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Abstract—Supervised machine learning (ML) approaches ef-
fectively derive valuable insights from big data. These ap-
proaches, on the other hand, require an extensive amount of
high quality annotated data for training, created manually by
domain experts through a costly and time-consuming process.
To overcome this challenge, active learning (AL) is a promising
approach, which can support a fast, cost-efficient and common
strategy to deal with big data with limited labeling effort. Instead
of annotating a large pool of unlabeled data, as in standard
supervised learning, AL reduces the volume of data that requires
manual annotation by effectively selecting subsets of highly
informative samples for manual annotation within an iterative
process. In this paper, we aim to present a robust approach
utilizing AL to mitigate the aforementioned challenges and help
the decision-makers. To be precise, we propose a framework
involving a support vector machine (SVM) technique in AL
for mining big data to manage inaccessible data situations. The
proposed approach is tested on five different semi-supervised data
sets. The performance of the proposed framework is evaluated
using traditional ML classifiers such as Naı̈ve Bayes (NB),
Decision Tree (DT), Sequential Minimal Optimization (SMO),
Random Forest (RF), Bagging and Adaboost. Among the reported
classifiers, bagging achieves the best outcome, delivering 99.19%
accuracy. According to the results of the experiment conducted
we find that the proposed method increases the efficiency of the
classifiers in AL with fewer training instances.

Index Terms—Big data, Active learning and Machine learning.

I. INTRODUCTION

There has been an enormous increase in the volume of

multimedia based data accessible in recent years. This is

attributed mainly to the technical advancement and evolution

of the internet which has contributed to the emergence of a

significant new media range. Managing and organizing such

a vast volume of data is an expensive job that requires to

be streamlined as much as possible. Machine learning (ML)

algorithms have been used for automated recognition of digital

objects to facilitate this role. However, achieving reasonable

classification performance by ML algorithms involves a vast

volume of labeled data for algorithm testing. Categorizing

information needs to be performed periodically, but it’s time to

do so — a consuming and costly job of its own. Consequently,

methods that aim to exploit unlabeled data to improve the

classification performance have been of primary interest in

recent years.

Active learning (AL), which uses a limited collection of

labeled information to save human effort for successful mod-

eling in the face of large data, is one of the promising

approaches [1]. AL is a human-in-the-loop method with the

capacity to substantially reduce human inclusion compared

with the conventional supervised ML methods that require a

massive amount of labeled data at the start [2], [3]. Queries

that adopt a data selection strategy appear frequently in AL,

requiring a response from an oracle or a human annotator.

The standard question in each iteration of AL is to label

a few unlabeled data that may be difficult to determine

their label details through premature models [3]. Unlabeled

data collection techniques involve using parameters such as

complexity, diversity, or representativeness, to name a few, to

determine which data might be crucial in cases where we need

to know their label details for successful modeling.

AL in supervised ML is a method of achieving high

classification outcomes using fewer training instances to learn

a definition that can often be much smaller than that needed

in traditional supervised learning. Interactively, it asks a

professional to unmarked label instances. Huge amounts of

data are produced in the era of big data from a variety

of sources, including the cloud, business management, and

various machines and devices. However, vital data is often

inaccessible to users due to its incomplete and unstructured

type [4], [5]. Furthermore, managing and organizing a vast

volume of data is a time-consuming process that should be

automated as much as possible [6]. Thus, there is a space

to seek practical solutions that will enable them to manage

and arrange out a large amount of data, improve business

performance, and create new and useful data-driven business

models.

Machine learning (ML), such as supervised algorithms,

benefits from the fact that it simplifies the role of automatic

data classification, which requires a large amount of labeled

data for training [7], [8]. A recent study has demonstrated that

performance will bias efficiency through the disproportionate

distribution of class examples in the learning method. This

means that the class provides limited specificity’s for the
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minority class, while the class offers great precision [9],

[10]. However, data labeling is time-consuming and expensive

task. Since the last few decades, semi-supervised learning ap-

proaches have been used to increase the accuracy of unlabeled

data classification, and it is also challenging to obtain label

data from unlabeled data sources [11]. It is noted that without

labeling data, we can predict or generate the same accuracy.

However, by labeling a small percentage from the massive

amount of data, it will be beneficial and productive [12].

Therefore, previous works have some limitations as for finding

approach of informative unlabeled instances and label from big

data. Again, there will need improvement in the previous work

classification accuracy, and a small percentage of label data is

a timely concern.

Existing studies used methods like random sampling, rep-

resentative sampling, uncertainty sampling, local uncertainty

sampling, global uncertainty sampling, and others to try to

minimize unlabeled data. [13]. Many properly labeled training

instances are needed in supervised learning or classification

to achieve accurate predictive models [14]. Incorrectly labeled

or inconsistent examples reduce the output of research mod-

els [15]. A detailed and comprehensive review is essential

for the labelling of unlabeled training results [16]. In this

regards, AL is the process of labelling unlabeled data, and to

classifying semi-supervised data in ML [17], [18]. In general,

AL in data mining strengthening is a successful solution to

this problem [19], [20]. In the active training phase, an expert

or oracle is used to tag unlabeled data in order to improve

classification accuracy by asking the fewest possible questions

of the user or expert. The number of training courses needed to

learn an AL definition is also substantially smaller than in the

conventional supervised learning phase [21], [22]. However,

unlisted Big Data is manual tagging is very complicated and

costly. In particular, big data safety is confronted with the

security related challenges like Big data privacy and safety

mechanism. Data quality, inconsistency and incompleteness

with scalability, timeliness and data security are also the

challenges of big data. For that reason many methods also

applied for security purposes [23]. By using AL, it is also

possible to acquire the most valuable unlabeled data from

imbalance drifting data stream [24], [25]

In this study, the main contribution is to improve the

classifier’s performance with the assistance of professional

expertise [26]. AL interactively queries to oracle or human

experts for labeling the unlabeled instances. To find the best

method for selecting the unlabeled samples, which are calling

informative samples is the research challenges of AL [6].

In our proposed method, we apply Support Vector Machine

(SVM) for collecting those informative instances in the AL

process as we know that SVM separates the data into classes

by creating a line or hyper-plane. SVM classifiers are ex-

ceptionally well adapted for AL related to their versatile

mathematical properties. They conduct linear classification,

usually in a kernel induced feature space, which simplifies the

distance of the data point from the decision boundary [27].

By applying SVM, it is easy to collect those instances.

Therefore, the key contributions of this research are as

follows:

• We apply SVM to collect informative instances from big

unstructured data.

• We use different supervised and semi-supervised bench-

mark data sets from UCI ML repository and KEEL

(Knowledge Extraction based on Evolutionary Learning)

dataset repository with multiple classes.

• The performance is evaluated with different ML tech-

niques. Our experimental outcomes served as an alterna-

tive source of knowledge to fill the traditional significant

data reports and surveys’ gaps.

The remaining part of the paper has been arranged accord-

ingly. The successful learning and related work is discussed

in Section II. The approach suggested in Section III is added.

Section IV offers experimental findings with datasets with

measurements. Section V eventually ends the conclusions and

recommended recommendations for future work.

II. RELATED WORK

Big data analysis using active learning is not a new idea.

However, there has been no systematic investigation into how

they should be analyzed for inaccessible big data. Again, in

machine learning, active learning is a technique for achieving

high classification results by using fewer training instances

to learn a concept that is often much smaller than that used

in conventional supervised learning. In this section, first we

describe:

• Active learning techniques, and

• Big data analysis using active learning.

Thus, the research of each approach will be introduced

below respectively.

A. Active Learning Techniques

The current approaches for big data analysis mainly include

two directions: 1) manually feature extraction and building tra-

ditional ML techniques for classification, and 2) deep learning

techniques to automatically extract features and construct. In

this study, we describe several existing approaches that have

been proposed to collect new issues, such as random sam-

pling, representative sampling, sampling of uncertainties, local

selection of uncertainties, global sampling of uncertainties,

feature extraction, committee-based active learning, etc. for

inaccessible big data analysis [28], [29]. Among the earliest

and most common, active learning based is the sampling best

solution because it offers a variety of discovery strategies

and optimizations [26]. For example, from the existing study

in 2018, Jahan [30] suggested to identify and mark the

insightful imbalance instances by experts/ users to enhance the

successful learning process considering the closest neighbour

data centre instances to select informative cases, including the

cluster centre. AL is also used successfully in interactive ways

to solve multitask classification problem by taking decision

from density initialization,evidential data and from weighted

instances [31]–[35]. However, it is challenging to pick a
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Fig. 1. The proposed framework for applying SVM in active learning for inaccessible big data analysis

minimal number of insightful unmarked instances from big

unmarked data. Additionally, requiring experts to classify

unmarked data in each iteration makes the learning process

sluggish and expensive. Therefore, an adaptive classifier with

active learning is referred to as pick instances from unmarked

results [36].

B. Big Data Analysis using Active Learning

Active learning is mainly for considering to label un-

marked instances. Among them, the modeling of the unlabeled

information is the main research direction. To solve this

problem, Hong [37] suggested an algorithm that was used

euclidean weighted distance, SVM and radial integral kernel

function wide packet classification dimensionality reduction

algorithm. Hu et al. developed unsupervised active learning in

2009 [38] which was ambivalent for hybrid active learning

because pre-labeled examples focused on random selection

from the initial set are required. Zliobaite et al. [39] proposed

a new strategy in 2014 that worked well for limited labeling

budgets. Edwin Lughofer [40] suggested a new data-driven

classification method in 2012 that did not include any initial

labeling or learning. Yang et al [41] raised a multi-class active

learning algorithm in semi-supervised batch mode to test data

vulnerability on visual idea recognition from the active pool in

2015 [41]. In 2015, Hajmohammadi et al. [42] introduced the

paradigm, incorporating a semi-conservation with an adaptive

learning approach focused on ambiguity.

However, the existing study on inaccessible big data man-

agement using active learning is very limited. Although a

large studies have analysed for various issues using various

techniques, there is no study on active learning with an

adaptive classifier. Thus, to our best knowledge, this is the

first work using active learning with an adaptive classifier to

address the various data risk management issues.

III. METHODOLOGY

To analyse inaccessible big data, in this section, we propose

a novel framework, as shown in Figure 1. This framework

mainly consist of three parts such as 1) Data collection

and processing, 2) Model development and 3) performance

evaluation. Additionally, we describe the details of active

learning for mining big data. Therefore, we first introduce the

relevant symbol and terms used throughout the paper, as shown

in the Table I. Afterwards, we describe active learning to build

a classification model.

In machine learning, active learning is the method of

achieving high classification accuracy with a smaller number

of training instances than is expected in traditional supervised

learning [26]. It interactively queries an expert to label the

unlabeled instances. The aim is to improve the performance of

a classifier by training it with the aid of expert knowledge [6].
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TABLE I
COMMONLY USED SYMBOLS AND TERMS

Symbol Term

D The whole dataset, which includes all instances
DL Instances in which the label is recognized
DU Instances where the label is unfamiliar
XU A set of unlabeled informative instances
XL A set of label instances
M A learning model/classifier
M

∗ A classifier/ learning re-generated model
TD A set of testing instances

Input: Semi-supervised Big Data, D;

Output: An active learning model, M∗ ;

Method:

1: divide D into DL, and DU ;

2: create a model, M using DL;

3: create unlabeled informative instances, XU by applying

SVM on both DL and DU , XU ← SVM on DL and

DU ;

4: Labeled instances, XL ← XU by expert/ oracle;

5: DL ← DL +XL;

6: generated model, M∗ using DL;

7: return M∗;
Algorithm 1: SVM in Active Learning

Assume we have a data set, D, that contains respectively

labeled, DL and unlabeled , DU instances. Initially, D is

bifurcated into DL and DU . An ensemble learning model,

M∗ is trained using labeled data, DL. In contrast, a subset of

unlabeled instances, XU ∈ DU is chosen from the unlabeled

data DU and requests the expert/ user to label XU → XL.

Finally, XL is added to DL and the ensemble model, M∗

is re-trained. This procedure is repeated until the consumer

is fully satisfied. The most difficult part of active learning

is selecting a subset of unlabeled instances from the original

unlabeled data [4]. The active learning mechanism is shown

in Figure 1.

It’s difficult to select a small number of insightful unla-

beled instances from large amounts of unlabeled data [43].

Pool-based active learning is most commonly used to pick

instances from unlabeled data. However, querying the experts

for labeling unlabeled data in each iteration makes the learning

process slow and costly. We also need to improve classification

accuracy by using the smallest number of possible training

instances. Several methods for selecting unlabeled instances

have been proposed in recent decades, including random

sampling, representative sampling, uncertainty sampling, local

uncertainty sampling, global uncertainty sampling, active min-

ing, and committee-based active learning, among others [40].

IV. EMPIRICAL EVALUATION

This section presents the information about dataset collec-

tion and process, experimental setup, and analysis of the result.

A. Dataset Descriptions

In this experiment, we have used 5 different semi-supervised

data set from the UCI ML and KEEL dataset repository such as

1) Abalone Dataset (Abalone), 2) Nursery Data Set (Nursery),

3) MAGIC Gamma Telescope Dataset (Magic), 4) Thyroid

Disease Dataset (Thyroid), and 5) Two norms Data Set (Two

norms). Each dataset consists of training instances where both

labeled and unlabeled instances exist and testing instances

separately. labeled instances from the training dataset are used

to train a model, and by using that model, we labeled those

unlabeled informative instances. Testing instances are used to

predict the accuracy of the model. Table II presents the details

of the data sets.

B. Experimental Setup

We have used jupyter notebook web application and python

code for our experiment. We have used different types of

scikit-learn library for data loading, processing, for the clas-

sifier, and finding accuracy. The attribute types of most of

our dataset were just categorical or categorical and real. We

have encoded those categorical data into an integer by using

a prepossessing library for label encoding. To evaluated the

proposed method, we have used accuracy, precision, recall, and

F-score. We have used six different ML algorithms like Naı̈ve

Bayes, Decision Tree, SMO (Sequential minimal optimization)

Random Forest, Bagging, and Adaboost for classification. The

accuracy, precision, recall, and F-score are shown in Eq. 1

to Eq. 4 where TP, TN, FP, and FN are true positives, true

negatives, false positive, and false negatives, respectively.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F − score =
2× precision× recall

precision+ recall
(4)

The above metrics are described briefly below.

• True Positive (TP) is the number of instances classified

correctly as a positive value/yes (1) by the generated

model M* after updating the labeled instances.

• True Negative (TN) is the number of instances classified

correctly as a negative value/no (0) by the generated

model.

• False Positive (FP) is the number of instances classified

incorrectly, that is, machine predicts the value as posi-

tive/yes (1) but its actual value is negative/no (0) by the

generated model M* after updating the labeled instances.

• False Negative (FN) is the number of instances classified

incorrectly, that is, machine predicts the value as nega-

tive/no (0), but its actual value is positive/yes (1) by the

generated model.
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TABLE II
DATASETS DESCRIPTION

No. Name of No. of Attribute Total Training Testing Class

Datasets Features Type Instances Instances Instances Attributes

1 Abalone 9 Categorical, 7508 3756 3752 28
Real

2 Nursery 9 Categorical 12960 11664 1296 5

3 Magic 9 Real 53721 36603 17118 2

4 Thyroid 22 Categorical, 7200 6480 720 3
Real

5 Two Norm 9 Categorical, 7400 6660 740 2
Real

TABLE III
EXPERIMENTAL RESULTS

Datasets Training Informative Reduced Algorithm Result with all instances Result with informative instances

Instances Instances rate (%) Accuracy Precision Recall F-score Accuracy Precision Recall F-score

Abalone 1506 (Label) 816 63.73 Naı̈ve Bayes 24.79 21.01 24.69 21.65 24.37 20.94 24.33 21.62
2250 (Unlabel) Decision Tree 54.02 55.13 53.79 53.61 53.05 53.51 53.11 52.89

SMO 24.82 20.42 25.22 17.87 24.62 17.93 24.96 17.17
Random Forest 52.42 54.43 53.01 52.80 53.08 55.45 53.42 53.20
Bagging 53.19 54.22 52.77 52.56 53.21 54.86 53.28 53.03

Adaboost 21.18 07.53 20.93 8.87 21.32 07.53 21.20 09.21

Nursery 2333 (Label) 4933 47.13 Naı̈ve Bayes 67.02 82.80 69.86 73.33 67.47 83.24 69.32 73.04
9331 (Unlabel) Decision Tree 93.54 91.31 91.53 91.12 93.71 91.82 91.91 91.69

SMO 74.18 72.89 74.21 73.34 74.29 73.07 74.40 73.52
Random Forest 91.80 91.00 91.33 90.72 91.23 91.19 91.37 90.64
Bagging 94.06 91.69 91.90 91.38 94.33 92.47 92.48 92.19

Adaboost 73.06 77.30 75.69 73.74 76.64 78.31 76.23 74.40

Magic 17705 (Label) 392 97.92 Naı̈ve Bayes 72.61 72.28 72.60 69.90 72.54 72.16 72.54 69.86
18898 (Unlabel) Decision Tree 98.25 98.27 98.24 98.23 98.97 99.01 99.01 99.01

SMO 73.45 72.67 66.25 63.08 73.67 72.34 66.48 64.40
Random Forest 98.53 98.51 98.50 98.49 98.12 98.17 98.15 98.14
Bagging 98.52 98.51 98.50 98.49 98.37 98.06 98.04 98.03
Adaboost 84.79 84.42 84.56 84.27 84.76 84.57 84.70 84.41

Thyroid 1296 (Label) 3571 31.14 Naı̈ve Bayes 12.47 92.81 10.33 12.46 09.28 91.18 10.69 13.66
5184 (Unlabel) Decision Tree 98.72 98.54 98.53 98.51 99.08 98.94 98.92 98.89

SMO 93.17 88.16 93.14 90.38 93.14 88.06 93.06 90.23
Random Forest 98.86 98.82 98.75 98.74 98.63 98.96 98.92 98.90
Bagging 98.83 98.83 98.81 98.80 99.19 99.03 99.03 99.01

Adaboost 96.94 97.75 97.56 97.60 97.28 97.76 97.61 97.63

Two Norm 1332 (Label) 2023 62.03 Naı̈ve Bayes 97.08 97.13 97.11 97.11 97.22 97.24 97.22 97.22

5328 (Unlabel) Decision Tree 84.11 84.31 84.11 84.08 83.92 83.88 83.81 83.80
SMO 96.59 96.93 96.86 96.86 97.05 97.04 97.00 97.00
Random Forest 92.78 93.30 93.00 92.99 93.08 92.32 92.03 92.14
Bagging 91.78 91.92 91.51 91.49 91.92 92.36 92.05 92.04
Adaboost 94.89 94.95 94.84 94.83 95.08 94.94 94.86 94.86

• Accuracy: Accuracy is the percentage of the test set,

which is classified correctly.

• Precision: Precision is the measurement of the exactness

of the actual class.

• Recall: Recall is the measurement of completeness of the

actual class.

• F-Score: F1-score or F-measurement is the combination

of both precision and recall that it is taken both false

positives and false negatives into accounts.

C. Results and Discussion

In Table III, we present the overall classification accuracy

result (in percentage) with precision, recall, and f-score. This

table also compares the result with all instances and the

result with informative instances of our proposed framework.

As our proposed framework’s key goal is to reduce the

unlabeled instances as much as possible. Instead of the product

of all unlabeled instances, we can achieve nearly the same

or better accuracy by labeling only the insightful unlabeled

instances. Our experiment used Naı̈ve Bayes, Decision tree,

SMO, Random Forest, Bagging, and Boosting ML algorithms.

We compare the result’s accuracy with all instances where all

labeled and unlabeled instances are used. The result with only

informative cases in which labeled and a small number of

unlabeled instances are used. For the magic dataset in training

instances, 17705 instances were labeled, and 18898 instances

were unlabeled. According to our proposed method, we get

the result using all instances where all unlabeled instances are

being labeled. By applying SVM, we collect our informative
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Fig. 2. The experimental results on the benchmark datasets using various classifiers. After evaluating the results, it is determined which classifiers are feasible
to achieve the best outcome

instances, and for the magic dataset, we can reduce almost

97.92% unlabeled instances. That means only 2.08% unlabeled

instances (almost 3931 from 18898) need to be labeled for

acquiring the nearly same or better accuracy. Therefore, we

can easily exclude 14967 unlabeled instances that have no

effect in our model or for measuring accuracy for the magic

datasets.

The reduced rate of non-informative instances is not the

same for all datasets. Like, Abalone dataset, we can reduce

63.73% unlabeled instances. For the Nursery dataset, the

reduced rate is 47.13%, for thyroid, it is 31.14%, and for the

two norms dataset, we can reduce 62.03% unlabeled instances.

The most reduced instances comes form Magic dataset which

was 97.92%. From Table III we can see that the number of

unlabeled training instances was large in magic dataset and its

reduce rate also high than other dataset.

Moreover, Figure 2 represents the comparison of six

existing machine learning methods which is applied in our

proposed method of five different datasets. We can see from

this experiment that the accuracy result of the other ML

algorithms is good for different datasets. Like for Abalone,

we achieve good results from bagging algorithm, for Nursery

data good result comes from bagging, for Magic the result of

the decision tree is good, bagging providing the good result for

Thyroid and for Two Norms dataset the result of Naı̈ve Bayes

algorithm is good than another ML algorithm. As bagging

algorithms provides good result for three datasets and DT and

Naı̈ve Bayes provides good result for one dataset so we can say

that in this experiment bagging ML algorithms works better

than other five ML algorithms.

In summary, studying this result, we can conclude that from

any semi-supervised big dataset we do not need to label all

unlabeled instances for acquiring the better result. And we

also do not need to think which instances are suitable for

keeping and which one is bad for rejection. As we are applying

SVM so automatically those unlabeled instances are collected

as informative instances which are close to hyper-plane and

this method is more efficient, less time consuming and cost-

effective than other methods for collecting informative in-

stances.

V. CONCLUSION AND FUTURE WORK

This paper provides a new methodology involving Support

Vector Machine (SVM) in Active Learning (AL) to manage

the unavailable data challenge in mining big data. Five semi-

supervised data set are decomposed for exploring relevant

information regarding a timely solution. Afterwards, six-ML

classifiers are applied for evaluation. Experimental findings

demonstrate that the bagging classification offered a superior

rating performance of 99.19%. The results also suggests that

bagging is more capable of achieving higher classification effi-

ciency than other classifiers. The proposed approach provides

new stable and reliable approaches to semi-supervised big data

mining to create a classification scheme with fewer chosen

SVM-technical training instances due to the incompleteness,

unstructured data and without sacrificing the classification

outcome. We assume that the AL architecture that has been

established will have an impact on AL research for big data.

In the future, an instance-weighting methodology and a gray

box model of AL will be developed to classify descriptive data

instances accurately and enhance the classification outcomes

of semi-supervised learning. A deep learning algorithm will

also be developed to extract features for big data efficiently.
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