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Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples,

pose significant challenges to machine learning and deep learning techniques, including

interactive recommendation systems. The latent embedding space of those techniques

makes adversarial attacks challenging to detect at an early stage. Recent advance in

causality shows that counterfactual can also be considered one of the ways to generate

the adversarial samples drawn from different distribution as the training samples. We

propose to explore adversarial examples and attack agnostic detection on reinforcement

learning (RL)-based interactive recommendation systems. We first craft different types

of adversarial examples by adding perturbations to the input and intervening on the

casual factors. Then, we augment recommendation systems by detecting potential

attacks with a deep learning-based classifier based on the crafted data. Finally, we study

the attack strength and frequency of adversarial examples and evaluate our model on

standard datasets with multiple crafting methods. Our extensive experiments show that

most adversarial attacks are effective, and both attack strength and attack frequency

impact the attack performance. The strategically-timed attack achieves comparative

attack performance with only 1/3 to 1/2 attack frequency. Besides, our white-box

detector trained with one crafting method has the generalization ability over several other

crafting methods.

Keywords: recommender systems (RS), deep reinforcement learning (deep RL), adversarial attack, robustness,

deep learning—artificial neural network (DL-ANN)

1. INTRODUCTION

Recommendation systems are an effective means of alleviating information overload for Internet
users. They generally filter out those less irrelevant ones from massive items of choice to
improve user experience in multiple scenarios. Traditional recommendation systems extract
features about user preferences, items, and users’ past interactions with items to conduct
content-based, collaborative, or hybrid recommendations (G.Adomavicius and A.Tuzhilin, 2005;
Zhang et al., 2019). These models have not considered the changes in user preferences over
time. In this regard, interactive recommendation systems emerge to capture personalized user
preference dynamics. Generally, interactive recommendation systems cater to users’ dynamic and
personalized requirements by improving the rigid strategy of conversational recommendation
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systems (Thompson et al., 2004; Mahmood and Ricci,
2007; Taghipour and Kardan, 2008). In recent years, they
have been attracting increasing attention and employed in
leading companies (e.g., Amazon, Netflix, and YouTube) for
personalized recommendations.

Interactive recommendation systems can be considered a
decision-making process where the system chooses an optimal
action in each discrete step to maximize the user response
evaluation. Common practices to model the interactions between
recommendation systems and users includeMulti-Armed Bandit
(MAB) or Reinforcement Learning (RL). The former views
the action choice as a repeated single process while the latter
considers immediate and future rewards to better model long-
term user preference behaviors. In RL-based recommender
systems, a Markov Decision Process (MDP) agent estimates the
value function by both action and state rather than merely by
action as done by MAB.

However, small disturbances in the input data may fool the
above practices (Szegedy et al., 2013; Goodfellow et al., 2015).
Small imperceptible noises, such as adversarial examples, may
increase prediction error or reduce reward in supervised and
RL tasks—the input noise can be transferred to attack different
parameters even different models, including recurrent network
and RL (Huang et al., 2017; Gao et al., 2018). Besides, the vector
representations of entity/relation embedding of the input of RL-
based recommendation models make it challenging for humans
to tell the true value or dig out the real issues in the models.

Recently, Browne and Swift (2020) point out that
counterfactual reasoning can be used to generate adversarial
samples. From the perspective of causal inference, one way to
leverage counterfactual reasoning is by intervening on some
causes in the data generation process to generate adversarial
samples. Since both perturbations and counterfactual reasoning
target the state space by introducing noise, attackers can
easily leverage such characteristics of embedding vectors to
disrupt recommendation systems silently. Therefore, it is
crucial to study attack and defense methods for RL-based
recommendation systems.

This study aims to develop a general detection model to
detect attacks and increase the defense ability and robustness,
which provides a practical strategy to overcome the dynamic
“arm-race” of attack and defense in the long run. The problem
is nontrivial due to three reasons. First, online attacks are
inherently difficult to track or predict. Second, man-in-middle
methods can attack the interactions between recommendation
systems and users in web applications, giving opportunities for
malicious people to disrupt recommendation systems in either
a white-box or a black-box way. Third, the vast number of
actions in RL-based recommendation systems poses a barrier
to detecting user feedback since the exhaustively numerous
items and user embedding vectors are not feasible to find the
abnormal inputs.We propose an attack-agnostic detectionmodel
against adversarial examples for RL-based recommendation
systems to overcome the above challenges. To the best of our
knowledge, this is the study that focuses on the adversarial
detection of RL-based Recommendation Systems. We make the
following contributions:

• We systematically investigate different types of adversarial
attacks and detection approaches focusing on RL-based
recommendation systems and demonstrate the effectiveness
of the designed adversarial examples and strategically-
timed attacks.
• We propose an encoder-classification detection model for

attack-agnostic detection. The encoder captures the temporal
relationship among sequence actions in RL. We further use an
attention-based classifier to highlight the critical time steps out
of a large interactive space.
• We empirically show that even small perturbations or

counterfactual states can significantly reduce most attack
methods’ performance. Our statistical validation shows that
multiple attack methods generate similar actions of the
attacked system, providing insights for improving the efficacy
of the detection performance.

2. RELATED STUDY

RL-based interactive recommendation. RL is a popular
approach to the interactive recommendation. Traditional
research applies Q-learning (Taghipour et al., 2007; Taghipour
and Kardan, 2008) and MDP (Mahmood and Ricci, 2009) to
web recommendation and conversational recommendation
problems. Mahmood and Ricci (2007) first introduce
reinforcement learning into an interactive recommendation
by modifying MDP. Since then, deep learning has inspired
more interest in the interactive recommendation. For
example, Christakopoulou et al. (2018) employ reinforcement
learning to improve feedback quality in interactive
recommendation; Chen et al. (2019) adopt policy gradient
to improve the scalability of interactive recommendation.
Adversarial attacks. We explore the test-time white-box attack
for the RL-based recommender system. This branch of study
starts from Szegedy et al. (2013), which first find that hardly
perceptible perturbation can cause erroneous outputs of a
convolutional neural network on image classification tasks.
Goodfellow et al. (2015) exploit this topic further and incorporate
the Fast Gradient Sign Method to attack neural networks;
(Papernot et al., 2016) proposes Jacobian-based Saliency Map
Attack (JSMA) algorithm to greedily select attack pixels by
Jacobian matrix. Another view is to model the attack as an
iterated optimization process, like the Deepfool model (Moosavi-
Dezfooli et al., 2016) and PGD (Kurakin et al., 2016). Croce and
Hein (2020) use the approximated hyperplane as Deepfool and
guarantee the perturbed data point is closed to the hyperplane.
Yu et al. (2021) exploits the feature level attack to achieve
decent results. Chen and Gu (2020) factorize pixels into two
variables and create a model that can control the sparsity of
the attack. Specifically, Lin et al. (2017) design strategically-
timed attacks and craft deceptive images to induce the agent
to make the desired actions. Browne and Swift (2020) argue
that counterfactual explanations produce adversarial examples in
DL research, which modify the input to cause misclassification
of the network. Huang et al. (2017) explore the adversarial
attack deep Q network in video game playing and conclude that
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retraining with adversarial examples can make the network more
robust. Another thread of research applies adversarial attacks into
environments for robust adversarial training. They either regard
the attack as a destabilizing force to break the balance of agents
in 3D scenarios (Pinto et al., 2017) or develop adversarial agents
in multi-agent tasks during RL (Gleave et al., 2019). Generally,
creating adversarial examples helps reduce the reward of onDQN
and DDPG (Pattanaik et al., 2018), and a detection method can
help better explore the potential of adversarial examples and
make agents more robust in a dynamic process.
Adversarial example detection. Many adversarial detection
methods are vulnerable to the loss functions targeted to fool
them (Carlini and Wagner, 2017). Bendale et al. Bendale and
Boult (2016) present OpenMax to estimate the probability of data
input from unknown classes explicitly. Since then, researchers
have proposed a statistical approach (Hendrycks and Gimpel,
2016), binary classification approach (Metzen et al., 2017), outlier
detection approach (Grosse et al., 2017), and history queries-
based approach (Chen et al., 2020) to detect adversarial examples.
Our study differs from Chen et al. (2020) in exploiting the
nature of RL besides query-based white-box attacks. Detection
models classify the benign samples and adversarial samples by
discrepancy, which is verified in many areas (Cohen et al.,
2020; Esmaeilpour et al., 2020; Vacanti and Van Looveren, 2020;
Massoli et al., 2021), in this article, we exert the discrepancy in
action space to detect adversarial samples, which turns out to be
effective for multiple attack methods.

3. METHODOLOGY

This section introduces the components of an RL-based
recommendation system, attack techniques that generate
adversarial examples, and our scheme to detect white-box
adversarial attacks. The overall structure can be found in
Figure 1.

3.1. RL-Based Interactive
Recommendation
Interactive recommendation systems suggest items to users and
receive feedback. Given a user uj ∈ U = {u0, u1, u2, . . . , un}, a
set of items I = {i0, i1, i2, . . . , in}, and the user feedback history
ik1 , ik2 , . . . , ikt−1 , the recommendation system suggests a new item
ikt . This problem can be regarded as an MDP, which comprises
the following:

• State (st): a historical interaction between the user and
the recommendation system computed by an embedding or
encoder module.
• Action (at): an item or a set of items recommended by the

RL agent.
• Reward (rt): a variable related to user’s feedback to guide the

reinforcement model toward true user preference.
• Policy (π(at|st)): a probabilistic model consisting of an

estimation and action generation parts. The training process
aims to obtain an optimal policy for the recommendation.
• Value function (Q(st , at)): the agent’s prediction of the reward

of the current recommended item at .

The reinforcement agent could be an Actor–Critic Algorithm
that consists of a critic network and an actor network (Xian
et al., 2019). The attack model may generate adversarial examples
using either the critic network (Huang et al., 2017) or the actor
network (Pattanaik et al., 2018).

3.2. Attack Model
FGSM-based attack. We define an adversarial example as a
little perturbation δ added onto the benign examples x to
reduce the cumulative reward of an RL system. Suppose x is a
sequence of feature vectors piped into RL model π(st); x can
be a composition of embedding vectors of users, relations, and
items (Xian et al., 2019), or a feature vector encoded user and item
information (Chen et al., 2019). Unlike perturbations on images
or texts, δ can be large in interactive recommendation systems
due to the enormous manual work to check the embedding
vectors or feature vectors of massive users and items. We define
an adversarial example as follows:

min
δ

RT =
T
∑

t=1
rt ,

rt = Q(st + δ, at),

at = π
∗(at|st + δ),

subject to S(st , st + δ) ≤ l, 1

(1)

where RT is the total reward of the recommendation agent, T
is the length of a time step, π∗ is the optimal policy learned by
the training process, S (< l) is a similarity metric that measures
the distance between benign and adversarial examples. S is
commonly defined as lp bounded perturbation, or |δ|p (Carlini
et al., 2019). The computation of δ determines the method of
attack. We aim to build a model with the generalization ability
to detect examples from unknown adversarial distributions.
Thus, we adopt three attack methods to validate the detection
model performance: FGSM (Goodfellow et al., 2015) and its
variant (Huang et al., 2017), JSMA (Papernot et al., 2016), and
Deepfool (Moosavi-Dezfooli et al., 2016). FGSM can be presented
as follows:

δinf = ǫ sign(∇st J(Qt ,Qt−1 + rt)), (2)

where J is the loss function, Qt is the critic function Q(st , at).
Optimizing J will lead to the critic value Q satisfying the Bellman
equation. The FGSM method uses the gradient of the loss
function, which can be computed efficiently, thus, requiring a
small amount of additional computation.

To construct a detection model with the generalization ability,
we train the detection model with FGSM examples and conduct
the detection using other perturbation methods. We adopt the
two norm variations in Huang et al. (2017) and define the norm
constraint of perturbations as follows:

δ2 = ǫ

√
d ∗ ∇st J(Qt ,Qt−1 + rt)

||∇st J(Qt ,Qt−1 + rt)||2
,

δ1 = perturb highest |∇st J(Qt ,Qt−1 + rt)|dimension.

(3)
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FIGURE 1 | Our proposed Adversarial Attack and Detection Approach for RL-based Recommender Systems.

Attack with smaller frequency. The strategically-timed
attack (Lin et al., 2017) aims to decrease the attack frequency
without sacrificing the performance of the un-targeted
reinforcement attack. We formally present it below:

δt = δt ∗ ct ct ∈ {0, 1},
∑T

t=1 ct
T

< d,
(4)

where ct is a binary variable that controls when to attack; d < T is
the frequency of adversarial examples. There are two approaches
to generate the binary sequence c1 :T optimizing a hard integer
programming problem and generating sequences via heuristic
methods. Let p0, p1 be the two maximum probability of a policy
π , we define ct as follows, which is different from Lin et al. (2017):

ct = (p0 − p1) > threshold.

In our experiments, we let the RL-based recommendation system
have a peak probability at the maximum action to test the
importance of the action to attackers using the above formula.
In contrast to the above methods, JSMA and Deepfool are based
on the gradient of actions rather than the gradient of Q value.
One key component of JSMA is saliency map computation used
to decide which dimension of vectors (in Image classification is

pixels) are modified. Deepfool pinpoints the attack dimension by
comparison of affine distances between some class and temporal
classes. More details can be found in Papernot et al. (2016) and
Moosavi-Dezfooli et al. (2016).
Counterfactual Based Attack. Counterfactual can find a similar
version of the query input within some distributions, changing
the model decisions and receiving a different classification.
This helps to explain why a specific classification decision
was made by a model and improve the interpretation of
model boundaries (Yang et al., 2021), which is known
as counterfactual explanations. Recent study reveals that
counterfactual explanations produce adversarial examples in
deep neural networks (Browne and Swift, 2020). Therefore, we
propose to generate counterfactual user interacting processes to
be the counterfactual-based attacks for the RL model.

Most of the adversarial examples are generated by adding

perturbations. The counterfactual-based attack is recognized as

one sub-type of adversarial example, which is different from

traditional perturbations. One of the majority differences is that
the counterfactual-based attack is generated by causal reasoning.

With a casual relationship, we can perform interventions on
causes to get counterfactual outcomes. To capture the casual
relationships, we introduce Structural Causal Model(SCM)
M = 〈U,V , F〉, given by a directed acyclic graph (DAG)
G, where:
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• U = (U1, . . . ,UN) is a set of exogenous variables determined
by unobserved and omitted factors. We assume that these
noises are independent variables such that Ui is independent
of all other noise variables.
• V = (V1, . . . ,VN) is a set of endogenous variables that are

observed nodes in the DAG.
• F = (f1, . . . , fN) is a set of structural equations representing the

set of edges in the DAG. Each represents a causal mechanism
that expresses the value of Vi as a function of the values
of parents of Vi in G and the noise term, that is Vi =
fi(Pa(Vi)i,Ui).

To simplify counterfactual reasoning, we assume that the input
states follow the Local Causal Models (LCMs) (Pitis et al.,
2020), stating that Vj is a parent node of Vi in G if and only
if there is a direct edge from Vj to Vi such that setting the
value of Vj will have a direct effect on Vi through fi. With
this assumption, a large subspace L often exists for each pair
of nodes (Pa(Vi)j,Vi) in the DAG, in which two components
are causally independent conditioning on a subset of parents
nodes of Vi so that can be considered separately for training
and inference.

Specifically, given two states with the same local factorization,
we find the similar components of these two states. The
similar components remain unchanged in the MDP process,
representing that the critical components containing user
identifiable information remain. Then, we test whether two
sub-states without critical components, sir and sjr , are locally
independent. By performing interventions on one sub-state
without critical components sjr in SCM, we can calculate the
new value of another sub-state sir . If the difference between the
value after intervention and the original value of sir is within
certain limits, setting the value of sjr does not have a direct
effect on sir through the causal mechanism. In that case, we
conclude that the two sub-states without critical components are
locally independent according to the LCMs. Leaving the critical
components untouched, we produce a new counterfactual-based
attack by swapping the two locally independent subsets of states
si and sj. The algorithm is given in Algorithm 1. This process can

be interpreted by making intervention do(S
i,...,j
t ) = S

i′ ,...,j′

t′ on the

LCMsML to obtain the simulation result (Pitis et al., 2020).

3.3. Detection Model
The detection model is a supervised classifier, which detects
adversarial examples based on the actions of the reinforcement
agent in a general feature space. Action-based detection exploits
the fact that the defense can be constructed ignoring the
attack type. Because state-based detection requires to model
the distribution shift of various methods that increases the
difficulty of modelling. Suppose the action distributions of an
agent are shifted by adversarial examples (Section 4 shows
statistical evidence of the drift). Given an abnormal action
sequence a = π

∗(a|s + δ) or a counterfactual action sequence,
the detection model aims to establish a separating hyperplane
between adversarial examples and normal examples, thereby
measuring the probability p(y|a, θ) or p(y|π∗, s, δ, θ), where y is
a binary variable indicating whether the input data are attacked.

Algorithm 1 | Counterfactual State Generation.

1: procedure INDEPENDENT(SCM M, sub-state sir , sub-state
sjr)

2: Set the value of sjr to be s
′
jr ⊲ s′jr has random value

3: Calculate s′ir by apply SCMM on s′jr
4: return true if the s′ir has the similar value with sir ⊲ sir

and sjr are locally independent
5: end procedure

6: procedureGENERATION(SCMM, Current state si, a random
state sj)

7: Find the similar component ssame in si and sj
8: sir ← si \ ssame

9: sjr ← sj \ ssame

10: if INDEPENDENT(M, sir , sjr) is true then
11: Generate counterfactual state s′i by swapping locally

independent sir and sjr
12: end if
13: return counterfactual state s′i
14: end procedure

To detect the adversarial examples presented in the last
section, we employ an attention-based classifier. We first conduct
statistical analysis on the attacked actions whose result is shown
in Section 4. The detection model consists of two parts. The
first is an encoder to encode the action methods into a low-
dimensional feature vector. The second is a classifier to separate
different data. We adopt this encoder-decoder model to make a
bottleneck and filter out noisy information. The formulation of
GRU is as follows:

zt = σg(Wzat + Uzht−1),

rt = σg(Wrat + Urht−1),

ĥt = tanh(What + Uh ◦ ht−1),
ht = (1− zt) ◦ ht−1 + zt ◦ ĥt .

(5)

We use an action sequence a1 :T to denote a series of user relation
vectors or item embedding vectors and apply a recurrent model
to encode the temporal relation into the feature vectors. We
further adopt a single layer GRU network as our encoder and
employ the attention-based dense net for detecting adversarial
examples (formulated below).

αt = Softmax(Wee+ be)t ,

att, hid =
T
∑

t=1
αtht ,

p = Softmax(Wattatt + batt),

(6)

where e is the combined vector of action embedding and hidden
states hid—we compute attention weights from embedding
vectors and employ a liner unit to distribute probabilities to input
time steps; ht is the output of the encoder. The vectors processed
through the attention layer are then piped into a linear unit with
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softmax to compute the probability of adversarial examples. The
loss function is the cross entropy between the true label and
corresponding probability,

J(Att(a1 :T), y) = −y ◦ log(p).

4. EXPERIMENTS

In this section, we report our experiments to evaluate attack
methods and our detectionmodel.We first introduce the datasets
and then provide quantitative evaluation and discussion on
different attacks and our detection model.

4.1. Dataset and Experiment Setup
We conduct experiments based on two RL interactive
recommendation systems. Following Chen et al. (2019) and Xian
et al. (2019) over the real-world dataset – Amazon dataset (He
and McAuley, 2016). This public dataset contains user reviews
and metadata of the Amazon e-commerce platform from 1996
to 2014. We utilize three subsets named Beauty, Cellphones, and
Clothing as our dataset. We directly use the dataset provided
by Xian et al. (2019) on Github to reproduce their experiments.
Details about Amazon dataset analysis can be found in Xian et al.
(2019).

We conduct our attack and detection experiments based
on (Xian et al., 2019). We preprocess the dataset by filtering
out feature words with higher TF-IDF scores than 0.1. Then,
we use 70% data in each dataset as the training set (and the
rest as the test set) and the actions of the reinforcement agent
as the detection data. We define the actions of PGPR (Xian
et al., 2019) as heterogeneous graph paths that start from users
and have a length of 4. The three Amazon sub-dataset (Beauty,
Cellphones, and Clothing) contain 22,363, 27,879, and 39,387
users. To accelerate experiments, the first 10,000 users of each
dataset are extracted for adversarial example production. Users
in Beauty get on average 127.51 paths. The counterparts for
Cellphones and Clothing are 121.92 and 122.71. We adopt the
action file of l∞ attack with an epsilon of 0.5 as the training
set. As the number of paths is large, we utilize the first 1,00,000
paths for train and validation. The ratio of train validation is
80/20. Regarding the test, 1,00,000 paths from each action file are
randomly sampled as the test set.

We slightly modify JSMA andDeepfool for our experiments—
we create the saliencymap by calculating the product of the target
label and temporal label to achieve both effectiveness and higher
efficiency (by 0.32 s per iteration) of JSMA;We also use sampling
to decrease the computation load on a group of gradients for
Deepfool. Besides, we set the hidden size of the GRU to 32 for
the encoder, the drop rate of the attention-based classifier to 0.5,
the maximum length of a user-item path to 4 [according to Xian
et al. (2019)], and the learning rate and weight decay of the
optimization solver, Adam, to 5e-4 and 0.01, respectively.

4.2. Attack Experiments
This section reports our experiments on adversarial attacks.
The first part shows the attack experiment results, followed by
an analysis of the impact of attack frequency, attack intensity,

TABLE 1 | Adversarial attack results on Amazon Beauty, Cellphone, and Clothing.

Data Method Parameters NDCG Recall HR Precision

Original - 5.449 8.324 14.401 1.707

Beauty FGSM l1 ǫ =0.1 2.695 3.714 6.599 0.693

FGSM l2 ǫ =1.0 4.567 6.555 13.751 1.653

FGSM linf ǫ =0.5 2.830 3.909 7.351 0.787

Counterfactual - 5.324 8.089 14.077 1.658

JSMA - 2.984 3.844 8.254 0.931

Deepfool - 3.280 4.352 9.548 1.050

Cellphone Original - 3.559 5.510 9.031 0.933

FGSM l1 ǫ =0.1 2.146 3.007 4.832 0.493

FGSM l2 ǫ =1.0 3.000 4.444 7.471 0.784

FGSM linf ǫ =0.5 2.495 3.312 5.812 0.599

Cloth Original - 3.104 4.962 8.292 0.853

FGSM l1 ǫ =0.1 1.765 2.266 3.484 0.350

FGSM l2 ǫ =1.0 3.136 5.019 8.282 0.847

FGSM linf ǫ =0.5 1.449 2.005 2.865 0.286

TABLE 2 | MMD between a benign distribution and adversarial distribution on

Amazon Beauty.

Data Parameters MMD-org MMD-l1

Original - 0.121 0.620

FGSM l1 ǫ =0.1 0.604 0.010

FGSM l2 ǫ =1.0 0.016 0.573

FGSM linf ǫ =0.5 0.570 0.011

Counterfactual - 0.232 0.273

JSMA - 0.412 0.034

Deepfool - 0.177 0.458

and the action space of the recommendation system on the
attack performance.
Adversarial attack results. We are interested in how vulnerable
the agent is to perturbation in semantic embedding space. We
consider an attack to be effective if a small perturbation leads to a
notable performance reduction. We experimentally compare the
performance of different attack methods (described in Section 3)
in Table 1.

We reuse the evaluation metrics of the original model,
namely Normalized Discounted Cumulative Gain (NDCG),
Recall, Hit Ratio (HR), and Precision for evaluation on the
amazon dataset. Table 1 shows the attack results share the
same trend with the distribution discrepancy in Table 2. Most
attack methods significantly reduce the performance of the
reinforcement system. FGSM l1 achieves the best performance. It
reveals that attacks on a single dimension can change the neural
network’s action drastically. Compared with l1 and linf methods,
FGSM l2 is less effective on three datasets, where the evaluation
metrics are mostly the same in contrast to the case without an
attack (The original baseline in Table 2). It is worth mentioning
that counterfactual attack does not perform well as the others.
One of the possible reasons is that the generated counterfactual
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FIGURE 2 | Comparison of three attack methods, l∞, l2, and l1 on three datasets (from top to bottom): Amazon Beauty, Amazon Cellphones, and Amazon Clothing.

state still falls in the original latent space. The counterfactual
attack can introduce noise to the current state by introducing
irrelevant information from future states.
Impact of attack intensity. Adversarial examples make small
perturbations to achieve notable changes in recommendation
performance. Although larger perturbations on user-item
interaction embeddings are not easily perceptible by humans,
decreasing attack intensity might degrade attack effectiveness.
To demonstrate the impact of different attack intensities in the
context of RL-based recommender systems, we conduct the
empirical experiment by varying the attack intensity, which is
reflected by the ǫ parameter shown in Equation 2 and Equation
3. Experiment results of attack with epsilon variation of FGSM
attack methods on three Amazon datasets (Figure 2) show
that compared to a 0.0 value epsilon, all metric values decline
as Epsilon increases, and l1 attack achieves the best result. l1
follows a similar yet more abrupt trend than the l∞ attack,
while the l2 attack achieves the worst performance regardless
of the epsilon value. Huang et al. (2017) propose to attack
the RL applied to games such as Atari. Their experiments
reveal that the l2 attack achieves comparable performance
as l1 and linf attacks do. To exclude the possibility that the

l2 might be more effective with larger epsilon values, we set
ǫ to 20 to test, but the result is the same. This observation
reveals that the attack in user-item-feature embedding
space shows different characteristics from attacks in the
pixel space.

Another interesting observation is that the metric values show
different trends depending on the datasets—unlike on Beauty and
Cellphones, the l∞ attack achieves comparable performance to
l1 on the Clothing dataset when the ǫ is larger than 0.3. The
result on the Cellphones dataset shows that the effectiveness
of the linf attack diminishes as the ǫ continues increasing
beyond 0.1.
Impact of attack frequency. We conduct two experiments on
attack frequency, random attack, and strategic attack. In the
random attack method, the adversarial examples are crafted with
a frequency parameter, pfreq. In the strategically-timed attack,
the adversarial examples are generated by the method shown in
Section 3.2. The NDCG metric is presented in Figure 3; other
metrics have a similar trend. It can be seen from Figure 3 that
the random attack performs worse than the strategically-timed
attack. Generating strategically adversarial examples in one-third
to half time steps achieves a significant reduction in all metrics.
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4.3. Detection Experiments
Analysis of adversarial examples. We use Maximum Mean
Discrepancy as statistical measures of high dimensional data
distribution distance. This divergence is defined as:

MMD(k,Xorg ,Xadv) = sup
k∈K

(

1

n

n
∑

i=1
k(xorg,i)−

1

m

n
∑

i=1
k(xadv,i)

)

,

where k is the kernel function, i.e., a radial basis function, which
measures the distance between the means of two distributions
(Table 2 shows the results); Xorg ,Xadv are benign and adversarial
examples. The examples here refer to the actions generated
by attacked RL agents. The distribution discrepancy of input
data pierces through the deterministic model and shifts the
action distribution that would be exploited by the detector. The
data is randomly sampled from generated action embeddings of
interactive recommendation systems. Each MMD is computed
by averaging 40 batches of 500 samples. The actions generated
by the RL agent are paths of the users-relation-item graph.
As mentioned in Section 4.1, each user gets over 100 paths,
which determines the overlapping of original data and adversarial
examples decrease with the time step of the path growing.
We choose the embedding of the last step to represent the
recommended items.

MMD-org shows the discrepancy between the original and
adversarial datasets, where MMD-l1 presents the discrepancy
between different attack methods. The results (Table 2) show
that the adversarial distribution is different from the original
distribution. Also, the disturbed distributions are closed to each
other regardless of the attack type. This insight clarifies that
we can use a classifier to separate benign data and adversarial
data, and it can detect several attacks simultaneously, which
might be transferred to other reinforcement learning attack
detection tasks.

Detection Performance. From a statistical perspective,
the above analysis shows that one classifier can detect
multiple types of attacks. We evaluate the detection

TABLE 3 | Detection result and factor analysis.

Dataset Attack Precision Recall F1 Score

Beauty l1 0.1 0.919 0.890 0.904

l2 1.0 0.605 0.119 0.199

linf 0.5 0.918 0.871 0.894

Counterfactual 0.900 0.895 0.898

JSMA 0.910 0.793 0.848

Deepfool 0.915 0.840 0.876

Cellphones l1 0.1 0.801 0.781 0.791

l2 1.0 0.754 0.593 0.664

linf 0.5 0.795 0.752 0.773

l1 1.0 0.810 0.825 0.817

Clothing l1 0.1 0.911 0.866 0.888

l2 1.0 0.541 0.099 0.168

linf 0.5 0.912 0.879 0.895

Dataset Frequency Precision Recall F1 Score

Beauty l1 0.02 0.823 0.362 0.503

l1 0.04 0.906 0.754 0.823

l1 0.06 0.915 0.841 0.876

l1 0.08 0.918 0.872 0.894

l1 0.3 0.922 0.927 0.924

Dataset Frequency Precision Recall F1 Score

Beauty l1 0.579 0.921 0.912 0.917

l1 0.451 0.921 0.908 0.914

l1 0.316 0.918 0.879 0.898

l1 0.279 0.914 0.829 0.869

l1 0.118 0.837 0.401 0.543

FIGURE 3 | Normalized Discounted Cumulative Gain of attack frequency on Amazon Beauty and Clothing. Dashdot lines represent random attacks, solid lines are

strategically-timed attacks. Blue lines are FGSM linf attacks, green lines are FGSM l1 attacks.
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performance of different models using Precision, Recall, and
F1 score.

We adopt an attention-based network for detection
experiments. The detection model is trained on the FGSM
l1 attack with ǫ at 0.1 for all datasets. The results (Table 3) show
that our detection model achieves better performance on attacks
that cause serious disruption. The detection precision and recall
rise as the attack is stronger. l∞ attack validates this trend, which
shows that our model can detect weaker attacks as well. The
result of detection on l2 attack can be reasoned with the MMD
analysis shown above. High precision and low recall show that
most l2 adversarial examples are close to benign data, which
confuses the detector. The l1 attack with ǫ = 1.0 validates our
detector performs well yet achieves worse performance on other
tests on the Cellphones dataset. Our model can also detect the
counterfactual-based attack since the data distribution has been
changed, verifying that our detection model can detect different
types of attacks. Our results on factor analysis (Table 3) show
that the detection model can detect attacks even under low attack
frequencies. But the detection accuracy decreases as the attack
frequency drops—the recall decreases significantly to 40.1%
when 11.8% of examples represent attacks.

5. CONCLUSION

Adversarial attacks on reinforcement agents can greatly
degrade user experience in interactive recommendation
systems, as an intervention on causal factors can result in a
different recommended result. In this article, we systematically

study adversarial attacks on RL-based recommendation

systems by investigating different attack methods and the
impact of attack intensity and frequency on the performance
of adversarial examples. We conduct statistical analysis
to show that classifiers, especially an attention-based
detector, can well separate the detection data. Our extensive
experiments show the excellent performance of our attack and
detection models.
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