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Abstract—Parking lots (PLs) equipped with electric 

vehicles (EVs) chargers will be the most convenient spot 

for EV users to charge their cars. However, there is a high 

degree of unpredictability around how the car parks are 

used, especially shopping centre parking lots (SCPL). 

Moreover, the cluster charging of EVs in the PLs may 

destabilise the grid. Application of battery energy storage 

system (BESS) in the PLs is considered a way to reduce the 

impact of EV charging on the grid. This work proposes an 

approach to estimate the size of the stationary BESS for 

the PLs in a constrained grid. At first, intermittent 

charging demand of EVs is constructed by considering 

travel pattern, charging need and driver’s behaviour of 

EVs. Then, a region reduction method combined with non-

linear optimisation is proposed to estimate the optimal size 

of BESS such that the capital cost and operational cost of 

the SCPL are minimised. The proposed sizing method 

ensures 1) the maximum utilisation of the stationary 

BESS, 2) avoid over/under-sizing, 3) reduce the 

operational cost, 4) and maintain the reliability of the 

system. The applicability of the proposed method is shown 

by simulating different cases, characterised by real 

household travel survey data and shopping centre car 

park occupancy data. 

Keywords— Electric vehicle, Battery Energy Storage, 

Constrained grid, Shopping Centre Parking lots. 

Indices  

h Hour 

i Electric vehicle index  

Variables and Parameters 

𝐵𝐶𝑖 Rated battery capacity of 𝑖𝑡ℎ EV. 

𝐾𝑀𝑖 Distance travel by 𝑖𝑡ℎ EV in single charge. 

𝐴𝑖  & 𝐷𝑖                 Arrival & Departure time of 𝑖𝑡ℎ EV. 

𝑇𝑐ℎ𝑎𝑟𝑔𝑒
𝑖  Time required to fully charged the 𝑖𝑡ℎ EV 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒
𝑖  Rate of charging required for 𝑖𝑡ℎ EV. 

𝐷𝑚𝑎𝑥 Max distance travel by EV in single charge. 

𝐸𝑒𝑣
ℎ  Aggregated hourly charging demand of EVs. 

𝑅𝑖 Energy consumed per kilometre by 𝑖𝑡ℎ EV. 

∆𝑔 Reduction in PLO tariff in percentage. 

𝐸𝑖 Energy required to fully charge the 𝑖𝑡ℎ EV. 

𝐿𝐸𝑉
𝑖,ℎ

 Hourly charging load of 𝑖𝑡ℎ EV. 

𝜂𝑐ℎ𝑟𝑔 Efficiency of the EV charger. 

𝑠𝑜𝑐𝐵
ℎ Instantaneous SOC of the battery. 

𝜂𝑐𝑣𝑡𝑟 Efficiency of the converter. 

𝐸𝑏
ℎ Energy supply/absorb from the battery. 

𝐵𝑑𝑒𝑔
ℎ  Degradation of battery. 

𝐵𝐶𝑟𝑒𝑞  Required battery capacity. 

𝑃𝑠𝑝𝑣
ℎ  Output power of single PV panel. 

𝐺𝑠𝑡𝑑  Standard coefficient for solar irradiance. 

𝑇𝑠𝑡𝑑 Standard coefficient for temperature. 

𝑇𝑐
ℎ Hourly internal cell temperature of PV. 

𝛼𝑡 Temperature coefficient. 

𝜂𝑖𝑛𝑣 Efficiency of inverter. 

𝑃𝑝𝑒𝑎𝑘 Peak power of a PV panel. 

𝐺ℎ Hourly solar irradiance. 

𝑁𝑂𝐶𝑇 Normal operating cell temperature. 

𝑉𝐹𝑂𝑅  Decision variable for FOR. 

𝑉𝑐𝑙𝑑  Decision variable for cloud effect. 

r  Random number ∈ (0,1]. 

𝐸𝑝𝑣
ℎ  Hourly solar PV system output 

𝑁𝑃𝑉 Number of installed PV panels. 

𝑆𝐴 Total available area in PL for PV installation. 

𝛼𝑃𝐿 Percentage of shaded area in the PL. 

𝑆𝑝𝑣 Area occupied by single PV panel. 

𝐸𝑒𝑟𝑟𝑜𝑟  Error between EV load and energy resources. 

𝐸𝑔
ℎ Hourly energy consumed/ supply to grid. 

𝐸𝑚𝑎𝑥 Maximum BESS capacity needed for PL. 

𝐵𝐶𝑢𝑝 Updated battery capacity. 

𝑋𝑚𝑖𝑛  Minimum boundary of the solution. 

𝑋𝑚𝑎𝑥  Maximum boundary of the solution. 

𝑘 Decision variable for calculating 𝐵𝐶𝑢𝑝. 

𝐶𝑏,𝑑𝑒𝑔
ℎ  Cost of battery degradation. 

𝐶𝑔𝑟𝑖𝑑
ℎ  Cost of energy purchase/sell to grid. 

𝐶𝑏,𝑐𝑎𝑝𝑖𝑡𝑎𝑙
ℎ  Capital Cost of optimal battery capacity.  

𝐶𝑒𝑣,𝑐ℎ𝑔
ℎ  Revenue for charging electric vehicles. 

𝛼𝑐𝑝 Hourly value of capital cost of battery.  

𝑐𝑎𝑝𝑏 Battery degradation cost per cycle.  

𝐸𝑑𝑖𝑠
ℎ  Instantaneous discharging power of battery. 

𝜗(𝜌(𝑐/𝑑)) Battery degradation factor. 

𝛾ℎ Absolute value of the BESS power. 

𝑁𝑙𝑖𝑓𝑒  Life of the battery. 

𝜆 Charger rating (charging/discharging limit). 

𝐶𝑃
ℎ Time of use tariff. 

𝐶𝑠
ℎ Tariff for EVs charging offered by PLO. 

𝑈𝑐𝑜𝑠𝑡  Unit cost of the BESS. 

𝛿 Grid power constrained. 
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𝐸𝑐ℎ𝑔
ℎ  Instantaneous charging power of BESS. 

𝑁𝑐               Total number of cars visited per day. 

Abbreviation 

BESS Battery Energy Storage System 

EV Electric Vehicle 

FOR Force Outage Rate 

HTSD Household Travel Survey Data 

PLO Parking Lot Operator 

SCPL Shopping Centre Parking Lot 

SOC State of Charge 

I. INTRODUCTION 

The greenhouse gas emission is a great challenge for the 

environment and human life. Many countries are electrifying 

their transportation to reduce 𝑐𝑜2 emissions [1]–[3]. Eco-

friendly nature of electric vehicles makes it a viable source of 

commuting [4]. People spend most of their time at the 

workplace, shopping centre and homes [5]. It is expected that 

the rapid increase in the market participation of EVs will 

change the parking lots (PLs) into a charging station.  Instead 

of going to the dedicated EV charging stations, it will be more 

convenient for EV owners to charge their vehicles in the PLs 

associated with workplaces, shopping centres, and homes. 

EVs are mobile loads and difficult to estimate. The 

arrival and departure times of the EVs as well as the 

occupancy patterns depend on where they are parked. For 

example, workplace or home parking lots usually have 

periodic and well-defined arrival and departure times. 

Typically, people spend an extended amount of time at their 

workplaces and homes [5]. Conversely, in shopping centre 

parking lot (SCPL), the arrivals and departures of vehicles are 

scattered throughout the day, and vehicles stay for a very 

short period. Moreover, EV charging behaviour entirely 

depends on its random usage, EV owner’s behaviour and 

travel needs. To convert PLs into an EV charging station, it 

is essential to accurately estimate the charging behaviour of 

EVs. Significant research efforts have been made focusing 

workplace and home EV parking lots [6]–[8]. However, to 

the best of authors’ knowledge, the estimation of EV charging 

patterns in SCPLs have not been investigated yet. 

Economic scheduling of EV charging at SCPL is 

challenging due to shorter occupancy time of vehicles. 

Moreover, on arrival, EV gets connected into the charger and 

start charging at their maximum charging rate. This 

opportunistic/cluster charging of EVs in SCPL contributes to 

increasing the peak demand of the electrical system [9]. The 

increase in load adversely impacts systems’ reliability. A 

constrained power grid is a feasible solution to maintain the 

reliability of the power system [10]. In a constrained grid, the 

system operator specifies the power limit, so, in any given 

time, the grid cannot supply more than specified power to the 

load. So, the parking lot operator (PLO) must flatten their 

charging demand according to the power constraint enforced 

by the grid. However, PLO is interested in fulfilling the 

charging requirement of each vehicle, without reducing their 

energy consumption. In this context, a stationary BESS can be 

used to provide energy when needed and recharge itself in off-

peak hours. Even though the advancement to improve the 

efficiency and lifetime of BESS make it a feasible solution for 

peak shaving. However, high capital cost for implementing 

the BESS still a primary concern for PLO [11]. Moreover, 

there is a high degree of unpredictability around how car parks 

are used. It is challenging for PLO to decide what BESS is 

required to meet the intermittent charging demand of EVs.  

Over-sizing of BESS may not achieve cost-benefit ratio, and 

under-sizing will create reliability issues. Therefore, the 

correct size of BESS is the essential aspect in designing of 

SCPL containing charging infrastructure for EVs.  

Several studies have been conducted to estimate the 

optimal capacity of BESS in the grid-connected system. For 

example, the authors in [12], [13] presented a probabilistic 

optimisation approaches for BESS to charge EVs in the fast-

charging station. In [11], [14]–[17], an economical and 

reliable combination of photovoltaic, wind and energy storage 

system has been conducted. However, these studies did not 

consider the intermittency of renewable energy sources. The 

authors in [18], [19] develops a stochastic method to evaluate 

battery sizing by taking demand shift capability into account. 

However, it overlooked the uncertainty in the household load 

profile. The authors in [14] aim to find the optimal 

combination of PV, WT and BESS. However, their 

convergence criteria resulted the BESS to discharge below 

95% depth of discharge (DOD). A comprehensive battery 

sizing model considering battery degradation is proposed in 

[15]. A BESS capacity is computed in the fast-charging station 

by formulating a relationship between waiting time of EV 

users and size of BESS [20]. In [21], [22], the authors 

developed a techno-economical sizing method for DC-micro 

grid by considering EV mobility on different charging stations 

but neglecting EV’s driving pattern whiles estimating BESS 

sizing. To determine the charging behaviour of EVs, many 

authors considered deterministic model whereas EV charging 

load is entirely dependent on its variable usage. Authors in 

[23]–[25] neglected the effect of driving style on energy 

consumption per kilometre of EVs and EV’s battery 

degradation in estimating EVs behaviour in PLs. Detailed EV 

modelling is still an issue in determining vehicle availability 

and EV’s charging demand in the PLs 

To conclude, many studies overlooked critical factors,     

for example the intermittency of renewable resources and EV 

load [3], [9], [17], some considered utility grid as an infinite 

bus [11], [13], many assumed fixed values of random 

parameters while estimating EV charging demand [4], [23], 

[25]. Moreover, methods presented in [12], [19], [26], [27] are 

computationally inefficient and taking long time to converge. 

As per authors’ knowledge, an efficient sizing method for 

BESS to fulfil the intermittent EV charging demand in a 

constrained power grid at SCPL has not previously been 

reported. 

This paper proposes an on-site grid-connected BESS 

sizing method for SCPL equipped with charging infrastructure 

of EVs in a constrained grid. The proposed method depends 

on the intermittent EV charging demand, photovoltaic (PV) 

output and grid power constraints. On the contrary to the 

literature that neglecting the uncertain behaviour of the above-

mentioned factors. At first, a stochastic model is proposed to 

construct the EVs charging demand at SCPL and PV output. 

Then a region reduction method is introduced to reduce the 

search space for the optimisation problem. Based on the 



computed EV charging demand and PV output, an 

optimisation problem is formulated to calculate the optimal 

size of the stationary BESS, such that the capital cost and 

operational cost of the SCPL are minimised. In addition, the 

optimal tariff offered by PLO is computed. Detailed analyses 

and simulation results are presented with real data of 

household travel survey of Sydney region, weather data and 

parking lot occupancy data.  

To conclude, the key contributions of this work are 

summarised as follows: 

 Proposing a stochastic model to estimate the EVs 

charging behaviour in the SCPL by mapping each 

EV’s parameter in an appropriate distribution with 

quantified uncertainty. 

 Proposing an optimisation based sizing method 

combined with region reduction method to estimate 

the size of BESS and the optimal tariff for PLO. 

 Study the impact of EV charging and grid power 

constraints on BESS sizing. 

       Different case studies are conducted to validate the 

efficacy and applicability of the proposed BESS sizing 

method. 

       The remainder of the paper is organised as follows: 

Section II describes the system overview, whilst section III 

presents the modelling of the available energy resources. The 

BESS sizing method is discussed in Section IV, Section V 

presents the results of the proposed method, and Section VI 

concludes the paper. 

II. SYSTEM OVERVIEW 

A. Parking Lot Architecture 

The conceptual architecture of a PL is shown in Fig.1. 

The PL is equipped with charging/discharging infrastructure 

of EVs coupled with on-site BESS and PV systems. EVs are 

connected to a DC bus through control switches and DC-DC 

converters. The control switches allow PLO to schedule the 

charging and discharging of EVs. The main bi-directional 

power converter connects parking lots with the AC bus. 

Communication and control signal in-between BESS, EVs 

and utility grid help the PLO to manage the EV charging 

demand.  

B. Overview of the proposed BESS sizing method 

 The overview of the proposed BESS sizing method is 

illustrated in Fig. 2. The yearly power output from the PV 

system is calculated by using real weather data of the Sydney 

region. The arrival/departure pattern, charging behaviour and 

travel needs are emulated with probability distribution 

functions with quantified uncertainties. Then EV charging 

demand is calculated by using the proposed stochastic model. 

The search space for the optimisation problem is reduced by 

region reduction method. Then the BESS capacity to balance 

the EV load in a constrained grid condition is calculated by 

formulating an optimisation problem. The objective of the 

optimisation problem is to minimise the capital and 

operational cost of the system. Finally, economic analysis is 

conducted to estimate the economical and reliable BESS 

capacity for SCPL.  

III. SYSTEM MODELLING  

A. EV Load Modelling  

 EVs are movable load, and its charging/discharging 

pattern depends on its random usage, travel need and driver’s 

behaviour. In this work, EVs are characterised by five 

parameters (i.e. 𝐴𝑖 , 𝐷𝑖 , 𝐵𝐶𝑖 , 𝑅𝑖 , 𝐾𝑀𝑖). Refer to nomenclature 

for details on symbols used.  

The aggregated occupancy time and arrival/departure 

pattern of vehicles in SCPL was modelled using hourly data 

collected from a nearby suburban shopping centre (the 

Macquarie Shopping Centre) and household travel survey data 

(HTSD). The HTSD is obtained from 25,443 people in 9,715 

households across the state of new south wales (NSW) over a 

period of three years [5]. We analysed that on average, 17000 

vehicles visited the SCPL per day (𝑁𝑐). Out of 17000, more 

than 23% of vehicles were parked for less than 30 minutes, 

and almost 92% of vehicles departed within 3 hours. (Note: a 

parking fee applied for stays longer than 3 hours). The 

considered SCPL has a parking space for 4500 vehicles. 

The arrival time 𝐴𝑖 departure time 𝐷𝑖  of EVs in the SCPL 

was best fitted with a log-normal distribution having means 

µ𝑝 and standard deviation 𝜎𝑝.  

 

𝐴𝑖   = 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(µ𝑝, 𝜎𝑝)        ∀ 𝑖        (1) 

𝐷𝑖  = 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(µ𝑝, 𝜎𝑝)        ∀ 𝑖                  (2) 

Fig. 2. Overview of the proposed BESS sizing method 

Fig. 1. Parking Lot architecture  



The values of mean µ𝑝 and standard deviation 𝜎𝑝 for 𝐴𝑖 and 

𝐷𝑖  are shown in Table 1. 

In this work, Nissan leaf 2018 is considered. The energy 

consumption per kilometer of EV (𝑅𝑖) and battery capacity 

(𝐵𝐶𝑖) is significantly affected by EV usage and calendar 

aging. It is stated in [28], [29] that 𝑅𝑖 varies up to 33% of its 

rated value and, 𝐵𝐶𝑖 degraded up to 12.1% of its rated 

capacity. The 𝑅𝑖, and 𝐵𝐶𝑖 were best fitted with truncated 

gumbel-min and normal distributions, respectively. The upper 

and lower limits of 𝑅𝑖 and 𝐵𝐶𝑖  are listed in Table 2. In (3), 

𝜇𝑅 = 𝑅𝑚𝑖𝑛 and 𝜎𝑅 = 7.034 whereas, in (4) 𝜇𝐵 = 𝐵𝐶𝑚𝑎𝑥  and 

𝜎𝐵 = 0.4512.  

 

𝑅𝑖 = 𝑔𝑢𝑚𝑏𝑒𝑙 𝑚𝑖𝑛(𝜇𝑅, 𝜎𝑅)(𝑅𝑚𝑖𝑛≤𝑅𝑖≤𝑅𝑚𝑎𝑥 )             (3) 

𝐵𝐶𝑖 = 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝐵, 𝜎𝐵)(𝐵𝐶𝑚𝑖𝑛≤ 𝐵𝐶𝑖≤ 𝐵𝐶𝑚𝑎𝑥)             (4) 

The daily travel pattern of the Sydney region is derived 

from HTSD [5]. We analysed that vehicles in NSW travel 

approximately 11650 kilometres per annum and about 88% of 

those vehicles drive less than 30 km per day, and 

approximately 95% of vehicles travel less than 45 km per day. 

These results are comparable to the travel patterns identified 

in other works [30]. The distance travelled 𝐾𝑀𝑐
𝑖  by each 

vehicle was best fitted by a Weibull distribution with shape 

parameter 𝜍𝑀𝐷 = 36 and scale parameter 𝜈𝑀𝐷= 4.9.  

 

𝐾𝑀𝑖 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜍𝑀𝐷 , 𝜈𝑀𝐷);    ∀𝑖       (5) 

 

 To calculate the charging load of EVs, we assumed that the 

travel patterns of EVs are the same as in the HTSD [5]. The 

energy consumed/required to charge the 𝑖𝑡ℎ EV while parked 

in the SCPL can be computed as  

 

𝐸𝑖 = {
𝐵𝐶𝑖              𝑖𝑓 𝐾𝑀𝑖 = 𝐷𝑚𝑎𝑥

𝑅𝑖 ∗ (𝐾𝑀𝑖 𝐷𝑚𝑎𝑥⁄ ),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , ∀𝑖        (6) 

 

A Level 2 EV charger (i.e. 𝑉 = 240 V and A= 15 ampere) 

is used to charged EVs. With the help of (1)-(6) we are now 

able to estimate the EV charging demand (𝐿𝐸𝑉
𝑖,ℎ

) in the SCPL. 

 

𝐿𝐸𝑉
𝑖,ℎ =  ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒

𝑖 (ℎ)
min ( 𝑇charge

𝑖 ,𝐷𝑖)

𝐴𝑖 ∗ 𝜂𝑐ℎ𝑟𝑔         (7) 

 

Here 𝑇𝑐ℎ𝑎𝑟𝑔𝑒
𝑖 = 𝐸𝑖 (𝑃𝑐ℎ𝑎𝑟𝑔𝑒

𝑖 ∗ 𝜂𝑐ℎ𝑟𝑔)⁄ , and 𝜂𝑐ℎ𝑟𝑔 is the 

efficiency of the charger and 𝑃𝑐ℎ𝑎𝑟𝑔𝑒= 3.6 kW is the rate of 

charging of EVs. Equation (8) is used to aggregate the hourly 

charging demand of EVs. 
 

𝐸𝑒𝑣
ℎ =   ∑ [

𝐿𝐸𝑉
1,1

𝐿𝐸𝑉
1,2 ⋯ 𝐿𝐸𝑉

1,ℎ

⋮ ⋮ ⋮

𝐿𝐸𝑉
𝑖,1

𝐿𝐸𝑉
𝑖,2 ⋯ 𝐿𝐸𝑉

𝑖,ℎ
]

𝑁𝑐
𝑖=1

(𝑁𝑐×ℎ)

         (8)  

     

Equations (1-8) are used to estimate the charge consumed 

by EV in the SCPL.  

The SOC levels of EVs at arrival and departure time from 

the SCPL is shown in Fig. 3. Fig. 4 shows the estimated 

aggregated EV’s charging demand in the SCPL. In Fig 3 each 

cross represents the arrival of EV, and each circle indicates the 

departure of EV. The dense cluster in between 1000 to 1800 

hrs show the higher number of vehicle availability in the 

SCPL. It can be observed in Fig 3 that the SOC level of EVs 

at the departure time is higher than arrival SOC. However, due 

to shorter occupancy time, approximately 1.28% of the 

vehicles (visited per day) are charged up to 100%. 

Table 1: Statistical Parameters  

Parking 

Lots 

Arrival Time           Dept. Time 

µ𝑝 𝜎𝑝 µ𝑝 𝜎𝑝 

SCPL 11.5368 0.293 16.89 2.414 

   
   
   
   

 

Fig. 3. Arrival and departure SOC of EVs at SCPL 

Fig. 4. Aggregated EVs charging demand at SCPL 

Table 2.  Electric vehicle specifications  

EV Parameters Nissan Leaf  

𝑅𝑚𝑖𝑛(kWh/km) 0.164 

𝑅𝑚𝑎𝑥(kWh/km) 0.219 

𝐵𝐶𝑚𝑖𝑛(kWh) 36 

𝐵𝐶𝑚𝑎𝑥(kWh) 40 

𝐷𝑚𝑎𝑥 (km) 243 

𝜂𝑐ℎ𝑟𝑔 0.94 

 



B. Battery Energy Storage System Modelling 

Application of BESS in the car parks is considered a way 

to mitigate the impacts of EVs on the power grid and provide 

operational flexibility. BESS is used to store energy in the off-

peak hour and supply energy back when needed. The 

degradation of BESS has a considerable effect in sizing BESS 

so it should be reflected in the calculation. The SOC of the 

BESS at any instant can be computed as 

 

𝑠𝑜𝑐𝐵
ℎ = 𝑠𝑜𝑐𝐵

ℎ−1 +
𝜂𝑐𝑣𝑡𝑟(𝐸𝑏

ℎ + 𝐵𝑑𝑒𝑔
ℎ )

𝐵𝐶𝑟𝑒𝑞
⁄    ∀ℎ      (9) 

Subject to  

𝑠𝑜𝑐𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐𝐵
ℎ ≤ 𝑠𝑜𝑐𝑚𝑎𝑥 

 

        Where 𝑠𝑜𝑐𝐵
ℎ is the SOC of the battery. 𝜂𝑐𝑣𝑡𝑟 is the 

efficiency of the DC-DC converter. The battery degradation 

𝐵𝑑𝑒𝑔
ℎ  is calculated by using (10) – (12). 

 

𝐵𝑑𝑒𝑔
ℎ = 𝜗(𝜌(𝑐/𝑑)) ∗ 𝛾ℎ   (10) 

𝛾ℎ = |𝐸𝑏
ℎ| 𝛽⁄    (11) 

Where                       𝐸𝑏
ℎ = 𝐸𝑐ℎ𝑔

ℎ − 𝐸𝑑𝑖𝑠
ℎ         (12) 

 

        Where the battery degradation factor 𝜗(𝜌(𝑐/𝑑)) is model 

as a function of charging/discharging power [31]. 

 

𝜗(𝜌(𝑐/𝑑)) = (𝛽1𝑉 + 𝛽3𝑉2 + 𝛽5𝑉3 + 𝛽7𝑉4) + (𝛽2 +

 𝛽6𝑉) . |𝜌(𝑐/𝑑)|  +  
𝛽4

𝑉
 . |𝜌(𝑐/𝑑)|

2
       (13) 

 

C. Photovoltaic system (PV system) Modeling 

        Power generation through PV system depends on the 

atmospheric temperature, weather conditions and solar 

irradiance. The relationship between the output power of the 

PV system with temperature and solar irradiance is shown in 

(14) [32].  

𝑃𝑠𝑝𝑣
ℎ = [𝑃𝑝𝑒𝑎𝑘 (

𝐺ℎ

𝐺𝑠𝑡𝑑
) − 𝛼𝑡[𝑇𝑐

ℎ − 𝑇𝑠𝑡𝑑]] 𝜂𝑖𝑛𝑣   ∀ ℎ      (14) 

Where              𝑇𝑐
ℎ = (

𝑁𝑂𝐶𝑇−20

800
) 𝐺ℎ + 𝑇𝑠𝑡𝑑        ∀ ℎ               (15) 

        The values of 𝛼𝑡, 𝑃𝑝𝑒𝑎𝑘 and 𝑁𝑂𝐶𝑇 are obtained from the 

PV manufacture datasheet and shown in Table 3 [33]. 

        The hourly data of solar irradiance 𝐺ℎ and the ambient 

temperature of Sydney are taken from [34]. Many factors (like 

weather, cloud, dust) significantly affect the output of the PV 

system. Due to clouds shadow, the output power of the PV 

system decreases up to 12% from its nominal value [32], [35]–

[37]. The effect of cloud and forced outage rate (FOR) on the 

output of the PV system is computed in (16) - (17).  
 

𝑉𝐹𝑂𝑅 = 𝑍𝑒𝑟𝑜(𝑟> 𝐹𝑂𝑅𝑃𝑉), 1(𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)  (16) 

            𝑉𝑐𝑙𝑑 = 0.88(𝐹𝑂𝑅𝑃𝑉<𝑟< 𝑃𝑐𝑙𝑑), 1(𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) (17) 

 

        Here r is the random numbers, and it is compared with 

𝐹𝑂𝑅𝑃𝑉 and 𝑃𝑐𝑙𝑑 to set the value of the decision variables (i.e. 

𝑉𝐹𝑂𝑅  𝑎𝑛𝑑 𝑉𝑐𝑙𝑑). Equation (18) calculates the hourly output 

power/energy of the installed PV system. 

 

𝐸𝑝𝑣
ℎ =  𝑃𝑠𝑝𝑣

ℎ ∗ 𝑁𝑃𝑉 ∗ 𝑉𝐹𝑂𝑅 ∗ 𝑉𝑐𝑙𝑑          ∀ ℎ            (18) 

Subject to             𝑁𝑝𝑣
𝑚𝑖𝑛 ≤  𝑁𝑃𝑉 ≤ 𝑁𝑝𝑣

𝑚𝑎𝑥                          (19) 

Where    𝑁𝑝𝑣
𝑚𝑎𝑥 ≤ (1 − 𝛼𝑃𝐿) ∗ [

𝑆𝐴

𝑆𝑝𝑣
]    &     𝑁𝑝𝑣

𝑚𝑖𝑛 ≥  1                                 

𝑁𝑝𝑣
𝑚𝑖𝑛 and 𝑁𝑝𝑣

𝑚𝑎𝑥 are integer numbers and their values 

are based on the availability of the area for PV installation. 

The values of 𝑆𝐴 and 𝑆𝑝𝑣 are shown in Table 3. The estimated 

yearly PV output power in the SCPL is depicted in Fig 5. 

IV. BESS SIZING METHOD 

A 2-step method to compute the optimal size of the BESS 

is proposed while taking grid power-constrained and 

intermittent EV charging demand into account. In the first 

step, region reduction method is used to reduce the search 

space for the optimisation problem. Then an objective 

function is formulated to minimise the operational and capital 

cost of the system. 

A. Region reduction method 

The error between the EV charging load and power 

supplied by the grid is calculated as  

 

Fig. 5. Estimated PV output power in SCPL 

Table 3 Photovoltaic System Specification  

Parameter Value 

NOCT 

𝛼𝑡 

𝜂𝑖𝑛𝑣 

𝑇𝑠𝑡𝑑 (𝐶𝑜) 

𝑃𝑝𝑒𝑎𝑘 (W) 

𝑆𝐴 (𝑚2) 

𝛼𝑃𝐿 
 

𝑆𝑝𝑣(𝑚2) 

44 

-4% 
 

0.95 
 

25 
 

260 
 

44000 
 

10% 

2.01 
 

  

   
   
   

 



𝐸𝑒𝑟𝑟𝑜𝑟
ℎ =  𝐸𝑒𝑣

ℎ − (𝐸𝑔
ℎ + 𝐸𝑝𝑣

ℎ )          ∀ℎ           (20) 

 

      Where 𝐸𝑔
ℎ is the power-constrained enforced by the grid 

and 𝐸𝑒𝑣
ℎ  is the hourly charging demand of EVs. The negative 

values of the error are the surplus charging demand. The 

maximum battery capacity (𝐸𝑚𝑎𝑥) required to meet the 

additional charging load is calculated by taking the sum of all 

the negative values of the error, as shown in (21).  

 

𝐸𝑚𝑎𝑥 = ∑ {𝐸𝑒𝑟𝑟𝑜𝑟
ℎ      𝐸𝑒𝑟𝑟𝑜𝑟

ℎ > 0
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        ∀ℎ > 0𝑛
ℎ=1       (21) 

 

      𝐸𝑚𝑎𝑥 is a reliable BESS capacity but it’s not the optimal 

capacity. The required BESS can be less than or equal to 

𝐸𝑚𝑎𝑥. A modified region reduction method is introduced to 

reduce the search space. The required battery capacity 𝐵𝐶𝑟𝑒𝑞  

for SCPL is calculated as 

 

𝐵𝐶𝑟𝑒𝑞 =  {
𝐸𝑚𝑎𝑥     𝛼 < min(𝑠𝑜𝑐𝐵

ℎ) < 𝛽 
𝐵𝐶𝑢𝑝                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (22) 

 

      Here 𝛼 = 0.1 ∗ 𝐵𝐶𝑟𝑒𝑞  and 𝛽 = 0.15 ∗ 𝐵𝐶𝑟𝑒𝑞 . The 

proposed method is not allowed the battery to discharge less 

than 10% of its rated capacity and not to hold a charge of more 

than 90% of its rated capacity. Updated battery capacity 𝐵𝐶𝑢𝑝 

is calculated if 𝐵𝐶𝑟𝑒𝑞 ≠  𝐸𝑚𝑎𝑥 . Before calculating 𝐵𝐶𝑢𝑝, 

decision variable “k” is selected depending on the SOC of the 

battery. K equals zero, if at any instance, the battery discharge 

less than 10% of its maximum capacity. This condition is 

referred as under-sizing. Conversely, k equals to 1, if at any 

instance, the minimum SOC of the battery remains above 15% 

of its maximum capacity. This condition implies that the 

battery is oversized.   

 

𝑘 =  {
0     min(𝑠𝑜𝑐𝐵

ℎ) ≤ 𝛼 

1     min(𝑠𝑜𝑐𝐵
ℎ) ≥ 𝛽

       (23) 

𝐵𝐶𝑢𝑝 is the updated BESS capacity and it is calculated by 

using (24) – (26).  

𝐵𝐶𝑢𝑝(𝑢) = (𝑋𝑚𝑖𝑛(𝑢) + 𝑋𝑚𝑎𝑥(𝑢)) 2⁄     (24) 

      Here u is the iteration number. 𝑋𝑚𝑖𝑛(𝑢) and 𝑋𝑚𝑎𝑥(𝑢) are 

the minimum and maximum bounds of the solution. Initially, 

the values of 𝑋𝑚𝑖𝑛(𝑢) and 𝑋𝑚𝑎𝑥(𝑢) are set to be zero and 

𝐸𝑚𝑎𝑥 respectively.  

𝑋𝑚𝑖𝑛(𝑢 + 1) = {
𝑋𝑚𝑖𝑛(𝑢)         𝑘 = 1

𝐵𝐶𝑢𝑝(𝑢)        𝑘 = 0
   (25) 

𝑋𝑚𝑎𝑥(𝑢 + 1) = {
 𝐵𝐶𝑢𝑝(𝑢)         𝑘 = 1

𝑋𝑚𝑎𝑥(𝑢)          𝑘 = 0
    (26) 

        𝑋𝑚𝑖𝑛(𝑢) and 𝑋𝑚𝑎𝑥(𝑢) are updated in each iteration 

based on decision variable “k”. The algorithm continues until 

the solution reaches to its acceptable convergence (i.e. 𝛼 <

min(𝑠𝑜𝑐𝐵
ℎ) < 𝛽).  𝐵𝐶𝑟𝑒𝑞  is the reliable solution but it’s not 

the economical or optimal battery capacity. The region 

reduction method considers all possible combinations to 

ensures the maximum utilisation of the BESS. This method 

gives a range of reliable solutions. However, these solutions 

are not optimal. To find optimal solution for BESS an 

objective function is formulated to minimise the operational 

and capital cost of the system. 

 

B. Optimisation Problem Formulation 

The PLO owns/installed the PV system and the BESS and 

work as a mediator between EV users and the grid. The PLO 

is interested in fulfilling the EVs charging requirement 

without violating the grid constrained.  Fig.6 shows the energy 

flow in the PL. In Fig. 6 it can be seen that the EVs are only 

consuming energy. It is because the shopping centre is not the 

final destination of an EV owner in a day. Moreover, vehicles 

mostly stay for a very short period of time. So, there is very 

little room for scheduling.   

The energy flow in the SCPL can be mathematically 

expressed as.  

𝐸𝑔
ℎ + 𝐸𝑝𝑣

ℎ = 𝐸𝑏
ℎ + 𝐸𝑒𝑣

ℎ          ∀ℎ      (27) 

 

        Here 𝐸𝑏
ℎ, 𝐸𝑔

ℎ and 𝐸𝑒𝑣
ℎ  are free variables and 𝐸𝑒𝑣

ℎ  is a 

positive variable. The optimisation is based on hourly data, so 

power and energy rating are the same. As displayed in Fig. 6, 

the PLO has to manage its available resources (i.e. grid, BESS 

and PV) to meet the charging demand of EVs.  

        One of the most important factors which have a 

significant impact on BESS capacity is the electricity tariff. At 

any time instant, the PLO offered (1-∆𝑔) times less price than 

grid tariff. So, EV user preferred to charge their vehicle while 

parked in SCPL. Equation (28) ensure that the tariff offered 

by PLO to charged EV in the SCPL should always be less than 

the grid tariff. 

𝐶𝑠
ℎ ≤  𝐶𝑝

ℎ ∗ (1 − ∆𝑔)   (28) 

 

        Equation (29) ensure the power-constrained enforced by 

the grid. It means that the power supplied by the grid cannot 

exceed the sanctioned load.  

 

𝐸𝑔
ℎ ≤ 𝛿                                    (29) 

Fig. 6. Energy flow in the SCPL 



Equations (30)-(31) show the upper and lower bound of 

instantaneous energy drawn from the BESS (𝐸𝑏
ℎ) and the 

required battery capacity 𝐵𝐶𝑟𝑒𝑞  respectively. Here “𝜆” is the 

charger rating (C-rate). C-rate is the instantaneous charging 

and discharging power limit of BESS charger. The computed 

values of 𝜆 are tabulated in Table 5. 

 

−𝜆 ≤ 𝐸𝑏
ℎ ≤ 𝜆    (30) 

𝑋𝑚𝑖𝑛 ≤ 𝐵𝐶𝑟𝑒𝑞 ≤ 𝑋𝑚𝑎𝑥    (31) 

      

   BESS is a key energy resource in the PLs that provide 

operational flexibility. An optimal cost model for the PL in an 

operational cycle is formulated as 

 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = ∑ 𝐶𝑏,𝑑𝑒𝑔
ℎ + 𝐶𝑔𝑟𝑖𝑑

ℎ + 𝐶𝑏,𝑐𝑎𝑝𝑖𝑡𝑎𝑙
ℎ − 𝐶𝑒𝑣,𝑐ℎ𝑔

ℎ

𝑛

ℎ=1

 

Here 

𝐶𝑏,𝑐𝑎𝑝𝑖𝑡𝑎𝑙
ℎ = 𝛼𝑐𝑝 ∗ 𝐵𝐶𝑟𝑒𝑞    (32) 

𝐶𝑏,𝑑𝑒𝑔
ℎ = 𝐵𝑑𝑒𝑔

ℎ ∗ 𝑐𝑎𝑝𝑏   (33) 

𝐶𝑔𝑟𝑖𝑑
ℎ = 𝐸𝑔

ℎ ∗ 𝐶𝑃
ℎ    (34) 

𝐶𝑒𝑣,𝑐ℎ𝑔
ℎ = 𝐸𝑒𝑣

ℎ ∗ 𝐶𝑠
ℎ   (35) 

 

       Subjected to (27) - (31). Where 𝛼𝑐𝑝 is the life loss cost of 

the BESS in a cycle, 𝛼𝑐𝑝 = 𝑈𝑐𝑜𝑠𝑡 ∗ 𝐵𝐶𝑟𝑒𝑞 𝑁𝑙𝑖𝑓𝑒⁄ .” 𝑈𝑐𝑜𝑠𝑡” is 

the unit BESS cost and 𝑁𝑙𝑖𝑓𝑒  is the total life cycle time. The 

objective of the optimisation function is to minimise the 

yearly operational cost and the capital cost for PLO. The flow 

chart of the proposed method is shown in Fig. 7.  

        The initial investment cost and yearly maintenance cost 

of BESS are taken into consideration. The initial investment 

cost is calculated by adding cost of the battery (i.e. 𝐶𝑏𝑡 =

𝑈𝑐𝑜𝑠𝑡 ∗ 𝐵𝐶𝑟𝑒𝑞  and power electronic devices (𝐶𝑖𝑛𝑣). The power 

electronic equipment cost (𝐶𝑖𝑛𝑣) and unit cost of the battery 

(𝑈𝑐𝑜𝑠𝑡) are shown in Table 4. Other costs are neglected in this 

work. 

V. RESULTS AND DISCUSSION 

Simulation is carried out in MATLAB/GAMS environment, 

and the results are presented as follows. Firstly, this section 

demonstrates the impact of grid power-constrained on the 

BESS capacity. Then the optimum energy flow in the SCPL 

and PLO tariff for EV owners are calculated by solving 

optimisation formulation. Finally, economical analysis is 

conducted to select BESS. The simulation is done for one year 

(i.e. n =8760). However, two consecutive days (48 hours) are 

randomly selected to visualise the obtained results.   

 The proposed sizing method is tested in six different 

cases. Each case represents the different power limit enforced 

by the utility grid. Fig. 8. shows the power limit for each case 

together with the computed optimal battery capacity. It can be 

observed that the size of BESS is inversely proportional to the 

grid constraints. Even a small reduction (i.e. 1MW) in grid 

constrained, exponentially increases the capacity of the BESS. 

Moreover, if the grid committed less than 58% of the peak EV 

demand than the optimal BESS capacity will be 

approximately eight times more than the grid limit.  

       In this work, it is assumed that in SCPL EVs need to 

charged their batteries or retained some adequate SOC for its 

next travel. Therefore, the scheduling margin is very less. By 

using (28), we enforced that in any given time, the PLO 

offered at-least 5% less price to EV owners then the grid tariff. 

So, instead of taking energy from the grid, it is beneficial for 

Table 4 Optimization Parameters  

Parameter Value 

𝑵𝒍𝒊𝒇𝒆 

𝑼𝒄𝒐𝒔𝒕    $/KWh 

∆𝒈 

𝒄𝒂𝒑𝒃   $/KWh 
𝑪𝒊𝒏𝒗     $/KW 

10 years 

560 

0.05 
 

0.44 
 

175 
 

  

   
   
   

 

Fig. 7. Flow chart of the proposed sizing method 



EV owners to charge its vehicle at SCPL. However, PLO also 

wants to maximise its revenue. So, the optimisation simulation 

is conducted to compute an optimal tariff that is beneficial for 

both EV owners and the PLO. The resulted tariffs (i.e. PLO 

tariff) together with the grid tariff are shown in Fig. 9.  

       Fig. 10 shows the instantaneous energy flow between the 

utility grid and the BESS. It can be seen in Fig. 10 that in the 

evening, BESS is supplying power to the load and recharge 

itself in the early morning or late at night. To maintain the 

reliability of the power system, the PL should operate within 

the specified grid limits. As seen in Fig. 10 that at any instant 

the energy drawn from the grid (𝐸𝑔
ℎ) is not exceeding its 

specified limit (i.e. 10 MW for case # 2). So, the computed 

BESS maintains the system reliability. It can be observed that 

during the day, 𝐸𝑔
ℎ  and 𝐸𝑝𝑣

ℎ  are supplying power to the load 

whereas the BESS retains its SOC. Thus, the proposed method 

ensures the maximum utilisation of the PV system. 

Consequently, the computed BESS capacity is able to manage 

the EV charging demand in the SCPLs with limited grid 

supply.  
  

A. Discussion 

This section demonstrates the economic analysis of the 

proposed sizing method. Moreover, a comparison is made in 

Table 6 to show the efficacy of the proposed method.  

The economic analysis was performed, and the results are 

tabulated in Table 5. Tesla powerwall2 battery having a unit 

cost of 𝑈𝑐𝑜𝑠𝑡  = 560 $/KWh is considered [38]. In this work, 

both instantaneous charging/discharging power (i.e. C-rate) 

and energy capacity of BESS are considered while calculating 

the capital cost of the system. It can be seen in Table 5 that the 

C-rate is small as compared to the energy capacity of the 

BESS. However, the estimated C-rate for each case is enough 

to supply the peak demand. High power capacity BESS is 

commercially available, but those BESS are very costly. 

Secondly, cycling BESS at high charging/discharge rate (i.e. 

C-rate) reduces the life of the battery. It can be observed in 

Table 5 that the capital cost of the system increased 

significantly when the grid committed less than 58% of the 

peak demand. It is recommended that the network operator 

should supply more than 58% of peak charging load to the 

PLs. However, in each case, the break-even point for PLO 

reaches in approximately 3 years, whereas the BESS life is 10 

years. It is profitable for PLO to upgrade its PL to charging 

station.  

The comparison of the proposed BESS sizing method 

with the literature is tabulated in Table 6. It can be observed 

in Table 6 that most of the published works on EV behaviour 

modelling [23]–[25] neglected the effect of driving style on 

energy consumption per kilometre of EVs and EV’s battery 

degradation in calculating the charging demand of EVs.  Work 

on BESS sizing methods [12], [14], [15], [17] have not 

incorporated battery degradation and BESS charging and 

discharging rate in their analysis. Moreover, some methods 

are computationally expensive. On the contrary, the proposed 

sizing method incorporated the uncertain EV behaviour of the 

above-mentioned factors and effectively calculated the 

optimal size of BESS in a constrained grid. Fig. 11. depicted 

the characteristic of the BESS computed by using the 

proposed sizing method. The red, blue and green hexagons Fig.10. Optimal energy flow in the SCPL 

Fig. 9. Grid tariff and computed PLO tariff  

Fig. 8. Grid limits and computed BESS capacity 

Table.5 Economical Analysis  

Cases 𝑩𝑪𝒓𝒆𝒒 

(MWh) 

Charger 

Rating 

(𝝀) 

(MW) 

Capital 

Cost  

𝑪𝒊𝒏𝒗 + 𝑪𝒃𝒕   

(1000 X $)  

Annual 

Revenue  

(1000 X $) 

1 

2 

3 

4 

5 

6 

1.9 

5.3 

9.8 

23.2 

31.4 

40.6 

0.75 

1.78 

2.85 

3.74 

5.85 

7.74 

1234 

3252 

5022 

13865 

18624 

    23933 

1602 

1820 

2370 

3320 

3725 

11578 

 



show the low, medium and high level of the attributes of the 

resulted solution respectively. The shaded grey region defines 

the ratio of each attribute of the computed BESS.  

        In this work, simulations ran with and without region 

reduction method. Without region reduction method, the state 

space was from 0 to 𝐸𝑚𝑎𝑥  whereas the simulation time to 

process the optimal solution was 60.5hrs. With region 

reduction method, the state space was refined, and the 

simulation time to process the optimal solution was 0.75hrs. 

However, for both the simulation runs the optimal solution 

were 5.3 MWh (i.e. for case 2), as depicted in Fig. 8. The 

optimal solutions for other cases with and without region 

reduction method was same.  

The prominent features of the sizing method are to 

compute an economical and minimal energy capacity of 

BESS. However, the computed BESS is reliable and 

effectively manages the EV charging in a limited grid power 

supply. The proposed method allows the BESS to charge and 

discharge only in its nominal range (10% - 90% SOC). 

Moreover, the estimated C-rate (𝜆) is enough to meet the 

charging demand of EVs in peak hours, as depicted in Fig. 10. 

Cycling BESS at low C-rate reduces the battery degradation 

due to thermal issue, thus prolong the life of the BESS. The 

computed PLO tariff is always less than the grid tariff so it 

encourages EV owners to take services from PLO, on the other 

hand, helps PLO in maximising their profit. It can be observed 

that the computed BESS is supporting the grid in peak hours 

by sharing the EV charging load. Thus, increases the 

reliability of the electrical grid.  

VI. CONCLUSION 

A novel method is presented in this paper to estimate the size 

of the BESS for SCPLs having a charging infrastructure for 

EVs. The proposed sizing method considers the EV charging 

demand at SCPL, intermittent PV output and grid power 

constraints. At first, the stochastic method is proposed to 

compute the intermittent EV charging demand at SCPL. Then, 

PV output is calculated by using the Monte Carlo Simulation.  
At last, non-linear optimisation combined with region 

reduction method is proposed to estimate the optimal BESS 

capacity for SCPL. Simulations were conducted with the real 

data of HTSD, Sydney weather data and vehicle occupancy 

pattern data at SCPL. The results show that the computed 

BESS can not only reduce the impact of EV charging on the 

grid but also allows PLO to manage the EVs charging demand 

in a constrained grid, such that the operational cost is 

minimised. Introducing region reduction method in the 

proposed sizing method significantly reduces the 

computational time. It was analysed that despite the capital 

cost of BESS being significantly higher in some cases, the 

installation of BESS in SCPL is profitable for the PLO. The 

proposed method can be applied to other parking lots of 

different capacity and sizes. This work didn’t incorporate 

vehicle-to-grid (V2G) while calculating the optimal size of 

BESS. Efforts must be made in exploring the impact of V2G 

behaviour of EV owners on estimating the capacity of BESS.   
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