h) where P ∈ M and
h ∈ H; ‘prior over hypothesis’ is defined as π ≜ (P , P ), where h is sampled
from P . We note that the ’posterior over hypothesis’ can be any distribution
(even sample dependent). In particular, the PAC-Bayes bound will hold for
the following family of distributions over M×H, ρ ≜ (Q, Q (Si, P )) , where
P is sampled from Q and h is sampled from Q = Q (Si, P ) respectively.

The KL-divergence term is

D(ρ∥π) = E
f∼ρ

log
ρ(f)

π(f)

= E
P∼Q

E
h∼Q(S,P )

log
Q(P )Q (Si, P ) (h)

P(P )P (h)

= E
P∼Q

log
Q(P )

P(P )
+ E

P∼Q
E

h∼Q(S,P )
log

Q (Si, P ) (h)

P (h)

= D(Q∥P) + E
P∼Q

D (Q (Si, P ) ∥P ) .

(25)

Then by applying the refined Pinsker inequality kl(p̂∥p) ≥ (p−p̂)2

2p
, (p̂, p ∈

(0, 1), p̂ < p) and the inequality
√
ab ≤ 1

2

(
λa+ b

λ

)
, λ > 0 yields PAC-Bayes

λ bound [58]

er(Q,D) ≤ êr(Q,S)
1−λ/2

+ KL(Q∥P )+log(2
√
n/δ)

nλ(1−λ/2)
. (26)
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This generalization error upper bound can be used to guide the training of
neural network by selecting the right side as the training objective with the
fast convergence rate O( 1

n
).

Based on the PAC Bayes λ bound in Eq. 26, the Meta-learning PAC-Bayes
λ bound is proved as follow. Just as with classical extended PAC-Bayes theory,
our proof also involves two steps:

Step 1: For the task i, we use PAC-Bayes relative entropy bound to
evaluate the generalization error for each observed task i

E
P∼Q

er (Q,Di) ≤ 1
1−λi/2

E
P∼Q

êr (Q,Si)

+
D(Q∥P)+ E

P∼Q
D(Q∥P )+log

2
√
mi

δi

miλ(1−λi/2)
.

(27)

Step 2: We try to bound the environment-level generalization. Due to
observing only a finite number of tasks from the environment, re-using the
classical PAC-Bayes bound yields

E
(D,m)∼τ

E
S∼Dm

E
P∼Q

E
h∼Q(S,P )

E
z∼D

ℓ(h, z)

≤ 1
n

∑n
i=1 E

P∼Q
E

h∼Q(Si,P )
E

z∼Di

ℓ(h, z)

+
√

1
2(n−1)

(
D(Q∥P) + log n

δ0

)
.

(28)

For simplicity, we can rewrite the above formula as

er(Q, τ) ≤ 1
n

∑n
i=1 E

P∼Q
er(Q(Si, P ),Di)

+
√

1
2(n−1)

(
D(Q∥P) + log n

δ0

)
.

(29)

Combining Eq. 27 and Eq. 29 by union bound yields

er(Q, τ) ≤ 1
n

∑n
i=1

1
1−λi/2

E
P∼Q

êr (Q,Si)

+ 1
n

∑n
i=1

D(Q||P)+ E
P∼Q

D(Q||P )+log
2
√
mi

δi

miλi(1−λi/2)

+
√

1
2(n−1)

(
D(Q||P) + log n

δ0

)
.

(30)
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Assuming that δ0 =
δ
2
, δi =

δ
2n

and λ0 = λi = λ, this then yields

er(Q, τ) ≤ 1
n

∑n
i=1

1
(1−λ/2)

E
P∼Q

êr (Qi, Si)

+ 1
n

∑n
i=1

D(Q||P)+ E
P∼Q

D(Q||P )+log
4n

√
mi

δ

miλ(1−λ/2)

+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
.

(31)

8.2. Proof of Theorem 4

Different with PAC-Bayes λ bound in Eq. 26, one may view refined Pinsker
inequality as a quadratic inequality on

√
er(Q,D). Solving this inequality

yields the following PAC-Bayes quadratic bound [29]

er(Q,D) ≤
(√

êr (Q,S) + ε+
√
ε
)2
, (32)

where ε = 1
2m

(
D (Q∥P ) + log 2

√
m
δ

)
.

For the task i, applying PAC-Bayes quadratic bound to evaluate the
generalization error in each of the observed tasks i yields

E
P∼Q

er(Q,Di) ≤
(√

E
P∼Q

êr(Q,Si) + εi +
√
εi
)2
, (33)

where εi =
1

2mi

(
D(Q||P) + E

P∼Q
D(Q||P ) + log

2
√
mi

δi

)
.

By utilizing the first step of the proof in Theorem 3, and assuming that
δ0 =

δ
2
, δi =

δ
2n
, we can get the following meta-learning PAC-Bayes bound

er(Q, τ) ≤ 1
n

∑n
i=1(

√
E

P∼Q
êr(Q,Si) + ϵi +

√
ϵi)

2

+
√

1
2(n−1)

(D(Q||P) + log 2n
δ
).

(34)

Here εi =
1
mi
(D(Q||P) + E

P∼Q
D(Q||P ) + log

4n
√
mi

δ
).

8.3. Proof of Theorem 5

First, a variational KL bound is introduced [55]

er(h,D) ≤ min

{
êr(Q,S) + ε+

√
ε(ε+ 2êr(Q,S)),

êr(Q,S) +
√
ε/2,

(35)

where ε = 1
m
(D(Q∥P ) + log 2

√
m
δ

).
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For the task i, we use PAC-Bayes variational bound to estimate general-
ization error in each of the observed task i

E
P∼Q

er (Qi,Di) ≤ 1
n

∑n
i=1 E

P∼Q
êr (Q,Si)

+ 1
n

∑n
i=1 min

(
εi +

√
εi
(
εi + 2 E

P∼Q
êr (Q,Si)

)
,
√

εi
2

)
,

(36)

where εi =
1

2mi

(
D(Q||P) + E

P∼Q
D (Q||P ) + log

2
√
mi

δi

)
.

By applying the first step of the proof in Theorem 3, and assuming that
δ0 =

δ
2
, δi =

δ
2n

yields

er(Q, τ) ≤ 1
n

∑n
i=1 E

P∼Q
êr (Qi (Si, P ) , Si)

+ 1
n

∑n
i=1 min(εi +

√
εi(εi + 2 E

P∼Q
êr(Qi, Si)),

√
εi
2
)

+
√

1
2(n−1)

(
D(Q||P) + log 2n

δ

)
.

(37)

Here εi =
1
mi

(
D(Q||P) + E

P∼Q
D (Q||P ) + log

4n
√
mi

δ

)
.
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