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Invariant EKF based 2D Active SLAM with Exploration Task
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Abstract— Right invariant extended Kalman filter (RIEKF)
based simultaneous localization and mapping (SLAM) proposed
recently has shown to be able to produce more consistent SLAM
estimates as compared with traditional EKF based SLAM
methods, including some improved EKF SLAM methods such
as observability constrained-EKF (OC-EKF) SLAM. Latest
results have demonstrated that its performance is very close
to optimization based SLAM algorithms such as iSAM. In
this paper, we propose to use RIEKF SLAM algorithm in
active SLAM where both the predicted SLAM results for
choosing control actions and the actual estimated SLAM
results applying the selected control actions are computed using
RIEKF algorithms. The advantages over traditional EKF based
active SLAM are the more accurate and consistent predicted
uncertainty estimates which result in robustness of the active
SLAM algorithm. The advantages over optimization based
active SLAM is the reduced computational cost. Simulation
results are presented to validate the advantages of the proposed
algorithm3.

I. INTRODUCTION

Active simultaneous localization and mapping (SLAM) is
a decision making problem, in which the motion or path
of the robot needs to be planned to achieve certain tasks
and at the same time maintaining a good SLAM estimate.
Motion planning is very important for the robot to explore
an unknown environment. Good planning methods can help
to improve the SLAM estimates (the estimation accuracy of
map and localization), improve the map coverage, and reduce
the exploration time. In this paper, we focus on active SLAM
with exploration task, considering the performance in SLAM
accuracy, coverage and the speed of exploration.

The study on active SLAM in unknown environments
with exploration task was started two decades ago. Most
of the earlier works built on extended Kalman filter (EKF)
based SLAM algorithms. For example, Makarenko et al.
[1] took into consideration the integrated tasks of coverage,
SLAM accuracy and exploration speed. Each of them is
evaluated using a utility function. The total utility of each
candidate destination is calculated, and the one with the
highest total utility will be the destination in the next
step. Leung et al. [2] applied attractors to help guide the
robot to the desired destination. There were three states,
called explore, improve map and improve localization
respectively, which were divided by a predefined threthold
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of uncertainty. According to the robot states, the attractor
was placed in different places to guide the robot.

Usually, active SLAM problem is solved by minimizing
a certain criterion in terms of the information gain, and
the objective is to obtain more information. In [3], the
greedy method was proposed, which aims to minimize the
estimation error in the next step. Huang et al. [4] extended
the greedy method into multi-step look-ahead method. A
variant of nonlinear Model Predictive Control (MPC) was
proposed to obtain a multi-step optimization in EKF based
SLAM system within a finite time horizon.

Since 2006, it has been realized that EKF SLAM may
result in inconsistent estimates [5], [6], [7], [8] due to
linearization errors. In particular, the obtained covariance
matrix in EKF SLAM is smaller than the actual estimate
uncertainty, especially when the robot orientation error is
large. Clearly, using the over confident covariance matrix
obtained in EKF SLAM to guide the planning may lead to
a poor robot trajactory in active SLAM.

Due to the inconsistency of EKF SLAM, optimization
based SLAM methods become popular in the last decade and
it has also been frequently used in active SLAM. Using all
the information, the optimization based methods can achieve
accurate SLAM estimate as well as consistent uncertainty
estimate. However, the computational cost of optimization
based SLAM is very high due to the large number of
robot poses involved, especially when it is applied in active
SLAM where the SLAM algorithm needs to be performed
frequently to predict the performance of each candidate
control action. Therefore, a mainstream idea for improving
optimization based active SLAM is to increase its efficiency.
For example, [14] investigated a sparsification method to
reduce the computational complexity of decision making.
Chen et al. [15] presented an efficient active SLAM approach
to reduce the time for planning and estimation by utilizing
submap joining, graph topology and convex optimization. In
[17], a computationally efficient approach was proposed for
belief space planning in high-dimensional state spaces via
factor-graph propagation action tree.

Very recently, Right Invariant Extended Kalman Filter
(RIEKF), designed on a specific Lie group structure, was
found to have very good performance when it is applied in
SLAM [9], [10], [11], [12], [13]. In particular, RIEKF SLAM
can produce SLAM results with much improved consistency
as compared with some improved EKF SLAM [10], such as
observability constrained EKF (OC-EKF) SLAM [6]. Some
nice convergence properties of RIEKF SLAM have been
proved in [12]. Its performance was shown to be comparable
to iSAM [20] and close to full optimization based SLAM in



many cases [13], [18].
Motivated by these recent research results, we propose to

use RIEKF in active SLAM where a robot needs to explore
an unknown environment. This paper is the first research
work along this direction and considers 2D case and applies
greedy method in the planning. Simulation results demon-
strate that the RIEKF based active SLAM is more robust than
traditional EKF based active SLAM, and is computationally
more efficient than optimization based active SLAM with
acceptable performance in accuracy.

The paper is organized as follows. Section II reviews the
RIEKF SLAM algorithm and its key advantages. Section
III presents the details of the RIEKF based active SLAM
framework. Experimental results using different simulation
scenarios are provided in Section IV to compare the pro-
posed RIEKF based active SLAM with EKF based and two
optimization based active SLAM strategies. Finally, Section
V concludes the paper and presents some future work.

II. RIEKF BASED 2D SLAM
SLAM problem has a nontrivial Lie group structure, as

described and studied in [9], [10], [11]. Based on this discov-
ery, [9], [10], [13] have proved that for feature based SLAM,
the linearized system of RIEKF approach can automatically
and correctly capture the unobservable direction of SLAM,
ensuring strong consistency properties. Right Invariant EKF
frame work shown in Alg. 1 is designed on this specific Lie
group structure. Different with EKF method, RIEKF does
the linearization on groups[10], [12], [13]. In this section,
we will first review the specific Lie group structure of 2D
SLAM. And then based on this proposed structure, RIEKF
based 2D SLAM algorithm is briefly reviewed.

In the considered 2D SLAM problem, the n-th step state
with N features is

χn = (R(θn), xn, p1
n, · · · , pNn ), (1)

where θn ∈ (−π, π], xn ∈ R2 and pin ∈ R2 (i = 1, · · · , N )
are respectively the robot orientation, robot position, and the
coordinate of the i-th feature, all described in the fixed world
coordinate frame. The notation R(θ) is the rotation matrix
related to the orientation θ:

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

And we denote SO(2) as the set of all 2D rotation matrices.
And the set of all such possible states is denoted as

G(N) =
{(

R, x, p1, · · · , pN
)
|R ∈ SO(2), x and pi ∈ R2

}
.

(2)
It is a Lie group with the group action

χ1 � χ2 =
(
R1R2,R1x2 + x1, · · · ,R1pN2 + pN1

)
, (3)

for all χ1,χ2 ∈ G(N).
Denote g(N) as the associated Lie algebra of G(N), which

is isomorphic to R2N+3. And the exponential mapping exp
from g(N) to G(N) is defined by

exp(ξ) =
(
R(δθ),B(δθ)δx,B(δθ)δp1, · · · ,B(δθ)δpN

)
,
(4)

where
ξT = (δθ, δxT , δp1T , · · · , δpN

T
),

B(δθ) =

[
sin(δθ)
δθ − 1−cos(δθ)

δθ
1−cos(δθ)

δθ
sin(δθ)
δθ

]
.

(5)

Then we can define the stochastic model on the proposed
Lie group by

χ = exp(ξ)� χ̂, (6)

where χ̂ represents the mean, and ξ ∼ N (0,P) is the error
with covariance matrix P. Then χ is said to be log-Gaussian,
denoted by χ ∼ Nlog(χ̂,P).
Algorithm 1 Right Invariant EKF frame work
Input: χ̂n, Pn, un, zn+1

Output: χ̂n+1, Pn+1

Propagation:
χ̂n+1|n ← f(χ̂n,un, 0), Pn+1|n ← FnPnFTn + GnQnGTn
Update:

Sn+1 ← Hn+1Pn+1|nHT
n+1 + On+1

Kn+1 ← Pn+1|nHT
n+1S−1n+1

yn+1 ← zn+1 − hn+1(χ̂n+1|n, 0)
χ̂n+1 ← exp(Kn+1yn+1)� χ̂n+1|n
Pn+1 ← (I − Kn+1Hn+1)Pn+1|n

Considering the specific 2D SLAM problem, the process
model is

χn+1 = f(χn,un,wn) =


R(θn + ωn + wωn)
R(θn)(vn + wvn)T

p1
n
...

pNn

 , (7)

where χn ∼ Nlog(χ̂n|n,Pn|n), un = [ωn, vn] is the control
input, and wn = [wωn ,wvn] ∼ N (0,Qn) is the noise.

And suppose there are K features
{

pl1n+1, · · · , p
lK
n+1

}
to

be observed at the n+ 1-th step, the observation model can
be considered as

zn+1 = hn+1(χn+1, εn+1)

=

 h1
n+1(R(θn+1)

T (pl1n+1 − xn+1))
...

hKn+1(R(θn+1)
T (plKn+1 − xn+1))

+ εn+1,
(8)

where εn+1 ∼ N (0,On+1) is the observation noise.
Due to different linearization process (compared to the

traditional EKF), the Jacobians in Alg.1, Fn is the identity
matrix I2N+3, Gn, and Hn+1, are given by (see [10])

Gn =


1 01,2

−Jx̂n|n R(θ̂n|n)
−Jp̂1n|n 02,2

...
−Jp̂Nn|n 02,2

 , Hn+1 =


∇h1

n+1H1
n+1

∇h2
n+1H2

n+1
...

∇hKn+1HK
n+1

 ,
(9)



where J represents the skew symmetric matrix:

J =

[
0 −1
1 0

]
,

∇hjn+1 is the Jacobian of hjn+1 computed at
R(θ̂n|n−1)T (p̂

lj
n|n−1 − x̂n|n−1), and

Hj
n+1 =

[
02,1 − R(θ̂n+1|n)

T 02,2j−2 R(θ̂n+1|n)
T 02,2K−2j

]
.

III. ACTIVE SLAM USING RIEKF
In this section, we present our active SLAM algorithm

based on RIEKF.

A. The active SLAM problem

For the active SLAM problem considered in this paper,
given an unknown environment of which the size is fixed and
known, we assume there are some point features randomly
distributed in the environment, both the number and the
location of the features are unknown. The robot starts from
a fixed location in the environment. The objective is to plan
the robot trajectory for a given time horizon, such that it
can explore the environment as much as possible (observe
as many features as possible), and estimate the observed
features and the robot poses with acceptable accuracy.

B. Proposed active SLAM method

In this paper, the RIEKF SLAM algorithm is used to
predict the uncertainty of the SLAM estimate after taking a
potential control action, it is also used to perform the SLAM
estimation after a control action is taken.

We use one-step look-ahead strategy to maximize the
information that will be obtained in the next step. In the
RIEKF based method, the information gained in terms of the
SLAM estimate can be described by the resulting covariance
matrix after the control action is taken.

Concretely, given χ̂n and Pn, we would like to select the
control vector un such that a certain metric (e.g. the trace)
of the covariance matrix of the next step is optimized. That
is, we want trace(Pn+1) to be as small as possible where
Pn+1 is obtained by Alg. 1.

Note that the observation data zn+1 is not available when
the planning is performed, so we assume that no new feature
will be observed and the estimation will not be updated after
the observation (zero-innovation) [15]. That is,

zn+1 − hn+1(χ̂n+1|n) = 0,

χ̂n+1 = χ̂n+1|n.
(10)

In the proposed method, in order to take into account the
exploration task in the planning, we consider not only the
SLAM uncertainty, but also the distance, d, between the
predicted robot position, x̂n+1|n, and the goal point (how
to select the goal point is presented in Section III-C).

Thus, the objective function to be minimized is a weighted
sum of trace(Pn+1) and d

obj = wptrace(Pn+1) + wdd, (11)

where the relative weights wp and wd are dependent and can
be adjusted continuously or as an abrupt mode switch.

C. Goal point selection

In each step of the planning, there is one goal point
selected to be the next destination which is used in the
objective function (11).

We first generate a list of exploration points based on the
size of the environment called Le. For example, the explo-
ration points can be uniformly distributed in the environment.
The number of exploration points depends on the sensor
range of the robot.

The goal point is selected according to the current state,
similar to [2]. There are three states in total, called explore,
improve localization and improvemap.

The three states are described as follows.
• Explore. When the uncertainty is blow a threshold
lowerbound, the state is transformed to explore. The
goal point is set to be the closest exploration point
selected from the exploration point list Le. We write
the selected point as pexplore. When the robot has
approached the destination, pexplore is labeled to be ex-
plored and deleted from the exploration point list. Once
all the exploration points are explored, the explore state
is no longer available and the lowerbound becomes
invalid. The task of the robot is to improve localization
or improving map according to the upperbound.

• Improve localization. When the uncertainty is exceed-
ing the threshold upperbound, the state is changed to
improve localization and we want the robot to re-visit
a good feature, pgood, whose uncertainty is low enough.
To keep the re-visiting efficiency, pgood should not be
too far away from the robot. Thus, the goal point is set
to be the feature with the lowest uncertainty within a
predetermined distance from the robot.

• Improve map. Otherwise, the state is changed to
improvemap and a poor feature, ppoor, is selected to
be the goal point, of which the uncertainty is the highest
within a given distance from the robot.

With the goal point selected as above, we can obtain the
distance d in (11) as:

d =



dexplore, trace(P) < lowerbound and Le 6= ∅

dpoor, lowerbound ≤ trace(P) < upperbound
or (trace(P) < upperbound and Le = ∅)

dgood, trace(P) ≥ upperbound,
(12)

where dexplore, dpoor and dgood are the distances from the es-
timated robot pose to pexplore, ppoor and pgood respectively.
And P is the covariance matrix.

The thresholds are constantly adjusted according to the
number of the observed features and the current steps:

upperbound = wkk + wnn,

lowerbound = wkk + wnn− c,
(13)

where wk is the weight of the number of the observed
features k, wn is the weight of the current total step n, and
c is a constant. As the values of the objective function are



different in different algorithms, the values of wk and wn are
adjusted according to the environment and the algorithms.

IV. SIMULATION

In this section, we evaluate the proposed RIEKF based
active SLAM by comparing it with EKF based active SLAM
and two optimization based active SLAM.

A. Observation model and simulation settings

The process model for the active SLAM is shown in
Section II. And the specific observation map hjn+1 for the
j-th observed feature plj at the (n+ 1)-th step is

hjn+1(q) =
[ √

q21 + q22
atan2(q2, q1)

]
, (14)

where q = [q1, q2]
T = R(θn+1)

T (pljn+1 − xn+1).
In our simulation, there are 50 features generated ran-

domly in the range of 100 m× 100 m, and the total step of
the robot is set to be 500. The initial robot pose is [0, 0, 0],
and the sensor range is 20 m. The covariance matrix of
control noise wn is diag[(0.02rad)2, (0.03m)2, (0.03m)2].
And the covariance matrix of observation noise εjn is set as
diag[(0.04m)2, (0.04rad)2].

The compared EKF based active SLAM is similar to that
in [2]. It uses the same approach as RIEKF based active
SLAM but replacing RIEKF with EKF. In the first compared
optimization based method, to calculate the next control, the
information matrix of the next step can be directly obtained
and maximized. Thus, its objective function is set to be:

obj = wp log(det(Λn+1)) + wdd, (15)

where Λn+1 is the information matrix.
The dimension of information matrix is very large due to

the many robot poses involved. To reduce the computational
complexity, in the second compared optimization based
method, we use the lower bound based optimization method
proposed in [15] and [16]. Instead of processing the large
information matrix, a lower uncertainty bound in terms of the
log determinant of a weighted Laplacian matrix is calculated.
We write the predicted lower uncertainty bound as LBn+1,
then the objective function becomes:

obj = wp log(det(LBn+1)) + wdd. (16)

The detailed formula about LBn+1 can be found in [15] and
[16].

We compare the performance of these algorithms in terms
of coverage, accuracy and processing time. The coverage
is compared by counting the number of the unexplored
features. The accuracy is measured by calculating the max-
imal/average error between the estimated values and the
ground truth, including the robot pose error and the feature
position error. We record the processing time of both the
decision making part and the SLAM part, to compare the
speed of determining the next control and the speed of
estimating the current state, respectively. For each algorithm,
we perform the simulation several times and present a
representative result.

B. Simulation results

1) Simulation with a given path: We first present the
different SLAM results using a predetermined path based on
the EKF, optimization and RIEKF. The predetermined path
is set to be a circle of which the radius is 45m.

As Fig. 1a shows, the result of EKF SLAM is clearly
inconsistent, as the actual feature positions of most of the
features are out of the 99% confidence ellipses. The nonlinear
least squares optimization based SLAM (NLS) and RIEKF
based SLAM can both obtain good quality estimate as shown
in Fig. 1b and Fig. 1c, respectively. However, because the
path is predetermined, 9 features remain undetected.

Fig. 2 shows the robot pose error of using the predeter-
mined path. Because of the inconsistency issue, the error
of the EKF based method is very large. The RIEKF based
method achieves much better result and the pose error is
similar to that of the optimization based method.

Table I shows the pose and feature estimation error of
using the different approaches. The estimation error of opti-
mization based algorithm is the smallest among the three
algorithms. ‘Max error robot’ and ‘Ave error robot’ are

TABLE I: Estimation error comparison

Predetermined path
EKF NLS RIEKF

Max error robot (m) 7.8303 0.3450 2.4603
Ave error robot (m) 4.7247 0.1631 0.5094

Max error feature (m) 8.9188 0.3182 0.3548
Ave error feature (m) 5.9575 0.1777 0.2032

respectively the maximum and average errors of the robot
pose. ‘Max error feature’ and ‘Ave error feature’ represent
the maximum and average errors of the features, respectively.
The errors are the distances between the ground truth and the
estimation.

2) Comparison of the different active SLAM methods:
Coverage. In this part, we show the coverage performance of
the different methods under the same planning environment.
The ground truth of the robot trajectory and the features and
the results based on different methods (including the esti-
mated poses and the estimated features, and the covariance
ellipse of the features) are shown in Fig. 3, Fig. 4, Fig. 5,
and Fig. 6.

The performance of the coverage task is much better when
the planning method is used, compared with the results given
by the predetermined path. Fig. 3 shows the result of the EKF
based active SLAM algorithm. The accuracy is improved
a lot by using the active SLAM algorithm. In the general
cases, there are 3 to 8 features remaining undetected, also
better than using the predetermined path. Fig. 4 and Fig. 5
show the results of using the traditional optimization method
and the lower bound based optimization method respectively.
There are 3 features left unseen in both of them. As shown
in Fig. 6, when applying the RIEKF based active SLAM
algorithm, all features can be detected. Usually, all features
can be detected within 290 steps.

Accuracy. In this part, we compare the accuracy per-
formance of the obtained active SLAM results using the



(a) EKF (b) NLS (c) RIEKF
Fig. 1: Result of using the predetermined path based on different SLAM methods in the environment with 50 randomly
distributed landmarks/features.

Fig. 2: The pose error of using the predetermined path based
on EKF, the optimization algorithm and the RIEKF.

Fig. 3: Result of using EKF based active SLAM.

Fig. 4: Result of using optimization based active SLAM
using information matrix as criteria (NLSI).

Fig. 5: Result of using optimization based active SLAM
using lower bound as criteria (NLSlb).



Fig. 6: Result of using RIEKF based active SLAM.

different methods. The results of the pose error based on
different methods are shown in Fig. 7.

Two optimization algorithms achieve the best accuracy.
The estimation error of the RIEKF based method is much
smaller than the EKF based method in most cases. The
average robot pose error and maximum robot pose error
shown in Table II suggest that the RIEKF based method
can obtain much smaller errors than EKF.

Besides the robot pose error, Table II also shows the
maximum feature estimation error and the average feature
estimation error in the last step. Similar to Section IV-B.1, the
optimization algorithms have some advantages. Compared
with the EKF based algorithm, the RIEKF based one can
get smaller maximum error and average error.

By comparing Table I and Table II, we can see the
improvement on the accuracy by using planning algorithms.

Fig. 7: The robot pose error of using different active SLAM
methods. The results of the two optimization based methods
(NLSI and NLSlb) are very similar.

Processing time. For efficiency, we firstly compare the
processing time in the SLAM part. The result is as expected.
The optimization based method takes much longer time than
the EKF and RIEKF based method. EKF based method and
RIEKF based method take almost the same time for the

SLAM part. Then, our focus is on the processing time in the
decision making part. We can see in Fig. 8, the EKF based
method costs the least time, and the traditional optimization
method NLSI costs much more time than others. The average
value shows that the RIEKF based method costs about two
times longer than the EKF based method. The lower bound
based optimization method NLSlb is remarkable in reducing
the computation time. Its speed in the first 300 steps is
almost the same as the RIEKF based method. However, with
the increase of the number of steps, its computation time
increases gradually.

Fig. 8: The comparison of the decision making time.

TABLE II: Estimation error comparison

Active SLAM
EKF NLSI NLSlb RIEKF

Max error robot 4.4331 0.0592 0.0459 0.2634
Ave error robot 2.3257 0.0186 0.0161 0.1254

Max error feature 4.5722 1.8556 1.1315 0.1629
Ave error feature 2.8808 1.1821 0.7541 0.1175

The MATLAB source codes used in this paper are
made available at https://github.com/MengyaXu/RIEKF-
based-active-SLAM to help the readers to understand our
framework more clearly. Some simulation results in other
scenarios can be found there as well.

V. CONCLUSION AND FUTURE WORK

This paper proposes an RIEKF based active SLAM algo-
rithm. Because of the improved consistency, the proposed
algorithm shows superior performance in accuracy as com-
pared with EKF based active SLAM. It is also demonstrated
that the proposed algorithm has acceptable performance in
accuracy and much lower computational cost as compared
with optimization based active SLAM algorithms.

This research shows a great potential of using the RIEKF
method in active SLAM. In the future, we will test our ap-
proach in practical 2D and 3D environments with obstacles.
Some other planning strategies, such as multiple steps look
ahead, will be investigated and evaluated. Future research
work will also include other active SLAM problems where
not only exploration task is needed.



REFERENCES

[1] A. A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-
Whyte, “An experiment in integrated exploration,” IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp.
534-539, 2002.

[2] C. Leung, S. Huang, and G. Dissanayake, “Active SLAM using
model predictive control and attractor based Exploration,” IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 5026-5031, 2006.

[3] H. Feder, J. Leonard, and C. Smith, “Adaptive mobile robot navigation
and mapping”, International Journal of Robotics Research, vol. 18, no.
7, pp. 650-668, 1999.

[4] S. Huang, N.M. Kwok, G. Dissanayake, Q. P. Ha, and G. Fang, “Multi-
Step Look-Ahead Trajectory Planning in SLAM: Possibility and Ne-
cessity,” IEEE International Conference on Robotics and Automation
(ICRA), pp. 1091-1096, 2005.

[5] S. Huang and G. Dissanayake, “Convergence and consistency analysis
for extended Kalman filter based SLAM,” IEEE Transactions on
Robotics, vol. 23, no. 5, pp. 1036-1049, 2007.

[6] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and
improvement of the consistency of extended Kalman filter based
SLAM,” IEEE International Conference on Robotics and Automation
(ICRA), pp. 473–479, 2008.

[7] J. A. Castellanos, R. Martinez-Cantin, J. Tardos, and J. Neira, “Robo-
centric map joining: Improving the consistency of EKF-SLAM,”
Robotics and Autonomous Systems, vol. 55, no. 1, pp. 21- 29, 2007.

[8] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observability-
based rules for designing consistent EKF SLAM estimators,” The
International Journal of Robotics Research, vol. 29, no. 5, pp. 502–528,
2010.

[9] S. Bonnabel, “Symmetries in observer design: Review of some recent
results and applications to EKF-based SLAM,” in Robot Motion
Control. London, U.K.: Springer, Jan. 2012, pp. 3–15.

[10] A. Barrau and S. Bonnabel, “An EKF-SLAM algorithm with consis-
tency properties,” CoRR, abs/1510.06263, 2015.

[11] A. Barrau and S. Bonnabel, “The invariant extended Kalman filter as
a stable observer,” IEEE Transactions Autonomous Control, vol. 62,
no. 4, pp. 1797–1812, 2017.

[12] T. Zhang, K. Wu, J. Song, S. Huang, and G. Dissanayake, “Conver-
gence and consistency analysis for a 3-D invariant-EKF SLAM, IEEE
Robot,” IEEE Autonomous Lettter, vol. 2, no. 2, pp. 733–740, 2017.

[13] M. Brossard, A. Barrau, and S. Bonnabel, “Exploiting symmetries to
design EKFs with consistency properties for navigation and SLAM,”
IEEE Sensors Journal, vol. 19, no. 4, pp. 1572-1579, 2019.

[14] V. Indelman, “No correlations involved: decision making under uncer-
tainty in a conservative sparse information space,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 407-414, 2016.

[15] Y. Chen, S. Huang, R. Fitch, and J. Yu, “Efficient active SLAM based
on submap joining, graph topology, and convex optimization,” IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 5159-5166.

[16] Y. Chen, S. Huang, and R. Fitch, “Active SLAM for mobile robots
with area coverage and obstacle avoidance,” IEEE/ASME Transactions
on Mechatronics, vol. 25, no. 3, pp. 1182-1192, 2020.

[17] K. Dmitry and V. Indelman, “General-purpose incremental covariance
update and efficient belief space planning via a factor-graph propaga-
tion action tree,” The International Journal of Robotics Research vol,
38, no. 14, pp. 1644-1673, 2019.

[18] Y. Zhang, T. Zhang and S. Huang, “Comparison of EKF based
SLAM and optimization based SLAM algorithms,” IEEE Conference
on Industrial Electronics and Applications (ICIEA), pp. 1308-1313,
2018.

[19] K. Khosoussi, S. Huang, and G. Dissanayake, “Novel insights into the
impact of graph structure on SLAM,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014, pp.
2707– 2714.

[20] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 216–235, 2012.


	20xx IEEE
	Invariant EKF based 2D Active SLAM with Exploration Task

