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Abstract

A novel highly robust-to-noise and closely-situated eigenvalues damage detection method1

is proposed. The proposed method employs the Variational Mode Decomposition (VMD) to2

construct a new set of input signals obtained from the rows of the condensed Frequency Response3

Function (CFRF) to be used in a sensitivity-based model updating problem. Each row of4

the FRF matrix is replaced by its Unwrapped Instantaneous Hilbert Phase (UIHP). However,5

since the signal corresponding to the rows of the CFRF might not exhibit the mono-component6

property, and thus the UIHP will not be well-defined, VMD is used to obtain a set of constructive7

mono-component modes for each row, whereby the sum of UIHPs (SUIHP) for that row is8

obtained. The obtained SUIHPs for all rows of the CFRF are stacked up to obtain a new matrix9

to be fed into the optimisation problem. The proposed method is tested on a composite laminate10

plate with different configurations, as an example of structures with closely-situated eigenvalues.11

The results of the application of highly noisy measurement data for damage detection as well12

as comparison with two other methods demonstrate the superiority of the proposed method in13

damage detection of structures with closely-situated eigenvalues using highly noisy input data.14
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1. Introduction15

Composite materials are being widely used in different fields of engineering such as civil16

infrastructures, automotive, and aerospace industry due to their numerous advantages over some17

traditional alternatives in different industries [1]. However, they are known to be susceptible to18

different damage mechanisms, arising either during the manufacturing process or load-bearing19

experiences in the field, such as fiber failure, matrix cracking, buckling, and delamination [2, 3,20

4, 5, 6]. The performance of the structure under damage scenarios as such can be considerably21

compromised, where, if not identified and fixed, a total destruction of the structure is inevitable.22

Hence, developing new damage identification methods helps with several factors such as23

increasing the safety, efficiency and durability of such structures plus reducing the costs associ-24

ated with their maintenance [7]. Model updating methods seek to update structural parameters25

through minimising an error function which is typically constructed based on the difference be-26

tween the response of the intact and damaged structures [8]. As such, a Finite Element Model27

(FEM) of the structure is usually assumed to be available, whereby any changes in the structural28

response due to damage can be accounted for through introducing degradation to the stiffness29

and mass matrices of the FEM [9]. Model updating methods are iterative algorithms, meaning30

that they are set up to update the unknowns in the FEM through iterations. To this end, various31

structural static and/or dynamic responses such as FRFs [10], modal information [11, 12], time32

histories [13], and strain responses [14] have been used by researchers.33

There are generally two main groups of the model-updating techniques. These are: (1)34

optimisation-based, and (2) sensitivity-based algorithms [15, 16]. The former seeks to optimise35

an objective function constructed from some input data obtained from both real structure and36

its available FEM. Advanced optimisation algorithms are typically employed to solve the opti-37

misation problem of this sort of problems [12]. The latter methods, however, are based on the38

sensitivity analysis of the structural vibration data obtained from the FEM with respect to the39

unknowns in order to reduce its distance from those obtained from the real structure. As such,40

sensitivity-based model updating methods seek to minimise a penalty function of errors obtained41

from the difference between the measured and simulated structural responses to some certain42

loads [17]. Sensitivity-based methods have been of great interest to researchers, because they43

can be used to robustly update the FEM of the structure which can be further used to reproduce44

measured responses. The main disadvantage of these algorithms is that they usually modify the45

most sensitive element instead of the one in error. To address this issue, it was recommended46

that the errors be first localised, and then changes be allowed to occur in the corresponding47

elements [17]. Model-updating techniques solve the problem of the damage detection either in48

one stage, as is the case for the sensitivity-based methods [18, 19, 16], or in two stages in some49

optimisation-based model-updating methods [12, 20]. The two-stage optimisation-based model-50

updating methods are also known as “hybrid” methods [9]. Some state-of-the-art two-stage51

damage detection methods can be found in [12, 1, 21].52

The type of the input data plays an important role in the success of model-updating algo-53

rithms. Modal information such as natural frequency and mode shapes have been widely used54

in model-updating problems. However, they can impose some limitations on the process of up-55

dating damage indices. For instance, the modal data can only represent the effect of damage56

on resonance modes. This can be troublesome, especially in the case of structures with closely-57

situated eigenvalues where the information is lost due to some repetitive modes. The presence58

of the closely-situated eigenvalues can bring about a significant uncertainty in the structural59

modal responses which can further reduce the precision of damage detection algorithms. The60

main reason is that the modal responses of such structures are highly sensitive to small varia-61

tions of the mass or stiffness matrices. Therefore, using modal data for damage detection of such62

structures is not a good choice [22]. Frequency Response Functions (FRFs) can be alternatively63

used to deal with the problem of closely-situated resonances. Moreover, FRF data obtained64
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from vibration tests can better characterise the structural dynamic behavior. In addition, FRFs65

do not require any pairing or matching like mode shapes. Hence, some methods have been66

developed based on the application of FRFs in optimisation algorithms to solve the problem of67

the structural damage detection [23, 24, 25].68

Although using FRFs for damage detection of structures with closely-situated eigenvalues is69

promising, they are still susceptible to measurement noise. One way to deal with this problem70

is to apply advanced signal processing techniques, whereby a new robust-to-noise signal can71

be constructed from the decomposed modes of the original input signals [26]. To this end,72

time-frequency signal processing algorithms can be employed to identify a set of Intrinsic Mode73

Functions (IMFs) out of the original input signal. The IMFs obtained from the decomposition74

process posses two following properties: (1) each IMF is mono-component and thus involves one75

mode of oscillation of the original signal only. As such, its frequency content is limited within a76

narrow-band around a center frequency, and (2) the sum of the IMFs can construct the original77

signal1. The first property of such IMFs makes it possible to define the instantaneous frequency,78

phase, and amplitude for them. As such, some instantaneous properties of the original signal,79

such as phase, can be obtained through summation of such properties taken over all of its IMFs.80

Some of the famous signal decomposition algorithms have been used for structural damage81

detection, some examples of which include: using wavelet transformation [27, 28], empirical82

mode decomposition (EMD) [29], ensemble empirical mode decomposition (EEMD) [30], and83

Variational mode decomposition (VMD) [31].84

These methods can be also used for denoising input signals in damage detection algorithms,85

especially as for damage detection of composite structures with closely-situated eigenvalues. In86

this paper, a novel sensitivity-based model-updating method is proposed for damage detection87

of composite laminate structures with closely-situated eigenvalues. Therefore, the proposed88

method solves the problem of the damage detection in one stage. The constructed objective89

function uses the sum of the Unwrapped Instantaneous Hilbert Phase (SUIHP) of the rows of90

the decomposed FRF using the Variational Mode Decomposition (VMD) algorithm [32].91

It is known that measuring the rotational DOFs can be challenging. Therefore, in this paper,92

the condensed FRF (CFRF) matrix is used to deal with the lack of information stemming from93

unmeasured rotational DOFs. As such, it is shown that using the SUIHP of CFRF can increase94

the accuracy of the damage detection results at the presence of high percentage of measurement95

noise. The proposed method is employed to solve the problem of damage detection in two models96

of laminated composites, the results of which are compared against two other methods proposed97

in [20, 12]. Three performance criteria are employed to evaluate the performance of the proposed98

method. These are: relative error (RE), mean sizing error (MSE), and the closeness index (CI).99

The results demonstrate the effectiveness of using the proposed SUIHP as opposed to the the100

CFRF for damage detection of composite structures with closely-situated eigenvalues.101

2. The proposed SUIHP of the CFRF using VMD102

In this section, the theoretical backgrounds of the proposed SUIHP constructed based on103

CFRF are presented. Each row of the proposed SUIHP is obtained from the sum of the Un-104

wrapped Instantaneous Hilbert Phase (SUIHP) of the IMFs pertaining to the decomposition of105

that row using the Variational Mode Decomposition (VMD) algorithm (Figure 1). The VMD106

is employed to obtain a set of narrow-band oscillation modes (IMFs) for each row of the mea-107

sured CFRF. As such, the UIHP of each IMF, corresponding to the decomposition of the row,108

is well-defined, and can be obtained from Gabor’s analytical signal discussed in the sections to109

follow. The sum of all UIHP signals (SUIHP) corresponding to all IMFs of a row is replaced110

by the corresponding row in the CFRF matrix. Repeating the above procedure for all rows of111

1In some cases, such as Variational Mode Decomposition, the perfect reconstruction can depend on the settings.
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Figure 1: The flowchart of the proposed SUIHP of CFRF.

CFRF leads to a new matrix construction that can be further used for damage detection in a112

sensitivity-based model-updating problem. Note that in this paper SUIHP can refer to a row of113

the obtained matrix or the entire matrix depending on the context.114

The details of the VMD algorithm and the calculation of UIHP for each extracted IMF is115

discussed in the following sections. However, first a brief definition of the CFRF is presented in116

the following section.117

2.1. Definition of CFRF118

A partitioned form of the stiffness, mass, and damping matrices of a structure is written as119

follows:120

K =

[
Km×m Km×s

Ks×m Ks×s

]
(1)121

122

M =

[
Mm×m Mm×s

Ms×m Ms×s

]
(2)123

124

C =

[
Cm×m Cm×s

Cs×m Cs×s

]
(3)125

where m and s denote the number of master and slave DOFs in a finite element model (FEM)126

of the structure, respectively. As such, the rotational DOFs are considered slave DOFs, and127

therefore, the translational DOFs are regarded as master DOFs. The static condensation trans-128

formation matrix of the structure T is utilised to condense the slave DOFs in the structural129

siffness, mass, and damping matrices as follows [33]:130

K̄ = TT K T (4)131
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132

M̄ = TT M T (5)133

134

C̄ = TT C T (6)135

where136

[T ] =

[
[I]m×m

−[K]−1
s×s[K]s×m

]
(7)137

In above equations, I denotes the identity matrix, K, M , and C represent respectively the138

structural stiffness, mass, and damping matrices, and K̄, barM , and C̄ denote respectively their139

condensed form. Therefore, the condensed FRF (CFRF) H̄ of the structure is obtained as140

follows:141

H̄(ω) = (−ω2M̄ + jω C̄ + K̄)−1 (8)142

Note that, in practice, H̄ is obtained through excitation and measurement conducted upon143

the master DOFs of the structure.144

2.2. Hilbert Transform145

Modern signal processing methods use the Hilbert transform to interpret signals. The Hilbert146

transform can be applied to a signal that comply with the causality condition [34]. This holds147

for a signal whose value is zero at negative times, or it is independent of any events in the future.148

As such, the Hilbert transform of a causal signal is defined as follows:149

ĥ(t) = lim
ϵ→0

1

π

∫
|τ−t|>ϵ

h(τ)

t− τ
dτ, (9)150

where ĥ(t) represents the Hilbert transform of the causal signal h(t) which can be equivalently151

defined as the convolution of h(t) with the signal 1/πt. Also, the limit |τ − t| > ϵ satisfies Cauchy152

principle value for the convolution integral [35]. The integral of (9) converges for a causal signal153

and thus the Hilbert transform becomes well-defined for such a signal.154

In order to obtain the instantaneous amplitude, frequency, and phase of a complex signal,155

the Gabor’s analytic signal ha(t) is constructed [36], the real and imaginary parts of which are156

h(t) and ĥ(t), respectively. As such,157

ha(t) = h(t) + jĥ(t). (10)158

The Euler’s representation of (10) is obtained as follows:159

ha(t) = hm(t) ejϕ(t), (11)160

where hm(t) and ϕ(t) denote the time-variant “instantaneous amplitude” (IA) and “instanta-161

neous phase” (IP) of the analytical signal ha(t), respectively, and can be obtained as follows:162

hm(t) =

√
h2(t) + ĥ2(t), (12)163

ϕ(t) = tan−1

(
ĥ(t)

h(t)

)
. (13)164

The concept of instantaneous amplitude and frequency was employed successfully for damage165

detection in authors’ previous work [31]. Sometimes, a continuous phase function is represented166

by unwrapped radian phases. As such, whenever a jump ≥ π radians between two consecutive167

angles presents, the angles are shifted by adding multiples of ±2π until the jump is less than168

π. This is shown in Figure 2 more clearly where the x-axis is frequency instead of time (for169
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Figure 2: The wrapped and unwrapped instantaneous phase.

FRF/CFRF). Since, the concept of the unwrapped instantaneous Hilbert phase (UIHP) is in-170

formative about health condition of structures [37], the UIHP of the CFRF is proposed to be171

used, instead of the CFRF, for damage detection.172

Since the definition of the instantaneous frequency, phase, and amplitude is only well-defined173

for a narrow-band signal, VMD is employed to extract narrow-band IMFs from each row of the174

CFRF, for which the UIHP is well-defined. The corresponding row of the CFRF is then replaced175

by the sum of all UIHPs (SUIHP) to obtain a new matrix to be used for damage detection using176

the proposed sensitivity-based model updating equation. As such, the SUIHP of a CFRF (H(ω))177

refers to the reconstructed CFRF matrix when its rows are replaced by their SUIHP obtained178

from the VMD decomposition and Gabor’s analytical signal as discussed above and is shown as179

H̃(ω). Reiterated, in this paper, SUIHP can refer to a row of the obtained matrix or the entire180

matrix, depending on the context.181

2.3. Variational mode decomposition (VMD)182

The variational Mode Decomposition (VMD) algorithm is an adaptive signal decomposition183

method which decomposes a signal f(t) into K narrow-band Amplitude-Modulated Frequency-184

Modulated (AM-FM) modes, termed Intrinsic Mode Functions (IMFs). An IMF can be thus185

written in the following form:186

uk(t) = Ak(t) cos(ϕk(t)), (14)187

where uk(t) is the k
th IMF, and Ak(t) and ϕk(t) denote respectively its instantaneous frequency188

and phase. Since each IMF is narrow-band, the Gabor’s analytical signal can be constructed for189

it, whereby the instantaneous phase can be also obtained. Each IMF is characterised by its center190

frequency ωk. To calculate uk and ωk, VMD optimises the following augmented Lagrangian:191

L({uk}, {ωk}, λ) = α
∑
k

∥∥∥∥∂t (δ(t) + j

πt
∗ uk(t)

)
× e−jωkt

∥∥∥∥2
2

192

+

∥∥∥∥f(t)−∑
k

uk(t)

∥∥∥∥2
2

+

〈
λ(t), f(t)−

∑
k

uk(t)

〉
(15)193

where ∥.∥2 is the L2 norm, ∗ denotes convolution, and j is the imaginary unit. The penalty194

factor α is a denoising factor by factorising the importance of the first term with respect to the195

6
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second and third terms in (15). Therefore, there are some parameters in the computer program196

of the VMD that need to be specified a priori [38]. These are listed as follows:197

1. K, which determines the number of IMFs into which the original signal will be decomposed.198

In this paper, different numbers of K are chosen to see its effects on damage detection199

results.200

2. α, which is a quadratic penalty term and is a denoising factor. In this paper, denoising is201

not intended through α, as specifying a value for α requires a priori knowledge about the202

percentage of noise in the CFRF matrix. As such, to make the value of α ineffective, the203

parameter τ (see below) is set to a small value, i.e. 0.1, as recommended by the proposers204

of the VMD algorithm [38].205

3. τ , is a time step and determines how quickly the Lagrangian multiplier accumulates the206

reconstruction error. Setting τ to a small number, like 0.1, makes α, and thus denoising,207

ineffective.208

4. ϵ, which is a tolerance parameter and controls the convergence of the algorithm. In this209

paper the value of 10−5 was selected for ϵ. Note that any value smaller than the specified210

value value, like ϵ = 10−7, did not further improve the results and only increased the211

convergence time of the computer program.212

5. init, which initialises the centre frequencies. The options are zero (init = 0), uniform213

(init = 1), and random (init = 2). Since the way of initializing the center frequencies did214

not affect the final results [39], init = 0 was selected in this paper.215

6. DC, which is a Boolean parameter determining whether or not the first mode is set and216

kept at DC (an IMF with zero center frequency). In this paper, DC was set to zero (false),217

however, setting DC at 1 would not affect the final results.218

The VMD algorithm has been successfully employed for several purposes such as: (1) damage219

detection in beam type structures subjected to moving mass [31], (2) feature extraction of220

ultrasonic test results conducted on wood materials [40], and (3) denoising and removing seasonal221

patterns from signals used for condition monitoring of civil infrastructures [41, 42, 43].222

3. The proposed sensitivity-based model-updating damage detection method223

Sensitivity-based methods have been proven to be successful for damage detection of struc-224

tures with closely-situated eigenvalues in some previous work such as [44]. Here, a method is225

proposed that can update the structural damage indices through developing a sensitivity-based226

equation that employs the concept of SUIHP.227

Consider an n-DOF structure. The SUIHP of the CFRF obtained from the excitation of228

the structure at some DOFs and measurements made at some others is fed into a sensitivity-229

based model updating equation. In this section, the theoretical backgrounds of the so-called230

sensitivity-based model-updating problem leading to the proposed equation are discussed.231

Consider a system excited by the force vector F̄ (ωk) at its masters DOFs where ωk is the kth232

excitation frequency. Then, the measured response, at masters DOFs, of the real structure2 can233

be written as:234

X̄m (α, ωk) = H̄m (α, ωk) F̄ (ωk) (16)235

where X̄m (α, ωk) is the measured structural response vector. Likewise, for a numerical FEM3,236

one can write:237

X̄c (α̂, ωk) = H̄c (α̂, ωk) F̄ (ωk) (17)238

where X̄c (α̂, ωk) is the response vector of the FEM based on α̂, i.e. the estimated value of the239

vector of damage indices α. H̄m (α, ωk) and H̄c (α̂, ωk) denote the CFRFs obtained from the real240

2In this paper, the real structure refers to the FEM with a simulated damage scenario.
3The to-be-updated FEM model.
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model and the estimated FEM, respectively. Hence, the error associated with this estimation241

is a function of α̂ and is defined as the L2 norm of the difference between the measured and242

computed structural responses as follows:243

J (α̂) =
∥∥ϵ∥∥2

2
=
∥∥X̄m (α, ωk)− X̄c (α̂, ωk)

∥∥2
2

(18)244

where J (α̂) is the error function of the estimated vector of unknowns, i.e. α̂. ϵ denotes the245

residual vector obtained from the difference between the measured and updated responses.246

A truncated (first-order) Taylor series expansion of (18) can be written as follows:247

X̄m (α, ωk) ≃ X̄c (α̂, ωk) +
∂X̄c (α̂, ωk)

∂α̂
δα̂ (19)248

The derivative of the computed response vector X̄c (α̂, ωk) with respect to the estimated249

unknowns vector of α̂ can be written as follows [18]:250

∂X̄c (α̂, ωk)

∂α̂
≃ −H̄c (α̂, ωk)

×
(
−ω2∂M̄

∂α̂
+ jω

∂C̄

∂α̂
+

∂K̄

∂α̂

)
X̄c (α̂, ωk)

(20)251

Substituting Eq. 20 into Eq. 19 results in the following equation:252

ϵ = X̄m (α, ωk)− X̄c (α̂, ωk)

≃
[
− H̄c (α̂, ωk)

(
−ω2∂M̄

∂α̂
+ jω

∂C̄

∂α̂
+

∂K̄

∂α̂

)
× X̄c (α̂, ωk)

]
δα̂

(21)253

It is obvious that since (21) is obtained by neglecting the higher order of Taylor series254

expansion, it only provides an approximate solution. However, the higher terms are expected to255

have minimal effects on the final results [18, 44].256

One can write the measured CFRF H̄m (α, ωk) in terms of the perturbed structural stiffness,257

mass, and damping matrices as follows:258

H̄m (α, ωk) =
(
−ω2(M + δM) + jω(C + δC) +K + δK

)−1
(22)259

where260

δK̄ =

n∑
i=1

∂K̄

∂α̂i
δα̂i (23)261

262

δM̄ =

n∑
i=1

∂M̄

∂α̂i
δα̂i (24)263

The changes of the structural response, in terms of the measured CFRF, thus can be written264

as follows [18]:265

δX̄c (α̂, ωk) ≃ −H̄m (α, ωk)

×
(
−ω2

kδM̄ + jωkδC̄ + δK̄
)
X̄c (α̂, ωk)

(25)266

Substituting (23) and (24) into (25) and writing the obtained equation in a compact form,267

we have:268

δX̄(α̂, ωk) ≃
[
SK̄ SM̄

] [ δα̂
δα̂

]
(26)269

8
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where270

SK̄ =
[
− H̄m(α, ωk)

(
∂K̄

∂α̂1

)
X̄c(α̂, ωk), . . . ,−H̄m(α, ωk)

(
∂K̄

∂α̂n

)
X̄c(α̂, ωk)

]
(27)271

and272

SM̄ =
[
− H̄m(α, ωk)

(
∂M̄

∂α̂1

)
X̄c(α̂, ωk), . . . ,−H̄m(α, ωk)

(
∂M̄

∂α̂n

)
X̄c(α̂, ωk)

]
(28)273

Note that in this paper the SUIHP of the CFRF, shown as H̃(α, ωk), is used as opposed to274

H̄(α, ωk) in (27) and (28). The least square (LS) method is employed to solve (26) in iterations.275

As such, the value of α̂ at the tth iteration (α̂t) is updated as α̂t = α̂t−1 + δα̂t. Note that δα̂t276

represents an incremental update acquired for α through running the LS algorithm for solving277

the optimisation problem at time t.278

It was set for the algorithm to terminate iterations when |δα̂t| ≤ 10−5. The SUIHP of the279

CFRF is relatively a slowly varying function. Hence, a larger number of iterations might be280

required for (28) to converge to a solution.281

4. The effective arrangement of the excitation frequency ranges and locations282

4.1. Proper selection of the excitation frequency ranges283

FRF-based model updating methods require excitation of appropriate frequency ranges. As284

such, frequency ranges that are more sensitive to the variation of the structural parameters285

are desirable. A previous study recommends that the excitation frequency ranges close to the286

resonant frequencies should be used to this end [15]. Accordingly, there are two reasons that287

such frequency ranges are of interest. These are:288

1. To increase the sensitivity of the structural response to any small variation of the structural289

parameters.290

2. To reduce the effect of damping on the structural response.291

However, there is a catch; one needs to minimise the effect of damping on the structural response.292

This is mainly due to the fact that an exact, or close to exact, simulation of the structural293

damping in the FEM is difficult in most of the cases. It is known that the effect of damping on294

FRF reduces as excitation ranges are selected far enough from resonances [18]. Therefore, there295

are optimal frequency ranges for excitation to satisfy all the above, although these frequency296

ranges need to be identified for each case individually. In this paper, CFRFs obtained from297

different frequency ranges are concatenated to obtain a uniform CFRF matrix.298

Note that since the damage indices are updated in each iteration, the computed CFRF299

matrix H̄c(α, ωk) corresponding to the to-be-updated model shifts slightly at each iteration.300

This demands for the update of Hc(ω) at each iteration which is done through an automated301

frequency-range-selection program based on the aforementioned rules. For further information302

the readers are referred to [19, 18, 15].303

4.2. Proper selection of the excitation locations304

The proper selection of the excitation locations plays an important role in obtaining accurate305

results regarding the model-updating problem as well [45]. Hence, in this section, a method is306

proposed based on the obtained SUIHP of the CFRF matrix of the FEM at each iteration. The307

proposed method is obtained through replacing H̄m(α̂, ωk) by its SUIHP shown by H̃m(α̂, ωk)308

[15] that will avoid obtaining a rotational DOF among the obtained optimum excitation DOFs.309

As such, the proposed equation for identifying optimal locations of excitation is written as310

follows:311

Λ̃ =

K∑
k=1

√√√√ n∑
i=1

(
H̃m,ij(α̂, ωk)

)2
(29)312
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where K is the number of excitation frequencies. The ne DOFs corresponding to the highest313

values of Λ̃ are selected as the best excitation locations. Note that, despite the previous section,314

the excitation locations are not updated in each iteration and are identified only once, based on315

the numerical model corresponding to the intact structure.316

Note that in this paper, the matrix of the CFRF H̄m,ij(α̂, ωk), and therefore H̃m,ij(α̂, ωk), is317

obtained through excitation of the identified optimum DOFs and measurements conducted on318

all the translational DOFs.319

5. Damage identification accuracy indicators320

Three accuracy indicators are employed to asses the accuracy of the results of the damage321

detection using the proposed method [10]. These are listed as follows:322

1. The closeness index (CI) is employed to evaluate the accuracy of the predicted damage323

indices. It is defined based on the difference between the actual and the computed vectors324

of damage indices as follows:325

CI = 1−
∥P r − P c∥2

∥P r∥2
(30)326

where P r and P c indicate the vectors of real and computed damage indices, respectively.327

Accordingly, CI = 1 implies that all the updated parameters are exact.328

2. The mean sizing error (MSE) is defined as the sum of the absolute difference between329

the real and computed damage parameters normalized by the number of real damaged330

elements de as follows:331

MSE =
1

de

de∑
e=1

|pre − pce|, 0 ≤ MSE (31)332

where pre and pce denote respectively the real and computed damage parameters of the eth333

element.334

3. The relative error RE is defined as follows:335

RE =

∑n
e=1 |pre| −

∑n
e=1|pce|∑n

e=1|pce|
, −1 ≤ RE ≤ 1 (32)336

where n is the number of all elements (damaged and intact) in the FEM of the structure.337

Smaller values of the MSE and RE imply a more accurate prediction.338

The flowchart of the proposed method is depicted in Fig. 3.339

6. Numerical examples340

The properties of the composite plate studied in this section is adopted from [46]. It is a341

fixed supported square laminated composite plate with different number of layers (NoL) and342

layering angles (LA) as follows:343

• NoL = 3 and LA = 0◦/90◦/0◦,344

• NoL = 6 and LA = 0◦/45◦/0◦/0◦/45◦/0◦.345

The specifications of the plates under study are listed as follows:346

• The size of the plates is 100× 100× 10 cm. As such, the overall thickness of the plate was347

considered 10 cm regardless of the number of layers.348
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No

Yes

Start

Construct an FE model
of the intact structure

- Select frequency ranges
      - Select excitation and           

  measurement locations

Obtain the input matrix   

    -  Set the objective function  
    -  Determine damage indices

Check 
the convergence of the  

algorithm 

   - Update structural matrices     
      and  
   - Select new frequency ranges

Stop

Figure 3: The flowchart of the proposed sensitivity based model-updating method.

Table 1: The material properties of each ply in the composite laminate plate adopted from [46]

.
Young’s Modulus Young’s Modulus Poisson ratio Poisson ratio Modulus of rigidity Modulus of rigidity

E1

(
N/m2

)
=40 E2

(
N/m2

)
=1 ν12=0.25 ν21=0.00625 G12 = G13 = 0.6E2 G23 = 0.5E2

• The plates are divided into nx × ny four-node elements with a total number of (nx + 1)×349

(ny + 1) nodes (see Fig. 4a). Note that nx and ny indicate the number of divisions along350

the x and y axes, respectively (Fig. 4b).351

• As a result, the plates are divided into 36 elements with a total of 245 DOFs (nx = ny = 6).352

These include three translational and two rotational DOFs at each node.353

• The four sides of the plates are fixed supported and, therefore, 125 DOFs remain active.354

An in-house Matlab code was developed for the simulation of the composite plates and solving355

the problem of damage detection via the proposed method. The first-order shear deformation356

theory (FSDT), that extends the kinematics of the Classical Laminated Plate Theory (CLPT)357

[46], was employed for the simulation of the laminated composite structures of this study. Table 1358

lists all the mechanical properties of each layer of the plates under study in this paper. Note359

that the plates under study are identical to the ones studied in [12, 20, 47, 48, 49, 50], in terms360

of the geometry and boundary conditions. Several damage scenarios have been considered as361

listed in Table 2. These are six different damage scenarios based on the location, severity and362

the type of damage. Damage is considered as a degradation factor introduced to the elemental363

stiffness (stiffness reduction). Table 3 lists the 10 lowest natural frequencies of the plates with364

11
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(a)

x

y

1 2 nx−1 nx

nx+1 nx+2 2nx

nynx

Lx

L
y

(b)

Figure 4: (a) The sketch of the composite laminate plate, and (b) the element numbering of the composite
laminate plate (nx = ny = 6).

Table 2: Damage scenarios of the composite laminate plate.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Element Ratio Element Ratio Element Ratio Element Ratio Element Ratio Element Ratio

5 0.20 2 0.15 1 0.20 5 0.15 4 0.15 3 0.20
12 0.30 10 0.20 10 0.15 10 0.10 8 0.20 7 0.15
24 0.15 15 0.25 12 0.10 15 0.20 17 0.30 9 0.10
31 0.20 25 0.30 13 0.20 20 0.25 23 0.15 19 0.30

31 0.20 17 0.30 25 0.30 31 0.10 23 0.35
29 0.25 30 0.10 36 0.20 31 0.20

different damage scenarios. It is evident from the table that reducing the stiffness brings about365

decreasing the natural frequencies of all models of the plate. Note that here only the first 10366

natural frequencies of the studied plate models are presented. The small difference between367

these modes justifies the almost similar effect of the damage on them. This is due to the closely-368

situated-eigenvalues property of the studied composite plates which was fully investigated in369

some previous work such as [44, 51].370

It is known that structures with many DOFs, such as spatial truss and plate structures,371

can have many closely-situated eigenvalues [52]. This can, however, result in missing informa-372

tion about damage due to the semi-repeated modes. As such, higher modes are required to373

be identified to compensate for the loss of information from the semi-repeated lower modes.374

However, measuring higher modes is also usually troublesome, making the damage detection of375

such structures relatively more challenging [53, 51]. We will show that the plates under study376

in this section have a few number of closely-situated eigenvalues. However, to characterise the377

closeness of the eigenvalues in a structure, a metric is presented in here which is developed based378

on a similar concept introduced in [53] for damped structures as follows:379

Consider two successive structural natural frequencies of ω1 = ω and ω2 = ω +∆ω. These380

are considered closely-situated frequencies if ∆ω = ω2 − ω1 is relatively small compared to ω381

[51]. To characterise this further, the frequency relative disparity (FRD) index, for two adjacent382

frequencies is introduced as follows:383

FRD1,2% =

∣∣∣∣ω2 − ω1

ω1

∣∣∣∣× 100. (33)384

As such, different scenarios can hold for two successive modes as follows [53]:385
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Table 3: First ten natural frequencies of the composite laminate plate with different NoL and LA.

Lamination scheme
Mode No.

1 2 3 4 5 6 7 8 9 10

Intact
NoL = 3,
LA = (0◦/90◦/0◦)

7.40 11.14 14.32 16.23 18.74 21.42 23.32 23.90 25.74 26.29

NoL = 6,
LA = (0◦/45◦/0◦)

7.64 11.53 14.74 16.82 19.07 21.99 23.78 24.90 25.78 26.60

Case 1
NoL = 3,
LA = (0◦/90◦/0◦)

7.30 11.01 14.11 15.92 18.61 21.08 23.08 23.58 25.39 25.92

NoL = 6,
LA = (0◦/45◦/0◦)

7.55 11.42 14.55 16.48 19.01 21.53 23.54 24.68 25.46 26.40

Case 2
NoL = 3,
LA = (0◦/90◦/0◦)

7.32 10.94 14.07 15.85 18.44 21.03 22.95 23.42 25.34 25.89

NoL = 6,
LA = (0◦/45◦/0◦)

7.55 11.34 14.50 16.45 18.74 21.50 23.41 24.53 25.44 26.31

Case 3
NoL = 3,
LA = (0◦/90◦/0◦)

7.24 10.96 14.03 15.96 18.50 21.03 22.73 23.47 25.26 25.79

NoL = 6,
LA = (0◦/45◦/0◦)

7.47 11.33 14.45 16.55 18.82 21.54 23.26 24.42 25.31 26.02

Case 4
NoL = 3,
LA = (0◦/90◦/0◦)

7.27 10.94 14.06 15.85 18.46 21.01 22.80 23.43 25.34 25.88

NoL = 6,
LA = (0◦/45◦/0◦)

7.52 11.33 14.49 16.41 18.83 21.48 23.28 24.50 25.42 26.31

Case 5
NoL = 3,
LA = (0◦/90◦/0◦)

7.28 10.99 14.22 16.06 18.45 21.05 22.92 23.61 25.33 25.85

NoL = 6,
LA = (0◦/45◦/0◦)

7.52 11.35 14.63 16.62 18.80 21.61 23.40 24.54 25.39 26.14

Case 6
NoL = 3,
LA = (0◦/90◦/0◦)

7.19 10.94 13.95 15.92 18.43 20.99 22.67 23.50 25.10 25.80

NoL = 6,
LA = (0◦/45◦/0◦)

7.43 11.29 14.40 16.51 18.68 21.67 23.18 24.37 25.19 25.98

• Well-separated: FRD1,2 > 10%,386

• Separated modes: 5% < FRD1,2 ≤ 10%,387

• Close modes: 1% < FRD1,2 ≤ 5%, and388

• very close modes: FRD1,2 ≤ 1%.389

Fig. 5 shows examples of the CFRFs obtained from the composite laminate plates when the390

plates are excited at the DOF 21 and measured at the DOF 12. There are a number of closely-391

situated eigenvalues marked in the graphs. However, as can be seen, it is hard to distinguish392

the closely-situated eigenvalues by visual inspection of the CFRFs. Table 4 presents the FRD393

metric computed for the first ten modes of the structures to better characterise the closely-394

situated eigenvalues. Reiterated, the existence of the closely-situated eigenvalues makes the395

task of the damage detection of the plate using modal information challenging. Therefore, using396

FRFs (CFRFs in this paper) seems more reasonable. We show further that the proposed SUIHP397

does even a better job compared to the CFRF, when the CFRF data are highly contaminated398

by measurement noise.399

6.1. Considering the effect of noise400

It is crucial to study the effect of the measurement noise on the performance of damage de-401

tection methods. Therefore, the simulated structural CFRF data are contaminated by different402

level of noise through the following formula [54]:403

δ̂ = δ +
NP

100
nnoise σ(δ) (34)404
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(a) NoL = 3 and LA = 0◦/90◦/0◦ (b) NoL = 6 and LA = 0◦/45◦/0◦/0◦/45◦/0◦

Figure 5: The closely-situated natural frequencies of the intact and damaged composite laminate plate
with different arrangements (damage scenario 1, excited at DOF 21 and measured at DOF 12).

Table 4: The FRDi,j values for the first ten modes of the composite laminate plate with different NOLs
and LAs.

Mode No.

Closely spaced modes with lamination scheme

NoL = 3, LA = 0◦/90◦/0◦ NoL = 6, LA = 0◦/45◦/0◦/0◦/45◦/0◦

FRDi,j (%) Modal disparity FRDi,j (%) Modal disparity

[1, 2] 50.54 Well-separated 50.92 Well-separated
[2, 3] 28.55 Well-separated 27.84 Well-separated
[3, 4] 13.33 Well-separated 14.11 Well-separated
[4, 5] 15.46 Well-separated 13.37 Well-separated
[5, 6] 14.30 Well-separated 15.31 Well-separated
[6, 7] 8.87 Separated 8.40 Separated
[7, 8] 2.48 Close 4.70 Close
[8, 9] 7.69 Separated 3.49 Close
[9, 10] 2.14 Close 3.22 Close
[10, 11] 12.00 Well-separated 1.69 Close

where δ and δ̂ indicate the simulated clean and noisy CFRF data with standard deviation σ(δ).405

As such, NP is the noise percentage which is set at 30 in this paper, and nnoise is a random406

vector sampled from the standard normal distribution.407

Fig. 6 shows the examples of the obtained noisy CFRF signals from the excitation and408

measurement of the composite laminate plates at some translational DOFs.409

6.2. The proper selection of the Excitation location410

Proper selection of the excitation location has a great effect on the damage detection results.411

There are three directions for the translational DOFs in the global coordinates in all the nodes412

of an element; these DOFs are marked in this paper as DOFs1t , DOFs2t , and DOFs3t . The DOFs413

corresponding to the optimum excitation location are selected through calculation of Λ̃ in Eq.29.414

(a) NoL = 3 and LA = 0◦/90◦/0◦ (b) NoL = 6 and LA = 0◦/45◦/0◦/0◦/45◦/0◦

Figure 6: The obtained noisy CFRF corresponding to the composite laminate plate with different ar-
rangements (for the 1st damage scenario, excited at DOF 21 and measured at DOF 72).

14



https://doi.org/10.1016/j.compstruct.2022.115243

Table 5: The optimal excitation locations obtained for the laminated composite plate with different
configurations.

Plate SjSjSj DOFs

NoL = 3, LA = (0◦/90◦/0◦) 25.24, 23.65, 20.19, 17.25, 17.23, 17.05, 16.25 71, 66, 56, 31, 101, 47, 72
NoL = 6, LA = (0◦/45◦/0◦/0◦/45◦/0◦) 34.07, 33.74, 33.22, 32.08, 27.25, 22.54, 18.25 21, 66, 31, 41, 107, 117,122

Accordingly, the highest values of Λ̃ was obtained at the first and second transitional DOFs,415

as shown in Table 5. The table lists the obtained optimum locations of excitation for the two416

models of the composite plate. As such, the number of identified optimal locations for excitation417

presented here is equal to eight. The fact that the identified optimal DOFs are among the first418

and second translational DOFs may be somewhat sensible through a preliminary study of the419

elemental information. However, one should note that the total number of the first and second420

DOFs in the simulated plates is equal to 50. Therefore, identifying optimal excitation locations421

is crucial for saving the time of the experiment as well as ensuring accurate results for damage422

detection. In practical applications, plates can be excited by patches of piezoelectric actuator423

at the identified optimal locations [55]. Different sensing technologies can be employed for the424

measurement of the structural response to the excitation force such as accelerometers, optic425

fiber sensing technologies, automated laser total station, and 3D laser scanning, to name a few426

[56].427

6.3. The effect of the number of decomposition428

Fig. 7 depicts the obtained SUIHP signals when the structures are excited and measured at429

the translational DOFs 21 and 12, respectively. The SUIHP signals were obtained for both of the430

intact and damaged (4th damage scenario) structures. To investigate the sensitivity of the ob-431

tained SUIHP to the number of IMFs, different numbers of the modes (NOM) (decompositions)432

has been considered in the VMD settings which are 4, 6, and 8 decompositions.433

The subplotes of Fig. 7 show that the maximum variability of the SUIHP, across different434

health conditions of the structure for different NOMs. A close examination of the plots suggest435

that more accurate results are expected to be achieved through optimising the objective function436

when NOM=4 is used for obtaining SUIHP of the CFRF. It is generally known that over-437

decomposing a signal using VMD can result in repetitive modes which can compromise the438

variability of the obtained SUIHP with respect to the damage. Moreover, under-decomposition439

of the rows of the CFRF can result in missing information about damage. This has been tested440

by setting NOM=3, the results of which is not presented in here. In a general case when the441

optimum number of the decomposition is concerned, one can start off with a small number, like442

NOM=3, and increase the number of the decomposition gradually. One can judge the optimum443

number of the decomposition through monitoring of the variability of the SUIHP of the damaged444

structure with respect to its value corresponding to the healthy state of the structure. Following,445

we will show that even a non-optimal number of decomposition, i.e. 6 and 8 in here, will bring446

about more accurate results compared to the case when the CFRF is used for damage detection.447

In order to demonstrate the superiority of the proposed method both of the SUIHP and448

CFRF matrices were used for damage detection in this section. Also, although we showed that449

the variability of the SUIHP is more significant when NOM is equal to 4, the results obtained450

from other numbers of decomposition, i.e. NOM=6 and 8, are presented in this section. In451

order to consider the effect of the measurement noise on the results, the rows of the CFRF were452

contaminated by 30% random noise (NP=30). The obtained results of the damage detection453

conducted on different models of the composite plate and damage scenarios, using CFRF and454

SUIHP, are listed in Table 6. The results indicate that using SUIHP , regardless the number of455

NOM, brings about far more accurate results compared with the CFRF in all cases.456
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(a) NOM = 4,NoL = 3, LA = 0◦/90◦/0◦ (b) NOM = 6, NoL = 3, LA = 0◦/90◦/0◦

(c) NOM = 8, NoL = 3, LA = 0◦/90◦/0◦ (d) NOM = 4, NoL = 6, LA = 0◦/45◦/0◦/0◦/45◦/0◦

(e) NOM = 6, NoL = 6, LA = 0◦/45◦/0◦/0◦/45◦/0◦ (f) NOM = 8, NoL = 6, LA = 0◦/45◦/0◦/0◦/45◦/0◦

Figure 7: The SUIHP of the damaged and healthy composite laminate for all studied models (damage
scenario 4 , excited at DOF 21 and measured at DOF 12). Note that f = ω/2π.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 8: The predicted damage indices using CFRF and SUIHP in the proposed sensitivity based
model-updating method for damage scenarios 1-6 in three-layer (0◦/90◦/0◦) composite laminate plate
and NP=30)
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 9: The predicted damage indices using CFRF and SUIHP in the proposed sensitivity based model-
updating method for damage scenarios 1-6 in six-layer (0◦/45◦/0◦) composite laminate plate (NP=30)
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 10: The COVs indices using CFRF and SUIHP in the proposed sensitivity based model-updating
method for damage scenarios 1-6 in three-layer (0◦/90◦/0◦) composite laminate plate (NP=30).
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 11: The COVs indices using CFRF and SUIHP in the proposed sensitivity based model-updating
method for damage scenarios 1-6 in six-layer (0◦/45◦/0◦) composite laminate plate (NP=30).
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Table 6: Summary of the obtained error indices using the proposed sensitivity-based model-updating
method for all damage cases in the studied composite laminate plates with different NOM.

Case Applied NOM NoL = 3, LA = (0◦/90◦/0◦) NoL = 6, LA = (0◦/45◦/0◦)

No. method MSE RE CI MSE RE CI

1 CFRF - 0.0807 -2.2453 -0.4216 0.0795 -1.8502 -0.4206
1 SUIHP 4 0.0024 -0.0931 0.9545 0.0037 -0.1158 0.9275
1 SUIHP 6 0.0312 -0.2569 2.7075 0.0423 -0.2963 2.9635
1 SUIHP 8 0.0512 -0.4103 3.3027 0.0712 -0.4001 3.0215

2 CFRF - 0.0838 -1.1956 -0.3610 0.0994 -1.4139 -0.8410
2 SUIHP 4 0.0040 -0.1321 0.9349 0.0036 -0.1145 0.9423
2 SUIHP 6 0.0415 -0.3014 1.9980 0.0526 -0.3856 3.0247
2 SUIHP 8 0.0712 -0.6056 3.4360 0.0798 -0.6996 3.9125

3 CFRF - 0.0770 -0.7856 -0.2929 0.0865 -0.9681 -0.3583
3 SUIHP 4 0.0044 -0.1312 0.9101 0.0046 -0.1377 0.9111
3 SUIHP 6 0.0185 -0.2703 2.1041 0.0376 -0.3107 3.1174
3 SUIHP 8 0.0368 -0.7002 3.4360 0.0498 -0.3906 3.9085

4 CFRF - 0.0830 -0.8906 -0.4516 0.0643 -0.4848 -0.1775
4 SUIHP 4 0.0039 -0.1154 0.9306 0.0037 -0.0981 0.9394
4 SUIHP 6 0.0236 -0.3974 1.9001 0.0291 -0.4197 2.0010
4 SUIHP 8 0.0378 -0.5056 3.0760 0.0479 -0.4630 3.5569

5 CFRF - 0.0655 -0.7950 -0.2150 0.0803 -0.8226 -0.4332
5 SUIHP 4 0.0043 -0.1364 0.9201 0.0059 -0.1639 0.8934
5 SUIHP 6 0.0352 -0.2874 2.3001 0.0423 -0.3002 2.6984
5 SUIHP 8 0.0421 -0.4126 3.7890 0.0498 -0.4556 3.4298

6 CFRF - 0.0731 -0.5427 -0.2819 0.0893 -0.5951 -0.3515
6 SUIHP 4 0.0040 -0.1104 0.9399 0.0059 -0.1356 0.9130
6 SUIHP 6 0.0240 -0.3214 2.2149 0.0229 -0.3075 2.0369
6 SUIHP 8 0.0412 -0.5056 3.4420 0.0409 -0.4271 3.3019

6.3.1. Damage detection using the proposed sensitivity method457

Figs. 8 and 9 show the computed damage indices for both models of the composite plate458

when the SUIHP with NOM=4 and CFRF matrices are used for damage detection considering459

NP = 30. To asses the reliability of the proposed method against the measurement noise, 50460

sets of the noisy CFRF data were considered. The developed computer program was set to solve461

the problem for each case after 100 iterations. The coefficient of variation (COV) was used in462

this paper to evaluate the performance of the algorithm when each of the CFRF and SUIHP is463

used for damage detection. The COV is defined as the normalized standard deviation of each464

damage index divided by its mean value [18]. As such, a smaller value of the COV corresponds465

to a more robust prediction of the damage indices.466

Figs. 10 and 11 show the obtained values of the COV for different models of the composite467

plate using the SUIHP and CFRF matrices (NP=30). It is evident from the results that using468

SUIHP is more reliable than the CFRF.469

6.4. Studying plates with different E1/E2 ratios470

Thus far, the sensitivity of the proposed method to different values of the parameters of the471

studied plate including the number of ply and the orientation of the ply has been studied. In this472

section, the sensitivity of the proposed method to different values of E1/E2 ratio is considered.473

As such, this ratio was considered 20 and 30 here which is smaller than 40–the value considered in474

the previous sections. Table 7 lists the obtained natural frequencies of the laminated composite475

models for different values of the E1/E2 ratio. It can be noted that the natural frequencies of the476

composite plates were obtained smaller when this ratio was set at a smaller value. It can be also477

noted that the closely-situated eigenvelues issue still remains in the models. Next, the accuracy478

indices obtained for the performance of the proposed method applied to the composite laminate479

21



https://doi.org/10.1016/j.compstruct.2022.115243

Table 7: First ten natural frequencies of the simulated composite plates with different values of the
E1/E2.

Lamination scheme
Mode No.

1 2 3 4 5 6 7 8 9 10

Intact, E1/E2 = 20
NoL = 3,
LA = (0◦/90◦/0◦)

6.74 10.13 13.60 15.33 17.52 20.34 22.64 23.14 25.46 25.72

NoL = 6,
LA = (0◦/45◦/0◦)

6.89 10.59 13.87 15.85 18.06 20.95 21.14 22.96 23.98 25.76

Intact, E1/E2 = 30
NoL = 3,
LA = (0◦/90◦/0◦)

7.14 10.70 14.04 15.85 18.21 20.96 23.07 23.60 25.73 25.94

NoL = 6,
LA = (0◦/45◦/0◦)

7.34 11.14 14.40 16.41 18.64 21.56 23.48 24.04 24.55 25.77

Case 1, E1/E2 = 20
NoL = 3,
LA = (0◦/90◦/0◦)

6.64 10.03 13.40 15.03 17.41 20.02 22.38 22.81 25.08 25.38

NoL = 6,
LA = (0◦/45◦/0◦)

6.81 10.50 13.68 15.54 18.00 20.53 20.95 22.70 23.75 25.43

Case 1, E1/E2 = 30
NoL = 3,
LA = (0◦/90◦/0◦)

7.04 10.58 13.83 15.55 18.09 20.63 22.82 23.27 25.37 25.59

NoL = 6,
LA = (0◦/45◦/0◦)

7.26 11.06 14.21 16.09 18.59 21.11 23.23 23.85 24.32 25.44

Table 8: The accuracy indicators obtained for the simulated composite plates with different values of the
E1/E2.

Case E1/E2 NP NoL = 3, LA = 0◦/90◦/0◦ NoL = 6, LA = 0◦/45◦/0◦

No. (%) MSE RE CI MSE RE CI

1 40 30 0.0024 -0.0931 0.9545 0.0037 -0.1158 0.9275
1 30 30 0.0026 -0.1001 0.9449 0.0040 -0.1172 0.9333
1 20 30 0.0027 -0.1112 0.9401 0.0041 -0.1177 0.9411

plates with different values of E1/E2 were evaluated. The results are presented in Table 8. The480

obtained accuracy results indicate the perfect performance of the proposed method considering481

different values of the E1/E2 ratio in the laminated composite plates.482

6.5. Comparison with other methods483

The proposed method of this paper is compared against two other methods in the literature484

through comparing the accuracy indices obtained for each method. Table 9 shows the accuracy485

indices obtained from the proposed method and the methods proposed in [12] and [20] in all486

damage scenarios. As such, the obtained values of the accuracy indices of MSE, RE, and CI487

clearly demonstrate the superiority of the proposed method when NP = 30.488

7. Conclusions489

In this study, a sensitivity-based damage detection method was proposed that uses the490

SUIHP corresponding to the measured/simulated CFRF signals as input. The results indicate491

that more accurate results can be achieved when SUIHP is used as opposed to the CFRF at492

the presence of high percentage of noise. Moreover, it was shown that the proposed feature493

is far more sensitive to damage compared with the case when CFRF is used as input. The494

proposed method was also compared against two other methods proposed in the literature. The495

results demonstrate the superiority of the proposed method in all cases of the simulated damage496

scenarios.497

This paper presents several novelties including the proposed sensitivity-based damage de-498

tection method. However, the main novelty of this paper comes from the proposed SUIHP as499

22
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Table 9: Comparison of the accuracy indicators obtained for [12] and [20] with the proposed method.

Case Applied NP NoL = 3, LA = 0◦/90◦/0◦ NoL = 6, LA = 0◦/45◦/0◦

No. method (%) MSE RE CI MSE RE CI

1 Proposed 30 0.0024 -0.0931 0.9545 0.0037 -0.1158 0.9275
2 Proposed 30 0.0040 -0.1321 0.9349 0.0036 -0.1145 0.9423
3 Proposed 30 0.0044 -0.1312 0.9101 0.0046 -0.1377 0.9111
4 Proposed 30 0.0039 -0.1154 0.9306 0.0037 -0.0981 0.9394
5 Proposed 30 0.0043 -0.1364 0.9201 0.0059 -0.1639 0.8934
6 Proposed 30 0.0040 -0.1104 0.9399 0.0059 -0.1356 0.9130

1 [20] 30 0.3850 -0.9325 4.3658 0.4028 -0.7258 3.9985
2 [20] 30 0.4258 -0.9412 5.1002 0.3952 -0.8888 5.0023
3 [20] 30 0.3940 -0.9961 5.1036 0.4107 -0.6085 5.4411
4 [20] 30 0.5126 -0.8941 4.1478 0.3014 -0.7518 5.2478
5 [20] 30 0.5526 -0.7103 6.1000 0.4274 -0.6912 5.4020
6 [20] 30 0.5325 -0.7720 5.2369 0.3369 -0.7199 5.2236

1 [12] 30 0.4421 -0.9981 7.0023 0.5745 -0.9258 7.4102
2 [12] 30 0.4600 -0.9888 7.5002 0.4826 -0.9625 6.6273
3 [12] 30 0.4810 -0.9741 7.8246 0.6674 -0.9475 8.8852
4 [12] 30 0.4852 -0.9958 8.5478 0.5826 -0.9371 7.3270
5 [12] 30 0.5523 -0.9849 9.4250 0.6025 -0.9963 8.8963
6 [12] 30 0.5023 -0.9963 9.3975 0.6021 -0.9635 8.8230

a damage sensitive feature. As such, future work can be dedicated to testing the proposed500

technique in some other optimisation problems that use a set of signals as input. Based on the501

obtained results of this paper, the SUIHP of the identified signals is recommended to be used,502

instead of the signals themselves, as input to the objective function of the optimisation problem,503

especially when the identified signals are highly contaminated by measurement noise.504

Although the proposed method was preliminary developed to address the damage detec-505

tion problem in composite structures, further investigation of the applicability of the proposed506

method to composite materials can be a subject of future work. Moreover, the studied numeri-507

cal examples of this paper were developed based on the assumption of fully clamped boundary508

conditions. However, care must be taken when it comes to conduct damage detection in a real509

composite structure, where a more realistic assumption for the rigidity of its supports needs510

to be made in the constructed FE model. Finally, the present study, in its current form, aims511

to propose a novel concept through coupling an advanced signal processing method with the512

classical concept of FRFs for overcoming the challenge of using highly noisy measurements for513

damage detection in laminated composite plates, as examples of structures with closely-situated514

eigenvalues. The authors are keen to validate the results of this paper through an experimental515

study in their future work.516
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