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Abstract: Non-reciprocal and uni-directional transport could efficiently transmit signals in
integrated quantum and optical networks. Dynamic quantum nodes and optical waveguide arrays
are proposed in linear and ring configurations for directed and non-reciprocal transport. It is
shown that the time-dependent modulation of the position of quantum nodes in linear arrays
would efficiently and non-reciprocally guide an initially injected quantum energy. The initial
energy could be trapped within a ring configuration of such dynamically controlled quantum
nodes. In linear parallel waveguide arrays, fashioning the widths pattern could also uni-directly
transfer Gaussian beams across the arrays. By arranging the parallel waveguides on a cylindrical
shell with a new widths pattern, the uni-chiral transport of Gaussian beams is achieved.
© 2017 Optical Society of America
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1. Introduction

Non-reciprocal asymmetric transport is a highly desirable feature in integrated quantum photonics
networks, and could be used in designing isolators, circulators, or quantum/optical diodes. This
feature has been achieved for different wave types such as optical waves [1, 2], spin waves [3, 4],
and acoustic waves [5, 6]. Isolators, diodes, and circulators have been fashioned through different
spatial dimensions i.e. 2D and 3D planer arrays of waveguides [1,3,7,8], 1D linear systems [9,10],
and a combination of 1D and 2D networks [8]. Uni-directional transport of optical waves could
be achieved by applying magnetic fields [11–15]. While the manipulation of magnetic field is not
handy in small networks, non-magnetic non-reciprocal transport has been investigated [8, 10, 16]
for integrated systems. Regarding non-reciprocal photon transport, there are many theoretical
proposals [12, 17–20], and experimental demonstrations of non-reciprocal phase shifts [18].
In [17] Yuan et al used photonic Aharonov Bohm effect to obtain non-reciprocal uni-directional
single-photon transport to demonstrate quantum information processing tasks [9, 10, 18]. A
different route towards realizing asymmetric transport in discrete optical systems is proposed
in [7] through a dissipative Aharonov Bohm diode. They considered an effective magnetic field
introduced by periodic modulation of optical parameters [12, 19, 20] that is a technique using for
linear lattices with no nonlinear or magnetic media.
In this work we propose different dynamic or static networks to be used for non-magnetic

uni-directional transport in small integrated circuits. The networks are expanded in various spatial
dimensions and designed for non-reciprocal transport of quantum-carriers and Gaussian beams.
They could be implemented by different site-based dynamic networks like ion traps [21, 22]
and waveguide arrays [20] to be used in quantum or optical integrated networks. The two
transportation mechanisms in such networks are energy oscillation within sites whose positions
could be dynamic, and optical tunneling within spatially modulated optical waveguides. For
dynamic site designs, we consider a scheme where the energy excitation is uni-directionally
transported within the network via the dynamical close proximity of pairs of sites. We initially
study a linear array of moving sites. The proposed dynamic networks could be implemented
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either as curved optical waveguides or cold atoms trapped in dynamic optical lattices [23,24].
We then wrap up the dynamic linear array to form a close spatial ring and we are able to show
that simple oscillatory motions of the individual sites on the ring lead to uni-chiral (clockwise or
counterclockwise), transport of energy excitations on the ring via energy oscillation between the
sites. The corresponding ring configurations, which could be considered as optical circulators,
could be implemented by static curved waveguides on cylindrical substrates or cold atoms trapped
in controlled ring optical lattices. We also introduce two methods to achieve non-reciprocal
transport within parallel waveguide arrays along planar and cylindrical substrates. For linear
planar arrays we consider a sawtooth spatial modulation of the propagation constants via a
proposed width pattern of individual waveguides in which the gradient of the width profile
periodically flips along the waveguides axes. In this structure we find that an initial Gaussian
beam, which would normally propagate as a Bloch oscillation, now experiences a homogenous
spatial force which periodically reverses sign and this combination leads the Bloch wave to move
in one direction. We again are able to wrap up this linear array into a ring and deduce the spatial
modulations of the propagation constants and waveguides widths required to yield non-reciprocal
uni-chiral transport on a cylindrical shell of parallel waveguides. All proposed designs could be
implemented by static curved or width-pattened waveguide arrays that could be built by direct
laser writing of waveguides [25,26]. So these non-reciprocal non-magnetic directed devices have
advantage over magnetic or time-dependent couplings/refractive indices designs.

2. Discussion

To achieve directed transport we consider a next-nearest-sites-interacting system consisting of
N sites. The general form of Hamiltonian of the system is H =

∑N0
i=1(Ji,i+1σ̂

†
i σ̂i+1 + CC) +∑N

i=1 ωiσ̂
†
i σ̂i , where Ji,i+1 is the interaction energy of two nearest sites, ωi is the self-energy of

site i, σ̂†i (σ̂i) is the creation (annihilation) operator of an energy excitation on site i, N0 = N
for a ring network where N + 1st site is the first site, and N0 = N − 1 for a linear network. The
evolution of this system is determined by equation: dφ(q)/dq = −iαHφ(q). Considering q = t
and α = −1/~, the Schrodinger equation appears with φ(t) as the total quantum state of the
system. On the other hand, by considering q = z, α = 1, and ωi = βi where βi represents the
propagation constant of waveguide i along z axis, the evolution equation turns to the coupled
mode equations of a propagating wave through an N−waveguide parallel array and φ(z) = (a1(z);
...;an(z)) is a column vector of electric field amplitudes on each waveguide. We now seek suitable
Hamiltonians for directed transport in both dynamic site networks and waveguide arrays. In the
first part, we consider linear arrays i.e. particles on a line or parallel waveguides on a plane, and
find the appropriate conditions to achieve uni-directional transport. In the second part, we couple
the first and last sites of the linear arrays to obtain the corresponding ring or cylindrical networks.

2.1. Linear arrays

In this section we introduce two methods to achieve directed and non-reciprocal transport in
linear arrays. The first method is represented by a linear array of eight moving sites where
the position of each site along x axis as a function of time is shown in Fig. 1(a) and (b). The
first and last sites are fixed on x axis while the middle sites start oscillating in due times. The
initial separation of sites 1 and 2 is 0.007, the positions of pair of middle sites i = n and n + 1,
at time t are xi = (n/2)ai + bisin(0.08t + π − 0.3125π(n/2 − 1)) + dBlock(n/2 − 1); where
(an, bn) = (0.5, 0.495), (an+1, bn+1) = (0.507, 0.49), and dBlock = 1.009, and the last site is
permanently located at xN = dBlock(N/2 − 1) + 0.005. We initially launch an energy excitation
on the first site, while considering zero self-energies for all sites (ωi = 0), and dipolar interaction
energies between the next nearest sites (Ji,i+1 = 1/r3

i,i+1). We choose these parametrization for
the time modulation of the positions of sites to yield at type of trap for the light made from
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pairs of sites that lead to directed motion. We numerically calculated the probabilities of finding
energy excitation on each site in time as shown in Fig. 1(c). While assumed ~ = 1, the Planck
units could be considered for the physical quantities. It can be seen that the directed energy
transport could be achieved via the proposed pattern of dynamic particle network. This is due to
the fact that the initial energy excitation on first site which is fixed at the origin would oscillate
between sites 1 and 2 in terms of a superposition state. It then transfers along the x axis within
the superposition states of different pair of sites in subsequent intervals. In other words, the initial
energy follows closely the trajectory of increased interaction energy along the closely located
nearest sites, which possesses the lowest eigenenergy of the total network [27]. Such networks
could be straightforwardly scaled up by adding pair of sites along the networks, however, one
should adjust the start up time of site oscillations in accordance with the network size and the
total number of sites.
These dynamically controlled particle networks are non-reciprocal so that by initializing the

system on the N th site, the energy excitation spreads over all sites leading to low efficiency of
transport towards the first site. It has been checked that such isolators are perfectly non-reciprocal
and keep the total incident energy on the N th site, if the initial launching to the last site would
be after one network cycle, that is the time by which the last oscillating site (N − 1st site) has
spanned its geometrical domain for once. A complete reciprocal version of such arrays can be
obtained by flipping the dynamic pattern of site positions in time after each network cycle. The
proposed particle networks could be implemented by cold atoms in optical lattices [23, 24] and
couple to optical beams in larger photonic circuits [28]. In addition, according to the general
form of the equation of motion discussed in section 2, such designs could be also implemented by
2D curved optical waveguide arrays with the curvature pattern of Fig. 1. Now we present another

|𝜙𝑖|
2

t

t

t

𝑥

𝑥 𝑥

Fig. 1. Graph (a) shows an eight-site one-dimensional network which achieves directed
energy transport. xi is the position of site i along x axis in time. Graph (b) is an enlargement
of graph (a) and shows the pair of sites that are close together. Graph (c) is the dynamic
evolution of the energy excitation initially located at site 1 at t = 0. |φi |2 is the probability
of finding the energy excitation on site i at various times. Due to the pattern of pairing of the
sites, the energy excitation moves in a directed fashion to the right.

method of directed transport in parallel waveguide arrays. The uni-directional transport of a
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Gaussian beam has been previously achieved in a tight binding model by the periodic flipping in
time of an electric force applied across a next nearest sites interacting 1D lattice [29]. We consider
a more detailed implementation of this concept using a linear optical waveguide array whose
widths vary along z axis to effect equivalent to the periodic flipping of a homogenous electric
force. An alternative to design waveguides width profile would be to fashion the waveguides from
electro-optic materials and apply a different z-dependent electric field along each waveguide
to yield a modulated homogenous force on the Bloch oscillating Gaussian beam resulting in
non-reciprocal transport. A lateral increase in waveguides widths in a parallel array changes
the propagation constants of individual waveguides (a schematic shown on a line on top of Fig.
1(a) in [30]). Figure 2(a) shows the schematic of the width pattern in which the gradient of
widths is reversed periodically along the waveguides extension on z direction. For such array with
N = 65 waveguides the resulting profile of waveguides propagation constants has been shown
in Fig. 2(b) with |βi − βi+1 | = δβ = 520m−1 and the pattern change at intervals ZB = 0.0063m
along z direction that is related to the corresponding Bloch oscillation. While the difference of
propagation constants of adjacent waveguides (δβ) with respect to the propagation constant of an
infrared beam (used in [30]) is small, we neglect the generation of backward traveling modes
on each waveguide due to the mismatch of β’s, and therefore suppose equal couplings for two
nearest waveguides i.e. Ji,i+1 = Ji+1,i [30, 31]. The constant coupling for all adjacent waveguides
is considered Ji,i+1 = 1240m−1 which requires the corresponding variation of waveguides’
separation distances. We shine a Gaussian beam of φ(z = 0) = exp(−(n − N/2)2/10) at cross
section z = 0 centered at waveguide number n = N/2 and numerically solve the coupled mode
equations to find the intensity on each waveguide at different cross sections along z direction. We
neglect the smallest propagation constant of waveguides for simplicity and suppose βi = iδβ
for Z < ZB. We also add a nonlinear term −6.5|φ(z)|2φ(z) to the right side of the evolution
equation which well describes the experimental situation in low power excitation for chosen
parameters according to [29], and could be equivalent to the environmental noise effects in
counterpart Schrodinger equation. Figure 2(c) shows the numerical values of intensities on all
waveguides at different cross sections along z direction, where an is the amplitude of the electric
field on waveguide n. It can be confirmed that the introduced width pattern of waveguides and
the corresponding profile of propagation constants lead to uni-directional transport of Gaussian
beams.
Morandoty et al [30] experimentally demonstrated some width-varied waveguide arrays, and

assumed the ideal lossless case in which only one mode propagates on each waveguide. Our
simulated network parameters (β and Ji,i+1) are chosen similar to those of their experiment, in
which the widths of their 25 waveguides are varied from 2 to 3.4µm. Supposing a linear increase
of the guides’ width with the number of guides, the maximum width of our chosen number of
65-guide array do not exceed 10.5µm which is the typical maximum width of a single-mode fiber.
So all waveguides of the simulated 65-guide array could be considered single mode. In addition,
one could decrease the minimum guides’ width below 2µm to avoid any multimode propagation
on all waveguides.

To check the non-reciprocity of these networks, we first note that these waveguide arrays should
be always initiated from a middle site. This is due to the boundary limitation that spreads and
reshapes the initial Gaussian beam which is expanded over several waveguides. To use such array
as an isolator, one may consider a linear bench array and design input/output ports which are
well-beyond the boundary waveguides. Now let’s consider the upward-right propagating beam of
Fig. 2 as case 1. If the array length would be an odd multiple of ZB, launching a beam from the
output port (top side) of the array (called case 2), is equivalent to launch a beam from the input
port of the array with a reversed β variation pattern (case 3). According to simulations, in Fig.
2(c), the beam of case 3 perfectly travels upward-left, which is equivalent to the propagation of
case 2 beam towards downward-right. By comparing cases 1 and 2, and taking into account that
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the array length of Fig. 2 is Z = 3ZB, the perfect right-azimuthal non-reciprocity of waveguides
array of Fig. 2 is confirmed.

Such arrays could be also implemented by quantum site networks. The quantum nodes that are
the counterpart elements of waveguides should undergo a time dependent self-energy profile
as that of the propagation constants in Fig. 2(b) to yield non-reciprocal transport of energy
excitations.

|𝑎𝑛|
2

n

NN/2-1

𝑧/𝑧𝐵

(a)

(b)

(c)

3
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Fig. 2. Directed wave transport achieved through a width-patterned array of N = 65
waveguides exposed to a Gaussian beam of φ(z = 0) = exp(−(n − N/2)2/10). Graph (a)
shows the schematic of the proposing width pattern array with waveguides indexed n extended
along Z axis where ZB = 0.0063m. The spatial modulation of the propagation constants
of waveguides are shown in graph (b) where |βi − βi+1 | = δβ = 520m−1. Same couplings
of adjacent waveguides of Ji,i+1 = 1240m−1 are considered which could be achived by
adjusting the nearest guides separations. Graph (c) represents the numerical simulation of
intensity |an |2 on waveguide n along Z direction which confirms the uni-directed transport
of a Gaussian beam through such width patterned arrays.

2.2. Ring networks

In the previous subsection we focused on uni-directional transport in linear arrays. Now we
follow the same procedures for ring networks to achieve directed chiral transport, and propose
the designs as non-magnetic optical/quantum circulators. As the first example, we consider a
time modulated dynamic network of nine sites each moving along a curve on a circular path.
Figure 3(a) shows a schematic of such network where the first site is fixed at (x1 = 1, y1 = 0) and
the other sites are oscillating on a ring centered at the origin. The time variation of the angles
subtended by each site is shown in Fig. 3(b). Next nearest sites are dipolar coupled to each other
i.e. Ji,i+1 = 1/r3

i,i+1 where ri,i+1 is the distance between the sites i and i + 1, and the site energies
are considered to vanish (ωi = 0). Figure 3(c) shows the evolution of an energy excitation initially
injected at the first site. It can be seen that it continually travels along the neighboring pair of
sites through the ring and returns to the first site. This behaviour is due to the designed dynamics
of the pair of sites so that the initial energy excitation evolves to a superposition state of two close
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sites and so is being handed over the ring to reach the first site. Figure 4(d) shows the evolution
of the initial excitation in a longer duration.

To explain the azimuthal non-reciprocity of such dynamic networks, we note that by launching
an energy excitation on any intermediate site, the pair transportation mechanism would carry
that around the ring in a clockwise or counterclockwise way which is determined by the position
pattern of sites. Such energy circulating networks could be implemented by cold atoms in
dynamically controlled optical lattices [23, 24], or equivalently curved waveguide arrays on
cylindrical substrates. As the second example of uni-directed chiral transport, we consider a

Time

(a)

Y X

Time

Y X

(c)

Fig. 3. A non-magnetic optical circulator via a dynamically controlled ring network of nine
sites. Graph (a) shows the trajectories of nine sites (Ri;i=1−9) in time that are initially located
equidistantly on a circle on xy plane centered at the origin. The first site is fixed in time
at (x1 = 1, y1 = 0). Graph (b) shows the modulation of angles trajectories (in radian) for
each site in time. Graphs (c) and (d) represent the dynamics of the probability of energy
excitation initially launched at site 1, through the network in shorter and longer time intervals,
respectively. The color scale is the total probability of energy excitaiton (|ψ |2) which varies
in time at the location of each site.

waveguide array with a specific profile for propagation constants. In section 2.1, directed transport
was achieved in a linear waveguide array by designing the waveguides’ widths as schemed in Fig.
2(a), which is equivalent to fashion the propagation constants profile as shown in Fig. 2(b). As
discussed in [29] one way to achieve such profile is to periodically flipping the direction of an
applied electric field across a waveguide array of photorefractive materials. The electric field
creates a gradual increase of refractive indices (and consequently the propagation constants)
along the azimuthal direction of waveguide array leading to Bloch oscillations. By flipping the
direction of electric force (or reversing the upward trend of β pattern) an initially launched
Gaussian beam could be directed non-reciprocally across the array. If the parallel waveguides are
separated by distance d then the increase of propagation constants over nearest waveguides is
|βi − βi+1 | = δβ = Fd where F is the magnitude of the electric force [29]. By supposing ~ = 1
the distance and force could be considered in Planck units. In this section, to achieve a chiral and
non-reciprocal transport via waveguides array on a cylindrical substrate, we propose a new width
pattern to obtain a linear increase of propagation constants from the last waveguide to the first
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one. The schematic of the new width profile and the corresponding cylindrical array are shown in
Fig. 4(a). The left graph indicates that at each increment along the z axis the waveguides widths
vary linearly and follow a sawtooth function to maintain a continuous increase of propagation
constants from the last guide towards the first one. The rate of width variation along the z and
n axes are related to the velocity of corresponding Bloch waves (VB). The right graph of Fig.
4(a) shows a schematic of an array on a cylindrical substrate where an input Gaussian beam
reaches at the end of the network after 2.25 round trips. To simulate this width-patterned array,
we consider an array of N = 200 waveguides on a cylindrical substrate and apply a Gaussian
beam of φ(z = 0) = exp(−(n− N/2)2/100) centered at waveguide number n = N/2. We consider
next-nearest-waveguides couplings as Ji,i+1 = Ji+1,i = ∆/4 where ∆ = 0.994. The velocity of the
corresponding Bloch wave is VB = 2γ/(zB/2) = 0.165, where γ = ∆/F is the amplitude of the
Bloch wave along the waveguide numbers, zB = 2π~/(Fd) is the wavelength of Bloch oscillation,
and F = 0.005 and d = 2π are the magnitude of the applied electric force and waveguides
separations in a counterpart optoelectric waveguide array, respectively. While assumed ~ = 1, all
quantities could be considered in Planck units. Figure 4(b) shows the corresponding β profile
of such width-patterned arrays where β ∈ [δβ, Nδβ] and δβ = (−1) b(z/(zB/4))cFd that flips sign
at length intervals zB/4. The variation of propagation constants along z direction is considered
δβ/δz = VB to keep the increasing trend of δβ at the position of propagating beam, and minimize
the power loss after each round trip. Figure 4(c) shows the simulated intensity on each waveguide
(|an |2) along z direction. It can be seen that chiral transport of an initial Gaussian beam is
achieved via the proposed modulation of propagation constants shown in Fig. 4(b).

To verify the azimuthal non-reciprocity, we first notify that according to simulations, there are
two cases that reverse the chiral direction of a Gaussian beam launched at a unique input port. In
the first case, the direction is perfectly reversed if the following conditions are satisfied: Reversing
the slope of β variation pattern of Fig. 4(b), as well as reversing the sign of δβ within the first
zB/4 interval (0 ≤z<zB/4) i.e. δβ = (−1) b(z/(zB/4))c+1Fd. In the second case, the initial sign of
δβ would reverse within the first interval, however, the β slope is not reveresed which yields an
inefficient propagation towards the reversed chiral direction. Now we compare the directions of
the propagating Gaussian beams launched on both sides of the circulator of Fig. 4. The slope
of β variation pattern (Fig. 4(b)) for both ways are similar, which satisfies one condition of the
inefficient chiral reversibility. If the length of the cylindrical circulator would be slightly less than
an odd multiple of zB/4 i.e. bz/(zB/4)c = (2n), the sign of δβ within the initial interval along
z axis for both input and output launched beams would be similar. So both waves would have
identical environemnts and travels towards their outward right side. As the input beam of Fig. 4(c)
propagates upward right, the beam launched at the output port propagates downward left of Fig.
4(c), yielding a perfect azimuthal reciprocity. On the other hand, for cylinder lengths of slightly
less than an even multiple of zB/4, i.e. bz/(zB/4)c = (2n + 1), the sign of δβ is reversed for a
launched beam from the opposite side, and so both conditions of inefficient chiral reversibility
are satisfied. Since the length of the introduced circulator of Fig. 4(c) is an even multiple of
zB/4(z = 60zB/4), the conditions of inefficient chiral reversibility are almost satisfied for an
output launched beam with respect to an input launched beam. While the input beam propagates
upward right in Fig. 4(c), the output launched beam propagates downward right on the same
figure, yielding azimuthal non-reciprocity of the network of Fig. 4(c).

Such proposed chiral beam transporters could be built by direct laser-writing and 3D printing
[25,26] and be used as non-magnetic optical circulators in photonic circuits. While magnetic
Faraday optical circulators have only a few output ports, these cylindrical arrays could change the
direction of an incident Gaussian beam for an arbitrary angle via the manipulation of network
parameters. In addition, the proposed width-patterned networks could be used as optical retarders,
and the torus version of such cylindrical networks could be studied as beam trappers for optical
computing applications. The formerly proposed dynamic ring networks could be also used as
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quantum memories or energy excitation trappers as well as non-reciprocal energy transporters
towards arbitrary angles.
Quantum nodes in ring arrays could also implement the introduced circulator of Fig. 4 by

adjusting the pattern of site energies in time as that of the propagation constants along z axis
shown in Fig. 4(b).
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Fig. 4. A non-magnetic optical circulator made of a cylindrical width-patterned waveguide
array for directed and non-reciprocal chiral transfer of Gaussian beams. Graph (a) shows the
schematic of a width varying waveguide array (left part) which is designed on a cylindrical
shell (right part). Graph (b) shows the profile of propagation constants as a function of
waveguide number n along z direction where n ∈ [1, N = 200], δβ = (−1) b(z/(zB/4))cFd,
F = 0.005, d = 2π, and the nearest guides’ couplings of Ji,i+1 = Ji+1,i = 0.2485. Graph (c)
represents the numerical solutions of intensities accross a cylindrical waveguide array that
is initially launched by a Gaussian beam of φ(z = 0) = exp(−(n − N/2)2/100). It could be
confirmed that the incident Gaussian beamwould uni-chirally and non-reciprocally propagate
around the cylinderical shell. The chiral direction could be inversed via mirroring the β(n, z)
pattern with respect to line n = 1, and reversing the starting sign of δβ. By adjusting network
parameters like cylinder length or β(n, z) profile, such networks could deviate a Gassian
beam for an arbitrary angle to be used as a non-magnetic optical circulator.

3. Conclusion

We introduced four different linear and ring networks implemented by dynamic sites, curved, and
width-patterned parallel waveguides for non-reciprocal and uni-directional/uni-chiral transport
of energy excitations or Gaussian beams. Since each introduced system has a counterpart
implementation, i.e. dynamic sites or waveguides array, eight non-reciprocal and uni-directional
networks have been potentially presented. In linear and ring dynamic sites (curved waveguides) the
initial energy excitation would uni-directly transfer through the network via oscillating between
closely positioned pair of sites. One-way transport of Gaussian beams is via tunneling across
specific width-patterned waveguides array that are equivalent to site networks with dynamic
energies of sites. Such non-magnetic networks could be used in linear, ring, planer, and cylindrical
geometries as quantum/optical diodes and circulators in quantum/photonic circuits.
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