
An Improved Q-RRT* Algorithm Based on Virtual Light

Chengchen Zhuge1,2,3,*, Qun Wang1,2,3, Jiayin Liu1,2,3 and Lingxiang Yao4

1Department of Computer Information and Cyber Security, Jiangsu Police Insitute, Nanjing, 210031, China
2Jiangsu Electronic Data Forensics and Analysis Engineering Research Center, Jiangsu Police Insitute, Nanjing, 210031, China

3Jiangsu Provincial Public Security Department Key Laboratory of Digital Forensics, Jiangsu Police Insitute, Nanjing, 210031, China
4University of Technology Sydney, Sydney, 2007, Australia

�Corresponding Author: Chengchen Zhuge. Email: zgcc1986@163.com
Received: 29 December 2020; Accepted: 28 February 2021

Abstract: The Rapidly-exploring Random Tree (RRT) algorithm is an efficient
path-planning algorithm based on random sampling. The RRT* algorithm is a
variant of the RRT algorithm that can achieve convergence to the optimal solu-
tion. However, it has been proven to take an infinite time to do so. An improved
Quick-RRT* (Q-RRT*) algorithm based on a virtual light source is proposed in
this paper to overcome this problem. The virtual light-based Q-RRT* (LQ-
RRT*) takes advantage of the heuristic information generated by the virtual light
on the map. In this way, the tree can find the initial solution quickly. Next, the LQ-
RRT* algorithm combines the heuristic information with the optimization cap-
ability of the Q-RRT* algorithm to find the approximate optimal solution. LQ-
RRT* further optimizes the sampling space compared with the Q-RRT* algorithm
and improves the sampling efficiency. The efficiency of the algorithm is verified
by comparison experiments in different simulation environments. The results
show that the proposed algorithm can converge to the approximate optimal solu-
tion in less time and with lower memory consumption.

Keywords: Path planning; RRT*; Q-RRT*; LQ-RRT*; virtual light

1 Introduction

Path planning is a thriving research area in the field of mobile robots. It mainly involves how to find a
feasible path connecting the start point to the goal point for the mobile robot when some indicators are
satisfied. An increasing demand exists for intelligent mobile robots in industry, aerospace, and the
military. In these areas, the mobile robot needs to complete complex tasks such as search and rescue,
reconnaissance, and other activities. The working environment may be harmful to human health including
conditions of strong radiation or high temperature and hypoxia. Various types of mobile robots, such as
unmanned ground vehicles [1], unmanned aerial vehicles [2,3], and surface/underwater vehicles [4,5],
have been designed and developed. Many path-planning algorithms have been proposed to make the
mobile robot move safely in a complex environment.

Path-planning algorithms can be divided into two categories: one is based on a deterministic graph, and
the other is based on random sampling. The grid-based path-planning algorithm is commonly used in

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.016273

Article

echT PressScience

mailto:zgcc1986@163.com
http://dx.doi.org/10.32604/csse.2021.016273
http://dx.doi.org/10.32604/csse.2021.016273


deterministic graphics algorithms such as A* [6], D* [7], and their variants. In this kind of algorithm, the
workspace of the mobile robot is divided into many grids. The algorithm generates a path by searching
the grids that are not occupied by obstacles. This kind of algorithm can ensure the completeness of the
solution, but the result of the path is affected by the resolution of the grid. The higher-resolution grid can
represent a more precise environment and planning path. However, it leads to lengthy search times and
large demands on memory space. There is another problem in the grid-based path-planning algorithm,
namely that the generated path cannot be guaranteed smooth for mobile robots since the workspace is
discretized. Some improved algorithms, for example, Theta* [8], have been proposed, but they are still
difficult to apply directly to mobile robots with non-holonomic constraints.

In the random sampling-based algorithm, the planner randomly samples a state point in the workspace each
time and detects the collision to obtain the obstacle information in the workspace. This kind of algorithm does not
need to accurately model the workspace. Therefore, compared with the grid-based algorithm, the sampling-based
path planning algorithm can also work effectively in the complex high-dimensional space. However, the
sampling-based algorithm can only guarantee that it is probabilistic completeness. In other words, the solution
of the problem can be found when the sampling number approaches infinity.

The classical Rapidly-exploring Random Tree (RRT) algorithm was proposed by LaValle [9]. RRT has
received extensive attention, and various improved RRT algorithms have been proposed. The RRT-Connect
[10] algorithm constructs two trees: one roots at the start point and the other roots at the goal point. Each tree
grows towards the other one based on the greedy strategy. The algorithm is terminated when the two trees are
connected. Earlier work [11] introduced the heuristic function to guide the tree grow towards the goal with
the lowest possible cost. The results of experiments show that the efficiency of searching space can be
effectively improved by introducing heuristic information.

The obvious disadvantage of the RRTalgorithm is that the generated path is random due to the stochastic
characteristic of RRT. This means that it cannot guarantee to find the optimal path in a limited time. Some
algorithms have been proposed to improve the quality of the resulting path, such as those described in
previous studies [12,13]. The Anytime RRT [12] algorithm generates the initial path first. Next, the cost
of the initial path is used as the upper bound of the next iteration search. In the next iteration search, each
sample state is evaluated. If the cost of the state is lower than the upper bound, the state will be added to
the tree. The result will be improved in each iteration search for as long as the remaining time allows.
Further work [13] introduced the cache point to the Anytime RRT algorithm. The cache points are chosen
from the path generated in the last iteration and reused in the new iteration, which can improve the
growth efficiency of the tree. However, these algorithms still cannot guarantee to find the approximate
optimal solution in finite time.

RRT* [14] was proposed by Karaman and Frazzoli in 2011. It optimizes the connection of the tree by
introducing two new functions. The two functions are named ChooseParent and Rewire. When the sampling
times tend to be infinite, the probability of finding the optimal solution approaches one. This was proved in
earlier work [14]. The obvious disadvantage of RRT* is that it needs a lot of time to converge to the optimal
or approximately optimal solution. Many variants of RRT* have been proposed to accelerate the convergence
and overcome this problem. RRT*-smart [15] optimizes the path according to the triangular inequality and
visibility graph. After the initial solution is found, some points called beacons are chosen from the initial
solution to improve the solution in the subsequent iterations. Informed-RRT* [16] introduced an elliptical
heuristic sampling domain to limit the sampling space. The sampling domain gradually decreases with
the convergence of the solution. Informed-RRT* increases the convergence rate significantly if the
volume of the elliptical domain is smaller than that of the configuration space [17]. In other words, if the
elliptical domain is larger than the configuration space, the algorithm is no longer applicable. Jeong et al.
[17] modified the ChooseParent and Rewire functions and proposed the Quick-RRT* (Q-RRT*)
algorithm. In ChooseParent and Rewire, the parent vertices are also taken into account for connecting and

108 CSSE, 2021, vol.39, no.1



reconnecting the branches of the tree. The results of experiments show that the Q-RRT* algorithm increases
the convergence rate without increasing the computation cost significantly.

In this paper, an improved Q-RRT* algorithm based on virtual light (LQ-RRT*) is proposed. The virtual
light, which is set at the goal, lights up the map, and the light intensity decreases with increasing distance
from the virtual light. The tree can search for a solution towards the region with increasing light intensity
quickly using the characteristics of light intensity attenuation. The LQ-RRT* algorithm can find the initial
solution faster than Q-RRT*. Meanwhile, it can converge to the approximate optimal solution faster and
with lower consumption of memory.

2 Background

2.1 Path Planning Problem Definition

Let X 2 Rn be the configuration space of the planning problem, where n 2 N and n � 2. Let Xobs and
Xgoal, the obstacle region and the goal region respectively, be the subset of X . Let Xfree ¼ XnXobs define the
collision-free space. Let xstart 2 Xfree be the start point. Given a set X , a path in X is a continuous function
r : ½0; 1� ! X , and � is the set of all feasible paths. A path r is collision-free if 8s 2 ½0; 1�, rðsÞ 2 Xfree.
The path-planning problem is to find a path r such that r is collision-free: rð0Þ ¼ xstart and rð1Þ 2 Xgoal.

The optimal path planning problem is to find a path, r�, that minimizes a given cost function,
c : � ! R � 0, such that:

r� ¼ argmin
r2�

fcðrÞjrð0Þ ¼ xstart;rð1Þ 2 Xgoal; 8s 2 ½0; 1�;rðsÞ 2 Xfreeg (1)

where R � 0 is the set of the non-negative real numbers [11].

2.2 RRT* Algorithm

The main pseudo-code of the RRT* algorithm is presented in Algorithm 1. The RRT* algorithm begins
with a tree rooted at xstart and extends the tree incrementally like the RRTalgorithm. The basic procedures are
similar to the RRT algorithm used by RRT* and are described as follows:

Algorithm 1: RRT*(V, E)

1: T← (V, E);

2: while NotReachStop do

3: xrand←Sample();

4: xnearst←Nearest(T, xrand);

5: (xnew, σ)←Steer(xnearst, xrand);

6: if CollisionFree(σ) then

7: Xnear←Near(T, xnew);

8: xparent←ChooseParent(Xnear, xnearst, xnew, σ);

9: T←Connect(T, xparent, xnew);

10: T←Rewire(T, xnew, Xnear);

11: end if

12: end while

13: return T;

CSSE, 2021, vol.39, no.1 109



Sample: The Sample function samples a state xrand ∈ Xfree randomly.

Nearest(T, x): Given tree T and a state x ∈ Xfree, this function returns xnearest ∈ T.V, which is the closest one
to x in terms of a given distance function.

Steer(x, x'): Given two states x, x' ∈ X, the Steer function steers from x to x' along a local path σ : [0,1] and
returns a state xnew ∈ X such that σ(0) = x and σ(1) = xnew.

CollisionFree(x, x'): Given two states x, x' ∈ X, the Boolean CollisionFree function returns true if the
path σ : [0,1] → Xfree such that σ(0) = x and σ(1) = xnew. If the CollisionFree function returns true, the
new vertex and edge will be added to the tree.

NotReachStop: Returns true if the stop criteria for iterating or the goal point is not reached.

Note that the Nearest function returns all the vertices in the hypersphere with a specific radius centered at
xnew which are used in the ChooseParent function.

There are two optimization procedures in RRT*: ChooseParent and Rewire. The pseudo-codes of
ChooseParent and Rewire are presented in Algorithm 2 and Algorithm 3, respectively. The ChooseParent
function searches the vertices in the neighborhood of xnew to find a vertex that can get to xnew with the
lowest total cost.

The Rewire function tries to find the vertices in the neighborhood of xnew, which can be reached by xnew
with a lower cost than their current parents and rewires them.

2.3 Q-RRT* Algorithm

There are two special changes in the Q-RRT* algorithm compared with RRT* as shown in Algorithm 4
and Algorithm 5. In the ChooseParent function, the parents of vertices in the neighborhood of xnew are also
considered (Lines 8 and 9, Algorithm 4). The optimization efficiency can be improved by expanding the
search scope. However, it does not increase the computation time too much since the vertices in Xnear

usually have the same parent.

Algorithm 2: ChooseParent(Xnear, xnearst, xnew, σ)

1: xmin←xnearst;

2: cmin←Cost(xmin)+C(σ);

3: for xnear ∈ Xnear do

4: (xnew', σ')←Steer(xnear, xnew);

5: c←Cost(xnear)+C(σ');

6: if c < cmin then

7: if CollisionFree(σ') then

8: cmin←c;

9: xmin←xnear;

10: end if

11: end if

12: end for

13: return xmin;

110 CSSE, 2021, vol.39, no.1



In the Rewire function, the parents of xnew are considered to further improve the optimization efficiency
(Line 2, Algorithm 5). The two main new functions in Q-RRT* are as follows:

ancestor: Given a graph G = (V, E), a vertex x, and a natural number d ∈ ℕ, it returns the dth parent of x.

Ancestry: Given a graph G = (V, E) and a vertex x, it returns Ø if d = 0; otherwise, it returns
[d
i¼1

ancestorðG; x; iÞ.

Algorithm 3: Rewire(T, xnew, Xnear);

1: for all xnear ∈ Xnear do

2: (xnew', σ)←Steer(xnew, xnear);

3: c←Cost(xnew)+C(σ);

4: if c < Cost(xnear) then

5: if CollisionFree(σ) then

6: T←Reconnect(T, xnew, xnear);

7: end if

8: end if

9: end for

10: return T;

Algorithm 4: Q-RRT*(V, E)

1: T← (V, E);

2: while NotReachStop do

3: xrand←Sample();

4: xnearst←Nearest(T, xrand);

5: (xnew, σ)←Steer(xnearst, xrand);

6: if CollisionFree(σ) then

7: Xnear←Near(T, xnew);

8: Xparent←Ancestry(T, Xnear);

9: xparent←ChooseParent(Xnear∪Xparent, xnearst, xnew, σ);

10: T←Connect(T, xparent, xnew);

11: T←Rewire-Q-RRT*(T, xnew, Xnear);

12: end if

13: end while

14: return T;

CSSE, 2021, vol.39, no.1 111



3 Proposed Algorithm

3.1 Virtual Light

Earlier work [18] proposed an improved A* algorithm based on virtual light, which is called LA*. In the
LA* algorithm, a virtual light is set up at xgoal. The virtual light lights up the map according to the
characteristics of light propagation along a straight-line. The areas where light cannot reach are marked as
dark. The light intensity is the strongest at xstart and decreases as the propagation distance of the light
becomes longer. Thus the light intensity can be regarded as a kind of heuristic information on the map.
The planner can search for areas with higher light intensity. This kind of phototaxis mechanism can
greatly speed up finding the solution.

The beam spreads from the virtual light just like the beam spreads from a flashlight. The direction of the
beam is towards xstart, and the beam angle is less than or equal to 180°. The beam starts from xgoal, and each
vertex that is illuminated by the beam has a light intensity noted by BRIGHT as shown in Fig. 1a. As the
BRIGHT value increases, the light intensity decreases in the actual program, which facilitates processing.
Therefore, the BRIGHT value of xgoal is 0.

Algorithm 5: Rewire-Q-RRT*(T, xnew, Xnear)

1: for all xnear ∈ Xnear do

2: for all xform ∈ {xnew}∪ ancestor(T, xnew) do

3: (xnew', σ)←Steer(xform, xnear);

4: c←Cost(xform)+C(σ);

5: if c < Cost(xnear) then

6: if CollisionFree(σ) then

7: T←Reconnect(T, xnew, xnear);

8: end if

9: end if

10: end for

11: return T;

Figure 1: Diagram of the light propagation mechanism (a) 90° light beam pattern (θ = 3) (b) The
generalized light beam angle pattern (any θ)

112 CSSE, 2021, vol.39, no.1



xgoal is set up at the top-middle position of the map as shown in Fig. 2b. The lighted map is represented
by a grayscale image, and the light regions have a small BRIGHT value, while the dark regions have a high
BRIGHT value. In the following description, the lighted map is noted by LMap for convenience. The number
of successor affected vertices is given by θ (θ is an odd number). The case of when θ is 3 is shown in Fig. 1a.
The successor-affected vertices of vertex a are d, e, and f. The BRIGHT value of the three vertices is equal to
the BRIGHT value of a plus the distance from vertex a to each vertex. The unaffected vertices are marked
DARK, which is a very large value. If a vertex is affected by multiple predecessor vertices, its BRIGHT value
is set to be the minimum value, which means that the light travels along the shortest path.

The beam angle is determined by θ, θ ∈[3, max(w, h)], where w and h are the width and height of the map
respectively. When θ is 3, the beam angle corresponds to the 90° pattern as shown in Fig. 1a. When θ is equal
to max(w, h), it corresponds to the 180° pattern. The generalized light beam angle pattern is shown in Fig. 2b.
If a vertex is blocked by an obstacle whose width is greater than θ and the light beam cannot reach the vertex,
then the BRIGHT value of the vertex is set to be DARK.

3.2 LQ-RRT*

A novel algorithm called LQ-RRT* is proposed in this paper. The pseudo-code of LQ-RRT* is presented
in Algorithm 6. The LMap function generates the lighted map according to the scheme described earlier (Line
1, Algorithm 6). A contour map, where the propagation of light intensity is depicted clearly, is shown in
Fig. 2c to provide a better understanding of LMap. Unlike RRT* and Q-RRT*, LQ-RRT* constructs a
light intensity perception region that is a semicircle centered at xnearest. The Resample function is designed
to resample n vertices in the perception region in different directions as shown in Fig. 3. Next, it returns
x'rand, which has the lowest BRIGHT value in the n vertices. In the LQ-RRT* algorithm, the Sample and
Nearest functions are used to determine which vertex is to be expanded, and the Resample function
determines the better direction to be expanded.

Figure 2: Maps under different representations (a) Original map (b) Lighted map (c) Contour map

CSSE, 2021, vol.39, no.1 113



4 Experiments

In this section, LQ-RRT* is compared with RRT* and Q-RRT* in three different environment maps as
shown in Fig. 4. Map 1 is the obstacle-free scenario shown in Figs. 4a–4c. Map 2 and Map 3 are scenarios
cluttered with different types of obstacles as shown in Figs. 4d–4i, respectively. The map size is 406 m ×
710 m. xstart is set at the bottom of the map, and xgoal is set at the top of the map. The parameters in
experiments are the depth d, resample number n, and beam angle θ. The parameters are the same in all
experiments to allow a fair comparison. In the ancestor and Ancestry functions, the value of d is 1. The
resample number n is 6, and the beam angle θ is 23.

Algorithm 6: LQ-RRT*(V, E)

1: LMap(); // Generate the lighted map

2: T← (V, E);

3: while NotReachStop do

4: xrand←Sample();

5: xnearst←Nearest(T, xrand);

6: x'rand←Resample(xnearest);

5: (xnew, σ)←Steer(xnearst, x'rand);

6: if CollisionFree(σ) then

7: Xnear←Near(T, xnew);

8: Xparent←Ancestry(T, Xnear);

9: xparent←ChooseParent(Xnear∪Xparent, xnearst, xnew, σ);

10: T←Connect(T, xparent, xnew);

11: T←Rewire-Q-RRT*(T, xnew, Xnear);

11: end if

12: end while

13: return T;

Figure 3: Diagram of Resample function

114 CSSE, 2021, vol.39, no.1



The final paths generated by different algorithms with 60,000 samples in the three maps are shown in
Fig. 4. Although 60,000 samples have been used, the paths of RRT* are still not optimal (Fig. 4). In

Figure 4: Generated path with 60000 samples in different maps (a) RRT* (b) Q-RRT* (c) LQ-RRT* (d)
RRT* (e) Q-RRT* (f) LQ-RRT* (g) RRT* (h) Q-RRT* (i) LQ-RRT*

CSSE, 2021, vol.39, no.1 115



comparison, Q-RRT* and LQ-RRT* generate straighter paths. Meanwhile, the proposed algorithm can
reduce the sample space effectively, especially when there are several areas marked with DARK on the map.

Statistical information is presented in Tabs. 1–3. Three indicators are utilized to compare the
performance of the three algorithms. In Tabs. 1–3, the third and fifth columns are the length of the
optimized path and the total vertices of the tree. The fourth column is the time to find a solution of
1.05*lenoptimal, where lenoptimal is the length of the optimal solution. lenoptimal of the three maps are
690 m, 851.36 m, and 699.11 m.

Table 1: Results comparison of Map 1

Iterations Algorithm Path length(m) Time5%(s) Vertices

40000 RRT* 691.55 19.95 57282

Q-RRT* 690 4.59 57174

LQ-RRT* 690 0.91 48981

20000 RRT* 694.3 34.19 38076

Q-RRT* 690 6.72 38142

LQ-RRT* 690 1.42 32792

10000 RRT* 711.08 31.51 19091

Q-RRT* 690 5.31 19093

LQ-RRT* 690 0.94 16391

5000 RRT* 717.93 20.40 9568

Q-RRT* 690 6.74 9554

LQ-RRT* 690 0.97 4233

2500 RRT* 748.1 —— 2429

Q-RRT* 695.2 6.47 2408

LQ-RRT* 690 1.26 2173

Table 2: Results comparison of Map 2

Iterations Algorithm Path length(m) Time5%(s) Vertices

40000 RRT* 860.74 55.55 32958

Q-RRT* 853.5 23.19 33140

LQ-RRT* 852.99 2.61 22336

20000 RRT* 900.8 90.27 15506

Q-RRT* 855.5 38.63 16302

LQ-RRT* 853.81 3.57 11302

10000 RRT* 951.25 —— 6980

Q-RRT* 881.28 42.04 6519

LQ-RRT* 858.62 2.00 5727

116 CSSE, 2021, vol.39, no.1



Q-RRT* and LQ-RRT* converge to the optimal solution when the number of iterations reduces from
40,000 to 5000 as shown in Tab. 1. Only the LQ-RRT* algorithm converges to the optimal solution when the
number of iterations reduces to 2500. The indicator “Time5%” shows that LQ-RRT* has a faster convergence
rate than the other two algorithms, and the indicator “Vertices” shows that LQ-RRT* consumes the lowest
memory. The same conclusions can be obtained for the two indicators from Tabs. 2 and 3.

LQ-RRT* generates the shortest path in all experiments as shown in Tabs. 2 and 3. The path lengths of
RRT* and Q-RRT* gradually increase when the total number of iterations decreases. Meanwhile, although
the path length of LQ-RRT* also increases, it is still asymptotically optimal. RRT* and Q-RRT* cannot find a
solution with path length less than lenoptimal when the number of iterations is small.

Table 2 (continued).

Iterations Algorithm Path length(m) Time5%(s) Vertices

5000 RRT* 1127.9 —— 3001

Q-RRT* 1049.3 —— 3380

LQ-RRT* 865.74 1.72 2992

2500 RRT* 1173.3 —— 1780

Q-RRT* 1070.6 —— 1703

LQ-RRT* 879.16 1.99 1469

Table 3: Results comparison of Map 3

Iterations Algorithm Path length(m) Time5%(s) Vertices

40000 RRT* 703.08 68.35 29931

Q-RRT* 700.82 24.42 30025

LQ-RRT* 700.52 7.46 25918

20000 RRT* 718.31 32.92 14957

Q-RRT* 701.21 11.55 14994

LQ-RRT* 700.61 1.04 13204

10000 RRT* 746.18 —— 7419

Q-RRT* 701.68 18.72 7032

LQ-RRT* 700.89 0.93 6648

5000 RRT* 757.4 —— 3646

Q-RRT* 711.31 20.04 3572

LQ-RRT* 702.8 1.44 2986

2500 RRT* 995.82 —— 1567

Q-RRT* 745.73 —— 1804

LQ-RRT* 702.24 1.06 1563

CSSE, 2021, vol.39, no.1 117



5 Conclusions

RRT* is an optimization algorithm. However, its main disadvantage is that the convergence rate is too
low. An improved Q-RRT* algorithm, which we call LQ-RRT*, is proposed in this paper to overcome this
problem. In Q-RRT*, ChooseParent and Rewire functions are modified to speed up the convergence. The
concept of virtual light is introduced in this paper. Virtual light works like a flashlight. It lights up the
map by light beam propagation and generates heuristic information on the map. Q-RRT* combined with
the heuristic information can further accelerate the convergence of the solution. The results of
experiments show that LQ-RRT* is quicker and consumes less memory than RRT* and Q-RRT*. In
future work, it will be necessary to test the performance of LQ-RRT* in a dynamic environment.

Acknowledgement: The authors would like to thank the Jiangsu Electronic Data Forensics Analysis and
Research Center (No. 2019SJPT002) and the Key Laboratory of Digital Forensics of Jiangsu Public
Security Department. We also thank LetPub (www.letpub.com) for its linguistic assistance during the
preparation of this manuscript.

Funding Statement: This work was supported by the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China [grant number 19KJB510022] and the Startup Research Foundation for
Advanced Talents [grant number JSPIGKZ/2911119220].

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Z. Chen, D. Wang, G. Chen, Y. Ren and D. Du, “A hybrid path planning method based on articulated vehicle

model,” Computers, Materials & Continua, vol. 65, no. 2, pp. 1781–1793, 2020.

[2] N. Lin, J. Tang, X. Li and L. Zhao, “A novel improved bat algorithm in UAV path planning,” Computers
Materials & Continua, vol. 61, no. 1, pp. 323–344, 2019.

[3] V. Mezhuyev, Y. Gunchenko, S. Shvorov and D. Chyrchenko, “A method for planning the routes of harvesting
equipment,” Intelligent Automation & Soft Computing, vol. 26, no. 1, pp. 121–132, 2020.

[4] D. Wu, Y. Liu, Z. Xu and W. Shang, “Design and development of unmanned surface vehicle for meteorological
monitoring,” Intelligent Automation & Soft Computing, vol. 26, no. 5, pp. 1123–1138, 2020.

[5] J. Wang, T. Zhang, B. Jin and S. Wu, “A novel sins/iusbl integration navigation strategy for underwater vehicles,”
Journal of Cyber security, vol. 1, no. 1, pp. 1–10, 2019.

[6] P. E. Hart, N. J. Nilsson and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,”
IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[7] A. Stentz, “Optimal and efficient path planning for partially known environments,” in Proc. ICRA, San Diego,
CA, USA, pp. 3310–3317, 1994.

[8] K. Daniel, A. Nash, S. Koenig and A. Felner, “Theta*: Any-angle path planning on grids,” Journal of Artificial
Intelligence Research, vol. 39, pp. 533–579, 2010.

[9] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” in Technical Report, Ames, Iowa,
USA: Iowa State University, No. 98-11, 1998.

[10] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc.
ICRA, San Francisco, CA, USA, 2, pp. 995–1001, 2000.

[11] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT growth,” in Proc. IROS, Las Vegas, NV,
USA, 2, pp. 1178–1183, 2003.

[12] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proc. IROS, Beijing, China, pp. 5369–5375, 2006.

[13] Q. D. Zhu, Y. B. Wu, G. Q. Wu and X. Wang, “An improved anytime RRTs algorithm,” in Proc. Artificial
Intelligence and Computational Intelligence, Shanghai, China, pp. 268–272, 2009.

118 CSSE, 2021, vol.39, no.1



[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International
Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[15] F. Islam, J. Nasir, U. Malik, Y. Ayaz and O. Hasan, “RRT*-smart: Rapid convergence implementation of RRT*
towards optimal solution,” in Proc. Mechatronics and Automation, Chengdu, China, pp. 1651–1656, 2012.

[16] J. D. Gammell, S. S. Srinivasa and T. D. Barfoot, “Informed RRT*: Optimal sampling-based path planning
focused via direct sampling of an admissible ellipsoidal heuristic,” in Proc. IROS, Chicago, IL, USA, pp.
2997–3004, 2014.

[17] I. B. Jeong, S. J. Lee and J. H. Kim, “Quick-RRT*: Triangular inequality-based implementation of RRT* with
improved initial solution and convergence rate,” Expert Systems with Applications, vol. 123, no. 2, pp. 82–90, 2019.

[18] M. Hawa, “Light-assisted A⁎ path planning,” Engineering Applications of Artificial Intelligence, vol. 26, no. 2,
pp. 888–898, 2013.

CSSE, 2021, vol.39, no.1 119


	An Improved Q-RRT* Algorithm Based on Virtual Light
	Introduction
	Background
	Proposed Algorithm
	Experiments
	Conclusions
	flink6
	References


