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Abstract— This paper presents a model predictive control 

(MPC) approach to a microgrid at a cotton farm so as to 

minimize the water pumping operational cost while taking full 

advantage of renewable energy sources. The reason for using 

MPC is its ability in handling noise, disturbance, and real-time 

parameter changes. In this paper, the MPC models of grid-

connected are established; moreover, the effectiveness and 

robustness of the MPC models are analyzed by cotton farm case 

studies. Simulation results show that the optimal MPC solutions 

for grid-connected microgrid of a farm are AU$8.4/ML less than 

a manual control-based strategy. In addition, the MPC solution 

shows outstanding robustness in controlling the water reservoir 

level. When the disturbance data of the rainy season in 2016 are 

added, the system saves 34.5% of the operating cost compared 

with the baseline. When the rainy season disturbance is added 

together, the system saves 11.74% of operating costs compared 

to the baseline.  

Keywords— Cotton farm, MPC, grid-connected microgrid, 

PV, Pump, Reservoir 

I. INTRODUCTION 

Hybrid renewable energy irrigation systems have been 
widely applied in the agricultural sector in Australia. Cotton 
farming has a good opportunity to take advantage of 
renewable energy sources (RESs) as an alternative energy 
source to meet high energy demand during irrigation [1]. The 
number of microgrid systems composed of renewable 
generation, energy storage units and traditional energy sources 
is increasing in Australian agriculture sector, and has brought 
enormous benefits to agricultural development [2]. When the 
hybrid renewable energy system is combined with optimal 
operation technology, the renewable energy source can be 
used more efficiently, and more operating costs can be saved. 

II. LITERATURE REVIEW 

A. Related work 

A variety of optimized operation technologies have been 
adopted to solve energy dispatch problems in order to save 
operating costs. For example, the proportional-integral 
feedback control scheme in [3], the fuzzy logic control load 
shift method in [4], the direct power control and optimization 
in [5], and an open-loop pump scheduling method in [6]. 
Nevertheless, these optimization techniques used in [7] do not 
include feedback and possible re-optimization. From the 
perspective of control theory [8], these applications do not 
observe the output of the control process. Therefore, the 
robustness and stability of the system will be inferior to the 
closed-loop optimization system. Note that model predictive 
control (MPC) is a powerful closed-loop optimal control 
strategy for a moving optimization horizon [9], and it has been 
successfully applied in microgrids to provide stable and 

efficient operations [10]. Generally, MPC is a control method 
which optimizes the predicted future system behavior under 
explicit constraints, and derives the optimal control sequence 
at each control horizon [11]. After implementing the first 
element of the calculated control solution, the controller 
moves to the next prediction horizon window and iteratively 
solves the optimization problem [12]. In addition, robustness 
is an important feature of MPC, which makes the system 
inherently stable in the face of uncertainty. The robust MPC is 
mainly to design an optimization-based control methodology 
that explains between uncertainty and systems, constraints, 
and performance criteria in a tractable way [13]. The linear 
robust MPC and nonlinear robust MPC numerical method 
have been proved by the convex approximation of MPC in 
[14]. 

B. Main contributions 

This paper aims to propose an MPC approach to solve the 
cotton farm microgrid operation problem while taking into 
account the constraints of the Australian cotton growing 
industry, where a grid-connected model for a rural small 
microgrid will be established, and weather condition changes 
are used to conduct robustness and operating cost analysis. 
Furthermore, this MPC approach is developed to control 
microgrid energy dispatching, which can utilize renewable 
energy sources efficiently to save irrigation costs. The supply 
and demand balance model of the microgrid irrigation system 
under grid-connected mode is established. The main 
contributions of this study can be summarized as follows. 

i. Cost minimization MPC models for a microgrid 
in a cotton farm are established for the grid-
connected mode. This model can reduce 
operating costs by optimally controlling the 
pumps in the cotton farm. 

ii. MPC methodology is adopted for cotton 
microgrid control, which optimizes not only the 
on/off state of the water pumps, but also the feed-
in state of the grid-connected case for cost-saving 
purposes.  

iii. A case study is carried out using real energy 
consumption data from an Australian cotton 
farm, and the impacts of MPC operations on the 
grid-connected microgrid is analyzed, which 
provides insights for the microgrid investment 
and development for Australian cotton farms. 
Furthermore, the proposed MPC operational 
strategy can also minimize the dependence on 
conventional energy sources and promote 
renewable energy.  
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The remaining parts of this paper are organized as follows. 
Section III introduces the MPC models of the microgrid in the 
cotton farm irrigation system, and the optimisation model for 
the grid-connected mode is formulated for the microgrid. The 
MPC algorithm and the closed-loop optimization 
methodology are also explained in this section. Section IV 
demonstrates the implementation of the proposed MPC 
algorithm in a case study. Finally, the conclusions are drawn 
from this study and summarized in Section V. 

III. A CONTROL MODEL FOR COTTON FARM MICROGRID 

OPERATION 

In Australia, the energy consumption of pumping water is 
up to 30% of the total direct energy of the cotton industry 
[15]. Therefore, microgrid integrated with renewable energy 
sources is a viable solution to reducing the energy cost in 
cotton farms. In a grid-connected microgrid system, as shown 

in Fig. 1, renewable energy is mainly composed of solar 
energy, which is connected to the utility grid through a DC-
AC inverter. The microgrid provides electric energy to the 
water pump, the insufficient energy is purchased from the 
grid, and the excess energy of the microgrid is fed into the 
grid. The pumps connected to the microgrid are called 
microgrid pumps, and the pumps directly supplied by the grid 
are called independent pumps, as shown in Fig. 1. 

A. MPC loops for the hybrid system 

The basic MPC closed-loop method is shown in Fig. 2. 
Fig. 2 shows that the optimal control problem is solved 
repeatedly over a moving finite prediction horizon, and only 
the first control element is executed after each iteration. In the 
next sampling interval, the new state of the hybrid power 
system (i.e., renewable and conventional power) is sent to the 
prediction model, and the optimization process is repeated. In 
addition, output feedback and optimizing the corresponding 
solution can provide a stable solution against uncertainties 
caused by external disturbances. For example, excessive water 
is supplied due to the rainy season or uncertain evaporation, 
which can lead to uncertainties in water demand. 

B. Water balance model 

The water balance model can be described by a simplified 
first-order model which is shown in Fig. 3. In Fig. 3, the 
changes in the water level of the reservoir are caused by inflow 
(pumping and precipitation) and outflow (evapotranspiration 
and irrigation). This relationship is simplified by the following 
equations. 

��� + 1� = ���� + �	
��
��� − ���
��
���  (1) 

�	
��
��� =  

∑ �����∙�����,� ∙ ∆�
�� !,�∙"�

# $%& + ∑ ���!'���∙�����,��!'  ∙ ∆�
�� !,��!' ∙"��!'
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Fig.2. MPC closed-loop model 

 
Fig.1. Grid-connected hybrid-power microgrid configuration 
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Fig. 3. Farm water storage components and water balance 
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s.t.  

∑ �����∙�����,� ∙ ∆�
�� !,�∙"�

# $%& + ∑ ���!'���∙�����,��!'  ∙ ∆�
�� !,��!' ∙"��!'

#�!' $%&  ≤
=>�?∙∆�

@A   

(5) 

�B$/ ≤ ���� ≤  �BCD (6) 

where one hour is taken as the sampling period ∆� , � 
represents the sampling time, and ; is the length of prediction 
horizon. ���� denotes the water volume in the reservoir at the 
��E  hour which is bounded by the upper bound �BCD�FG� 
and lower bound �B$/ �FG� . Eq. (1) is the water balance 
equation of the water �	
��
���  and ���
��
���  of the 
reservoir. In (2), �	
��
��� equals the pumped water from 
all the pumps at ��E  hour, plus the amount of precipitation 
()���; HIC�J,$  is the rated power of the 8�E  pump which is 

connected to the microgrid; HIC�J,$$/0  is the rated power of the 

8�E  independent pump which is directly connected to a 
conventional energy source (grid or diesel generator); KLM/,$ 
and KLM/,$$/0  and the potential energy needed to lift 1 ML of 

water for one meter of height, and KLM/,$ = KLM/,$$/0 =
4.55QRℎ/7  [16] in this case; T$  and T$$/0  are the height 
(meter) of the lifting water of the pump; and G and G$/0 are 
the total number of the microgrid pumps and independent 
pumps, respectively. In (3), *+���  is the volume of water 
flowing from the reservoir to cotton field by gravity at the ��E 
hour, and (#��� �FG� is the total water loss by evaporation 
and seepage at the ��E hour. �$��� and �$$/0��� in (4) are the 
control variable and are the binary on/off switching status of 
the pump at the ��E hour. In (5), (BCD is the maximum water 
volume per 24 hours [17] that is allowed to be accessed from 
a specified water source (e.g., bore or river) and used for 
irrigation. Hence, Eq. (1) can be rewritten as (7). 

��� + 1� = ���� + ∑ �����∙�����,� ∙ ∆�
�� !,�∙"�

# $%& +
∑ ���!'���∙�����,��!'  ∙ ∆�

�� !,��!' ∙"��!'
#�!' $%& + ()��� − *+��� − (#���  

(7) 

C. Hybrid-power microgrid model 

Based on Fig. 1, a grid-connected microgrid does not need 
to use the diesel generator due to its high cost. Hence, the 
grid-connected power balance model can be expressed in (8): 

HUV��� + HWI$0��� = ∑ �$���#$%& ∙ HIC�J,$ +
HX0Y$/���  

(8) 

HUV��� =  Z ∙ HUV+ ��� (9) 

s.t.  

0 ≤ HWI$0��� ≤ [\��� ∙  HU�BUBCD  (10) 

0 ≤ HX0Y$/��� ≤ ]�1 − [\����^  ∙  HX0Y$/BCD  (11) 

where HUV��� ≥ 0 represents the total generated power from 

renewable energy source at the ��E hour; HWI$0��� ≥ 0 is the 

power flowing from utility grid to the pump loads at the ��E 

hour; HX0Y$/��� ≥ 0 is the amount of excess power at the ��E 

hour fed-in to the grid; Z  is the number of the renewable 

energy source to be installed; HUV+ ��� is the power output of a 

single renewable source at the ��E  hour; HU�BUBCD  is the 

maximum power consumption of all the pumps; [\��� is the 
binary variable denoting the direction of grid power flow 

which equals 1 when HWI$0��� > 0 and 0 otherwise; HX0Y$/BCD  is 

the maximum feed-in power allowed to the grid. 

D. Optimization model 

 In the following, we define the cost function F(t) for the 
grid-connected mode of microgrid. 

*��� = aHWI$0��� + ∑ �$$/0��� ∙ HIC�J,$$/0#�!' $%& b ∙ ∆� ∙
∁��� − HX0Y$/��� ∙  ∆� ∙ ℬ���  

(12) 

Here, ∁��� is the grid energy price at the ��E time (e.g., TOU 
tariff (AU$/kWh)); ℬ��� is the feed-in tariff. 

a) Open-loop optimal control model 

In order to reduce the operating cost within the prediction 

horizon ( ; ) (e.g., 24 hours), the open-loop optimization 
model is expressed as (13), 

min
��,���!' ∑ *���h�%&   (13) 

b) Closed-loop optimal control model 

 Using the same model as the open-loop MPC model in 
(13), the objective function of the closed-loop MPC optimal 
control model can be obtained below. 

min
��, ���!' ∑ *���hiB�%&iB   (14) 

where the interval of ]7 + 1, ⋯ , ; + 7^  means that the 
prediction horizon and the closed-loop MPC optimization is 
an iterative implementation over the prediction horizon. This 
objective function (14) will satisfy similar constraints like 

(8)-(11) over the new time horizon ]7 + 1, ⋯ , ; + 7^. 
 

IV. CASE STUDY 

 The proposed MPC approach is applied to compare two 
different operation types of cotton farm irrigation pump 
systems (baseline manual control and MPC) in this case 
study. 

A. Cotton farm background 

 The studied cotton farm is located in the south of 
Gunnedah, New South Wales, Australia. The farm has two 
sub-bore electricity pumps, each with the nominal power of 
75 kW, and a 37kW electric re-lift pump, which lift water from 
Mooki river. One electric 75 kW bore pump is directly 
connected to the grid, and the microgrid is equipped with an 
electric 75 kW bore pump and 37 kW electric re-lift pump as 
well as a 50.6 kW solar system [18]. In 2016, this pumping 
system pumped water 1,004 ML from the bore and 247 ML 
from the river, and the maximum pumping volume is 30 
ML/day in the irrigation season [19]. This study focuses on 
the high irrigation water demand period for the cotton farm, 
which lasts approximately 87 days from November to 
January. As shown in Fig. 4, the control model needs to 
determine the optimal switching status of Pump #1, Pump #2 
and Pump #3 to minimize electricity charge during the entire 
irrigation period. 
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B. Baseline electricity operating costs 

The owner of this cotton farm installed a 50.6 kW solar 
PV system to power the bore lifting pump. The owner 
commonly performs the control of the pump and determines 
the pumping time and duration based on personal experience. 
According to the current water demand for crop watering, the 
farmer intervenes to set each pump-to-pump water at a 
specific start time or for a specific duration. Table Ⅰ shows the 
calculated electricity cost for the entire pumping scheme in 
2016. 

TABLE I.   ENERGY COST BREAKDOWN OF THE COTTON FARM IN 2016 

 Items Value Unit 

Pump #1 75kW operation time 1034 Hours 

Pump #2 75kW operation time 882 Hours 

Pump #3 37kW operation time 360 Hours 

Pump #1 energy consumption 75,812.33 kWh 

Pump #2 energy consumption 63,551.06 kWh 

Pump #3 energy consumption 12,865.24 kWh 

Pump #1 electricity cost 19,711.2 AU$ 

Pump #2 electricity cost 16,523.3 AU$ 

Pump #3 electricity cost 3,345.0 AU$ 

Pump #1 pumping water 537.5 ML 

Pump #2 pumping water 450.5 ML 

Pump #3 pumping water 235.6 ML 

C. Assumptions of closed-loop control model 

This model uses the closed-loop MPC method to control 
the operation of the pumping system of the cotton farm in 
2016, in order to achieve the reduction of the operating cost. 
The following assumptions are made. 
a) The microgrid pumps #1(75 kW), #3(37 kW) and an 

independent pump #2 (75 kW) are considered in the 
optimal control model. 

b) River water or bore water has to be pumped into the 
reservoir, and then crops are irrigated from the reservoir. 
Therefore, the microgrid pumps and the independent 
pump are controlled based on the water level of the 
reservoir.  

c) The load factor is one. This means that the pump motors 
run at the maximum load when they are switched on. 

d) Historical irrigation data of the cotton farm in 2016 are 
taken. 

e) The problem analyzed in this case is solved using 
MATLAB and YALMIP. The CPLEX solver is used to 
solve this linear integer optimization problem. 

f) The cotton irrigation period in 2016 is 87 days. In order 
to compare with the original operating costs, the total 
computation horizon is set to 87 days in this case. 

g) In the baseline manual control case.1, ()��� = (#��� =
0, which means that the baseline case only considers 
the irrigation outflow from the reservoir. 

D. Robustness validation in the cotton farm 

 The disturbance is a period of abundant rainfall. Rainfall 
in the cotton farm area can be found in the Australian 
Government Bureau of Metrology (BOM). According to 30 
years of historical climate data, the cotton farm is located in 
an area where the average daily rainfall in summer is 25 
mm/m2 [20]. The total area of the 800 ML reservoir is about 
10 Ha. Through the rainfall data provided by the BOM in 
2016, we add rainfall as a disturbance to the original MPC 
model. Therefore, an increase in the reservoir water volume 
and a decrease in the irrigation demand based on the rainfall 
data are observed. Then ()��� can be expressed as (15), and 
(16) represents the rainwater collected in the cotton farm 
planting area at the ��E hour. 

()��� =  j0C�C��� ∙ ΖIJl ∙ 0.01 (15) 

jCIJC��� = j0C�C��� ∙ ΖmC/0 ∙ 0.01 (16) 

where j0C�C��� (mm/hour) are hourly precipitation data from 
BOM; ΖIJl is the reservoir surface area, ΖIJl=10 (Ha) in this 
case.  And 0.01 means every millimetre per square meter 
rainfall equate to 0.01 ML/Ha. jCIJC���  is the amount of 
rainwater collected in the entire cotton farm area at the ��E 
hour; and ΖmC/0 =300 (Ha) is the farmland area. During the 
rainy season, the irrigation water demand *+��� is defined as 
(17) 

*+��� =2 0, 
ℎ5	 j0C�C��� ≥ *+���
*+��� − jCIJC���, 
ℎ5	 j0C�C��� < *+��� (17) 

 

Fig. 4. Grid-connected microgrid simulation model 
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E. Results and discussions 

In order to show the performance of the proposed MPC in 
different operating modes, three different situations have 
been selected based on a fixed period (e.g., 87 days) of the 
cotton farm in the entire irrigation season, namely baseline 
(manual control), MPC and MPC with rainfall disturbance. 
The simulation runs on 2088 hours (87 days) of the 
computation horizon based on the 2016 historical irrigation 
data with a time interval of 1 hour, and the prediction horizon 
is 24 hours. 

Table Ⅱ shows the results of pump working hours, total 
operating costs, and the total volume of water that has been 
pumped in each scenario during the entire irrigation period. 
Fig. 5 shows the water level in the reservoir under different 
control modes during the entire irrigation period. 

TABLE II.  RESULTS OF DIFFERENT SCENARIOS IN THE ENTIRE 

IRRIGATION PERIOD 

Cases 

Pump #1 75kW Pump #2 75kW Pump #3 37kW 

Work 

hours 

Water 

lift 

(ML) 

Work 

hours 

Water 

lift 

(ML) 

Work 

hours 

Water 

lift 

(ML) 

Baseline 

1,034 537.5 882 450.6 360 235.6 

MPC 
770 409.4 1,132 601.9 1,056 715.6 

Rain 
season 453 240.9 660 350.9 549 372.0 

 
Based on Table Ⅱ, the total operating cost of each 

situation and the average cost per ML in the above three 
modes can be calculated, as show on Table Ⅲ. 

 
 
 
 
 

TABLE III.  TOTAL OPERATING COST AND AVERAGE PUMPING COST IN 

THE SIMULATION 

Cases 

Total 

operational cost 

(AU$) 

Average 

pumping cost 

(AU$/ML) 

Baseline 39,579.5 32.34 

MPC 40,716 23.58 

Rain 
season 

23,184 24.05 

 

Case ⅰ. Manual control method (the Baseline)  
Baseline simulation is calculated based on the historical 

power consumption data of the farm’s pumps, which is 
combined with the pumping height and the amount of water 
pumped per kWh of electricity. The farmer manually controls 
the three pumps based on personal experience. Fig. 5 shows 
that the working status of the water pumps. The Baseline 
operating cost during the entire irrigation period is 
AU$39,580, and the total amount of water pumped is 1,223.7 
ML.  

Case ⅱ. MPC optimal control model – without 

disturbance  

The MPC optimal control model is simulated during the 
entire irrigation period. At the end of each hour, the reservoir 
level is used as the initial reservoir level for the next hour. 
Fig. 5 shows the resulting curve of the closed-loop MPC 
optimal control model. Through the MPC algorithm, the 
operating cost optimization can be achieved by maintaining 
the water level of the reservoir at the current level. In Table 
Ⅲ, the operating cost for the MPC scenario is AU$40,716 for 
the entire irrigation period, which is AU$1,136.5 higher than 
the baseline, but the amount of water pumped is 1,726.95ML. 
Therefore, the average operating cost is AU$8.8/ML lower 
than Baseline. 

 

 

Fig. 5. Baseline and MPC with disturbance 
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Case ⅲ. MPC optimal control model – with rain season 

disturbance  

The rainy season disturbance case is to add precipitation 
data from August 2016 to January 2017 to the MPC 
benchmark. Fig. 5 shows that there are three occurrences of 
heavy rainfall that caused significant changes in the reservoir 
water level (e.g., the precipitation up to 41mm/m2 from 
December 23 to December 24, 2016, which is from 1300th to 
1315th hours in Fig. 5). Due to the 24-hour prediction horizon, 
the closed-loop MPC solution controls the water pumps to 
stop working from the 1274th hour to the 1399th hour. Then 
the pumps keep on stopping until the water level drops to 
500ML, and the pumps start to work again. Under the rainy 
season disturbance scenario, the operating cost during the 
entire irrigation period is AU$23,184, which is A$16,395.5, 
about 34.85% lower than the baseline, and the average 
operating cost is A$8.3/ML lower than baseline. 

V. CONCLUSION 

This paper introduces the MPC approach to the operating 
cost minimization problem for an Australian cotton farm 
microgrid. It also shows the robustness of the MPC algorithm 
under rainy conditions for the grid-connected microgrid. The 
results of the cotton farm case study show that the MPC 
approach reduces the operating cost of the grid-connected 
microgrid from AU$ 32.34/ML to AU$ 23.58/ML. The 
presented MPC solution can be combined with future weather 
forecast data to achieve the real-time operation and energy 
management of the microgrid in the cotton farm. As an 
immediate future study, voltage and frequency control of the 
cotton farm microgrid in the grid-connected and islanded 
modes considering uncertain renewable generations will be 
investigated. 

ACKNOWLEDGMENT 

This research is supported by an Australian Government 
Research Training Program Scholarship. This study is also 
supported by funding from the Cotton Research and 
Development Corporation (CRDC).  

REFERENCES 

 
[1] J. Powell and J. Welsh, "SOLAR ENERGY POLICY SETTING AND 

APPLICATIONS TO COTTON PRODUCTION," 2016. [Online]. 
Available: https://www.cottoninfo.com.au/publications/solar-energy-
policy-setting-and-applications 

[2] G. Chen, G. Sandell, and C. Baillie, "Alternative energy sources for 
cotton production in Australia," 2014. [Online]. Available: 
https://eprints.usq.edu.au/26897/1/CIGR%202014_paper%20%28alte
rnative%20energy%29%20%28submitted%29.pdf. 

[3] K.-Y. Choi and W. Harmon Ray, "The dynamic behaviour of fluidized 
bed reactors for solid catalysed gas phase olefin polymerization," 
Chemical Engineering Science, vol. 40, no. 12, pp. 2261-2279, 
1985/01/01/ 1985, doi: https://doi.org/10.1016/0009-2509(85)85128-
9. 

[4] M. H. Nehrir, B. LaMeres, and V. Gerez, A customer-interactive 
electric water heater demand-side management strategy using fuzzy 
logic. 1999, pp. 433-436 vol.1. 

[5] Y. Shuo, J. Chen, T. Yang, and R. Hui, "Improving the Performance of 
Direct Power Control Using Duty Cycle Optimization," IEEE 
Transactions on Power Electronics, vol. PP, pp. 1-1, 11/26 2018, doi: 
10.1109/TPEL.2018.2883425. 

[6] P. W. Jowitt and G. Germanopoulos, "Optimal Pump Scheduling in 
Water&#x2010;Supply Networks," Journal of Water Resources 
Planning and Management, vol. 118, no. 4, pp. 406-422, 1992, doi: 
doi:10.1061/(ASCE)0733-9496(1992)118:4(406). 

[7] E. F. Camacho and C. Bordons Alba, Model Predictive Control, 2nd 
ed. 2007. ed. (Advanced Textbooks in Control and Signal Processing). 
London: Springer London, 2007. 

[8] J. M. Maciejowski, Predictive control : with constraints. Harlow: 
Prentice Hall, 2002. 

[9] W. R. Sultana, S. K. Sahoo, S. Sukchai, S. Yamuna, and D. Venkatesh, 
"A review on state of art development of model predictive control for 
renewable energy applications," Renewable and Sustainable Energy 
Reviews, vol. 76, pp. 391-406, 2017/09/01/ 2017, doi: 
https://doi.org/10.1016/j.rser.2017.03.058. 

[10] G. Li, J. Zhang, and H. He, "Battery SOC constraint comparison for 
predictive energy management of plug-in hybrid electric bus," Applied 
Energy, vol. 194, pp. 578-587, 2017/05/15/ 2017, doi: 
https://doi.org/10.1016/j.apenergy.2016.09.071. 

[11] C. Shang, W.-H. Chen, A. D. Stroock, and F. You, "Robust Model 
Predictive Control of Irrigation Systems With Active Uncertainty 
Learning and Data Analytics," IEEE transactions on control systems 
technology, vol. 28, no. 4, pp. 1493-1504, 2020, doi: 
10.1109/TCST.2019.2916753. 

[12] S. V. Raković, "Robust Model Predictive Control," in Encyclopedia of 
Systems and Control, J. Baillieul and T. Samad Eds. London: Springer 
London, 2019, pp. 1-11. 

[13] B. Houska and M. Villanueva, "Robust Optimization for MPC," 2018, 
pp. 415-447. 

[14] Australia Government Department of Industry and Science, Cotton 
Seed Distributors, Cotton Australia. "Fundamentals of energy use in 
water pumping." 
https://www.cottoninfo.com.au/sites/default/files/documents/Fundam
entals%20EnergyFS_A_3a.pdf (accessed July, 2019). 

[15] Cottoninfo, "Benchmarking report of direct energy consumption in 
Australian irrigated cotton production," www.cottoninfo.net.au, 2015. 
[Online]. Available: www.cottoninfo.net.au 

[16] (2021). Water access licences. [Online] Available: 
https://www.industry.nsw.gov.au/water/licensing-
trade/licences/types/water-
access#:~:text=What%20is%20a%20water%20access,in%20accordan
ce%20with%20the%20licence. 

[17] F. Gerry, H. David, R. Leigh, and P. Shorten, "VSDs lead irrigation 
efficiency measures for Gunnedah cropping enterprise," in NSW 
Farmers, ed, 2013, p. 4. 

[18] NSW Farmers Association, NSW Office of Environment and 
Heritage,, "Solar Powered Pumping Irrigation solutions," 2015. 
[Online]. Available: 
https://energy.nsw.gov.au/sites/default/files/2018-
09/Solar%20powered%20irrigation%20pumping_may-2015.pdf 

[19] NSW Farmers Association, NSW Office of Environment and 
Heritage,, "Solar Powered Pumping Irrigation solutions," 2015. 
[Online]. Available: 
https://energy.nsw.gov.au/sites/default/files/2018-
09/Solar%20powered%20irrigation%20pumping_may-2015.pdf 

 

[20] Australian Government Bureau of Meteorology. "Climate statistics for 
Australian locations - GUNNEDAH RESOURCE CENTRE." 
http://www.bom.gov.au/jsp/ncc/cdio/cvg/av (accessed 2021). 

 

Authorized licensed use limited to: University of Technology Sydney. Downloaded on June 03,2022 at 00:50:35 UTC from IEEE Xplore.  Restrictions apply. 


		2021-11-15T07:10:39-0500
	Certified PDF 2 Signature




