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SUCCESS IN DATA ANALYTICS

ABSTRACT
Sydney Water and Data61 are collaboratively researching 
advanced analytics approaches to solving water industry 
challenges, including water pipe failure prediction, 
customer segmentation, demand analysis, sewer 
corrosion prediction, optimising water quality, predicting 
sewer chokes and prioritising active leakage detection 
areas. The aim is to achieve better services for customers 
and to deliver world class network performance.

Data61 is Australia’s leading data innovation group which 
was officially formed in 2016 from the integration of 
CSIRO’s Digital Productivity flagship and the National ICT 
Australia Ltd (NICTA). The collaboration is a partnership 
arrangement, with Data61 providing data analytics 
research and development expertise and Sydney Water 
providing data and industry knowledge. 

Both organisations have partnered to understand 
complex data sets that can be translated into knowledge, 
where the knowledge adds business insights. They help 
to see further, understand deeper and see it sooner 
about the data driven benefits from the collaboration, 
such as reducing cost, optimizing resources, minimizing 
uncertainty and mitigating risks, and improving services 
to customers. Within this partnership, both organisations 
have developed skills about data driven analytic on how 
to think about it, how to use it, and how to value it.

This paper outlines how Sydney Water has progressed 
on predictive analytics to develop capabilities of using 
machine learning and valuable tools for operators, 
shareholders and customers, with the collaborative effort 
from Data61.

Knowledge transfer has been applied as a key part of the 
collaborative partnership to facilitate the implementation 
of project outcomes.

introduction
Sydney Water is taking an enterprise wide approach to 
building an analytics capability and culture within the 
organisation. The motivation behind this is two-fold: 

Firstly, it enables predicting the likelihood of certain 
scenarios or events, such as a pipe failure. This supports 
a pro-active response to these situations as quickly and 
efficiently as possible; Secondly, implementing analytics 
can help to identify and interpret contributing factors 
in these scenarios or events. Once these factors are 
investigated and comprehended, it is possible to mitigate 
them if they lead to detrimental or disruptive events or 
enhance them if they result in positive situations.

Machine learning, as a subfield of computer science, 
constructs systems that can learn from data, rather than 
follow explicitly programmed instructions. 

Machine Learning is being used for six  
collaborative research initiatives between  
Sydney Water and Data61: 

1. Improving the prediction of the 
likelihood of failure for critical water 
pipes and small reticulation pipes;

2. Customer segmentation and 
demand analysis;

3. Predicting critical factors 
related to preventing 
corrosion in concrete sewers;

4. Optimising water quality  
in delivery systems -  
a case study;

5. Predicting sewer chokes;

6. Prioritising active leakage 
detection areas.

In these projects, the use 
of data analytics techniques 
has demonstrated a higher 
level of confidence for the asset 
performance prediction. For example, 
the improved prediction tools for 
demand analysis and optimisation have a 
potential to improve customer services and 
regulator confidence
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METHOD
The collaborative effort on data analytics 
in these projects has used machine 
learning to predict a number of core 
requirements on pipes or processes 
for Sydney Water. The focus of the 
research is to learn from the current 
operation data and identify previously 
unknown or unconfirmed relationships. 
The aim of doing this is to improve the 
prediction of the required needs. In these 
projects, integrating current knowledge 
and expertise with data analytics has 
demonstrated promising values in 
predicting asset performance. The six 
projects are detailed as below.

1. Water Pipe Failure Prediction
Opportunity
Pipe failure prediction is being investigated for two 
classes of assets: critical water pipes (Figure 1b) and the 
reticulation network (Figure 1a).

Critical water pipe failure prediction (2013-2015): 
Sydney Water manages 5,000 kms of critical water 
pipes, investing about $32 million a year in renewals. 
Better targeting condition assessment will improve the 
efficiency of the investment in pipe renewals. Data61 and 
Sydney Water have developed an advanced machine-
learning technique based conceptual model for Sydney 
Water which improves probabilistic prediction of high-
risk failures on critical water pipes.

Reticulation water pipe failure prediction (2015-
16): Sydney Water manages nearly 20,000 kms of 
reticulation water pipes less than 300 mm in diameter. 
Data61 and Sydney Water have been collaborating on 
innovative data-driven analysis and have developed a 
stochastic point process-based model for water pipe 
failure prediction in the reticulation network. Correct 
identification of pipes at risk of failure can assist in 
better allocation of the maintenance budget by avoiding 
inspections or renewals of pipes in working condition.

To target these two asset groups, two available 
categories of datasets were used:

◗◗ Pipe network: the attributes of all water pipes in the 
region being investigated (Figure 1a and b), including 
laid date, length, material, diameter size, location, 
protective coating, surrounding soil type, etc.; The 
oldest pipes were laid before 1900 and the average 
pipe age across the regions is about 45 years;

◗◗ Failure records: failure records from 1999 to 2015, 
including report date, type of failure, and failure location.

Methodology
Models determining which pipes are at risk of failure 
were created using non-parametric machine learning 
techniques for critical water pipes (Li, 2014, Vicky, 
2013). A stochastic point process-based model is used 
to assess reticulation water pipe failure (Lin, 2016) in 
both short-term and long-term future modes. Based on 
the derived list of pipes at risk of failure, Sydney Water 
could prioritise pipes which require further ‘condition 
assessment’ inspections or renewals.

The models also use a range of pipe data, including 
material, laid year, coatings, failure history, etc. By 
investigating how these factors impact the previous pipe 
failures, the relative likelihood of failure between the set 
of pipes is included in the model to aid the prediction.

Outcomes and Benefits 
The predictions were validated by separating the data 
into “in-sample” data and “out-of-sample” data. The 
in-sample data are used to build and train the models. 
Based on the prediction model, a list of high risk factors 
is derived. Then the out-of-sample data are matched 
with the derived list for model validation. The validation 
of models are carried out on both critical water pipes 
and reticulation water pipes through Sydney Water. 

Critical water pipe: The model developed from the 
in-sample data was tested and benchmarked against 
the model which was being used by Sydney Water for 
estimating probability of water pipe failure at the time of 
the project. The validation demonstrated that the new 
conceptual model would have identified significantly more 
potential failures with the same inspection effort by using 
the out-of-sample data. This is highlighted in Figure 2. 

Figure 1. a: Reticulation mains. b: Critical mains
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If 1% of the network was inspected, then 100% more actual 
failures would have been identified with the same effort. 

With better targeting of high-risk pipes for critical water 
pipe renewals, Sydney Water has the potential to reduce 
maintenance and renewal costs by several million dollars 
over a four-year price determination period 
and minimise inconvenience to customers 
from pipe breaks.

Reticulation water pipe: The Water 
Model was also validated with reticulation 
water pipes for both short-term and 
long-term prediction. It also significantly 
outperforms other methods for the 
long-term prediction on Sydney Water 
reticulation water pipes (Figure 3).

With better targeting of high-risk pipes for 
reticulation water pipe renewals, Sydney 
Water can reduce maintenance costs 
each year and minimise inconvenience 
to customers from pipe breaks. Long-
term failure prediction also better informs 
maintenance scheduling.

Future Collaboration
Further validation of the prediction 
outcomes is being implemented over  
the next couple of years by incorporating 
additional data, including soil, pressure 

transients and topography for selected areas 
of operation. Implementing the technique into 
Sydney Water’s practices is the next step in the 
implementation of this project.

2. Customer segmentation 
and demand analysis
Opportunity
Sydney Water manages water supply and 
demand of over 1.8 million properties in the 
Sydney area, including both residential and 
non-residential properties. Better prediction of 
water demand in the next few years will provide 
significant value to the price making decisions 
and supply security planning at Sydney Water. In 
this project, the proposed model will use three 
datasets available from Sydney Water:

◗◗ Attributes of customer’s properties, including 
a pool indicator, recycled water indicator, 
tenancy indicator, area, delivery system, build 
date, demand management indicator, water 
saving indicator and property type;

◗◗ External factors, including water price in the previous 
years, weather records and season indicator;

◗◗ Historical water consumption data.
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Figure 2. Predicted pipe length tested and corresponding 
number of failures detected, Data61 concept (green) vs water 
industry practice (red).

Figure 3. Performance comparison. Here p1 – p3 are three 
projections based on the current practice. For all the methods, 
2000-2005 data were used for training and 2006-2015 data for 
testing. For each testing year, the top 200 pipes with highest 
cumulative risk of failure are shown, and the accuracy is measured 
by the percentage of the selected pipes that actually failed 
between 2006 and testing year. 
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Methodology
The modelling input includes the historical customer 
consumption records (e.g. monthly apportioned meter 
readings) and a number of factors/attributes of the 
properties. The flowchart of the project includes three steps: 

1. Segment customers based on their historical 
consumption patterns.

2. Discover factors influencing consumption and 
behaviours for each segment.

3. Forecast future consumption using customer 
historical consumption records and other factors 
influencing customer behaviours.

Outcomes and Benefits
Customer Segmentation: Data61 has developed an 
approach to customer segmentation based on historical 
consumption patterns. Customers are grouped based on 
similarities in their historical consumption patterns. 

Demand Forecasting: This work has resulted in a 
new machine learning model built on the data driven 
customer segments for demand forecasting (Li, 2016). 
The model adopts latent variables to predict unknown 
real monthly consumptions. The model can achieve less 
than a 0.5% prediction error and improved ability in 
tracking total consumption trend (Figure 4).

3. Sewer Corrosion Prediction
Opportunity
Predicting sewer corrosion is a critical task for water utilities 
worldwide in order to improve efficiency and reduce 
the cost of chemical dosing, sewer pipe rehabilitation 
and sensor deployment. The presence of sulphuric acid 

generated by gaseous hydrogen sulphide (H2S) derived 
from the sewage attacks concrete structures in the 
sewerage system. A new and reliable toolkit, which enables 
spatiotemporal estimation of H2S gas concentrations within 
the sewer network, is being developed.

Analytical modelling of spatiotemporal H2S distribution 
over the entire sewer network is challenging. Increasing 
the number of H2S monitoring stations is often infeasible 
due to cost and accessibility. Therefore, in this work an 
attempt was made to use data analytics to estimate the 
spatiotemporal distribution of H2S with a limited number 
of observations. The model not only estimates the H2S 
concentration, but also the uncertainty associated with 
the prediction, which is an important measure in decision 
making. These H2S concentrations are planned to be 
used in the overall data-driven corrosion model. The 
final outcome of the prediction model can be used to 
prioritise high risk areas, recommend chemical dosing 
locations, and suggest deployment of sensors.

Methodology
The expected toolkit is a desktop application with a 
user-friendly interface for querying and producing 
output on the geographic information system (GIS). 
The inputs of the toolkit include the sewer network 
system (i.e. GIS plan), monitored/sampled factors, and 
hydraulic information. The toolkit can also incorporate 
existing corrosion model’s results (Wells & Melchers, 
2016) as prior knowledge. The toolkit will use data 
analytics techniques to enable: (1) Spatiotemporal 
corrosion prediction over the entire sewer network; (2) 
H2S concentration (and other parameters) estimation; (3) 

Chemical dosing optimisation and (4) Optimal 
sensor deployment.

Current Success and Vision
Data61 has successfully developed and evaluated 
models for spatiotemporal H2S estimation 
and corrosion prediction. Chemical dosing 
optimisation and optimal sensor deployment for 
monitoring are ongoing as scheduled.

◗◗ Spatiotemporal H2S concentration estimation: 
the proposed analytics model was tested in a 
Sydney sewer subsystem. There were 17 H2S 
observation sites at a monitoring frequency of 15 
minutes from Jan 2011 to Dec 2015. The aim is to 
estimate the spatiotemporal dynamics of H2S on 
the entire network over time and visualise it on a 
map in video format. Figure 5 illustrates a frame 
of the video which plots the H2S distribution on 
the network at 01:15:00, 15-Sep-2015.

Figure 4. Consumption Training and Forecasting Curves (Black 
solid line represents the actual total consumption volume; blue 
solid line represents the accumulated consumption volume; red 
dashed line represents training consumption volume and red 
solid line represents predicted consumption volume).
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◗◗ Corrosion Prediction: 
Based on the estimated H2S 
concentration and other 
monitored or estimated 
factors, a second model, which 
integrates physical model (or 
experts’ domain knowledge), 
has been developed to predict 
corrosion levels with a stated 
level of uncertainty over the 
entire sewer network.

◗◗ Dosing: The estimation of H2S 
concentration and predicted 
corrosion levels can assist in 
the development of the dosing 
strategy. The locations and 
amounts of chemical dosing 
can be optimised according  
to the H2S concentration, 
sewer corrosion level and 
hydraulic information on the 
sewer network. 

◗◗ Monitoring: A good 
deployment of sensors can 
maximise the monitoring 
capability on the sewer 
network. New sensors can be 
installed at locations with high 
uncertainty of H2S estimation 
obtained from spatiotemporal factor prediction and 
corrosion prediction phases. 

Conclusion and Future Work
The implementation stage will see the Toolkit become a 
desktop application with a user friendly interface. Without 
a need of specialised training, asset management staff will 
be able to input specific queries related to asset corrosion 
and have the choice of both GIS and non-GIS (e.g., 
spreadsheets, look-up tables) output formats.

4. Optimising water quality
Opportunity
Data analytics research will systematically study 
the impact of network operations on water quality 
(characterised by indicators, such as chlorine residuals) 
and energy costs (mainly generated by pumping stations). 
Historical network operation records, including reservoir 
levels, pumping status, pressures, water demand, energy 
consumption and tariffs, and water quality, will be used as 
learning data. Data analytic techniques will help determine 
optimal network operation strategies, including chemical 
dosing strategies and operational reservoir protocols, 
which can in turn help reduce energy use and improve 

water quality throughout the network. The Woronora 

delivery system in Sydney’s south is used as the case 

study area in this project.

Challenge: Quantify uncertainty in water quality and 
demand predictions for supply networks

Intelligent networks include heterogeneous data ranging 

from reservoir levels, pumping and controlling valve status, 

flow rates, pressures, and chlorine residuals. This data comes 

in a variety of formats, time resolutions and volumes, making 

it complex to aggregate and analyse by traditional methods. 

Moreover, predicting chlorine residuals and water demand 

is important for network optimisation, but the dynamic 

characteristics of the data make it difficult to predict future 

values accurately, even in a next 24-hour temporal window. 

A major challenge is to consider the assets jointly when 

optimising water quality and energy cost.

Methodology
The research efforts will investigate the water distribution 

systems using the network and smart sensing data to 

develop a decision making model based on data analytics 

to optimise and manage different operational parameters. 

Figure 5. Spatiotemporal estimation of H2S concentration in the entire 
network over time visualised via video. The plot illustrates a frame of 
the video which plots the H2S distribution on the network at 01:15:00, 
15-Sep-2015.



Water e-Journal   Online journal of the Australian Water Association6

Data Analytics

The case study will use machine learning 
techniques to: 

◗◗ understand the important features that may 
cause or explain the variations in water quality, 
energy operations, and dosing responses.

◗◗ optimise normal system operations in terms 
of cost using the energy consumption and 
pumping costs, reservoir operating windows, 
system demand, network flow and pressure.

◗◗ optimise the Chlorine dosing program using 
the water quality data, historical dosage 
records and system demand data.

Current Success and Vision 
Data61 has successfully constructed the water 
quality prediction model in the reticulation 
network, which is capable of predicting 
downstream water quality in a real-time manner.

The expected future outcomes from the intelligent water 

quality predictive tool for the Woronora delivery system 
would demonstrate whether machine learning based 
data analytics could provide improved decision making 

for water system management. The expected 
outcomes are shown in Figure 6.

In addition, a water quality situational awareness 
tool is developed. This platform is intended to 
map the forecasting results on a geographical 
map, which is capable of providing the decision 
support tool to aid re-chlorination and pumping 
scheduling, as shown in Figure 7.

5. Predicting sewer chokes
Opportunity
Every year, Sydney Water responds to 
approximately 12,000 to 21,000 sewer blockages, 
known as chokes. A project has been developed 
to gain a better understanding of the causes of 
sewer chokes and develop an analytical tool to 
predict the likelihood of future chokes. The aim 
of the project is to provide data driven decision 
making to assist Sydney Water to shift from the 
current reactive choke management approach 
towards a predictive management approach. The 
data used in this project include:

◗◗ Sewer network: the attributes of all sewer 
pipes, including asset identification number, 
construction date, length, material, diameter 
size, location and etc.;

◗◗ Choke records: choke records from 2000 to 
2015, including asset identification number, 
choke date, choke type, choke location and etc.;

Environment data: tree canopy1, climate2  
and soil data. 

Figure 6. Intelligent water system data analytics expected outcomes.

Figure 7. Water quality situational awareness tool
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Methodology
A stochastic point process-based 
statistical model for short-term (one 
year) choke prediction is proposed. 
Specifically, it is a new variant of Hawkes 
process3(Hawkes, 1971, Vere-Jones 1988 
and Diggle, 1994). It is an interaction 
point process that considers not only 
the choke frequency of a pipe itself 
(determined by pipe characteristics), 
but also the triggered chokes caused by 
other chokes (spatially and temporally, 
e.g. previous chokes and nearby chokes). 
Intuitively, a sewer water pipe that has 
been subject to chokes in the past will 
block more frequently in the future. The 
model parameters of the proposed new 
variant of Hawkes process are learned 
from historical chokes from 2000 - 2015 and pipe 
characteristics (including material, length, laid year, etc.). 
The model is trained and validated on separated groups 
of pipes for different choke causes, including root, debris, 
grease, soft choke, etc.

Outcomes and Benefits
Detailed below is an example for verifying the 
effectiveness of the proposed prediction model on 
chokes caused by tree roots.

Tree roots: The majority of Sydney Water’s chokes are 
caused by tree roots blocking sewer pipes. The exact 
percentage of chokes due to tree roots is quite variable 
and can be anywhere between 50% and 80% in any 
given year. From Figure 8, it can be observed that 
choke rate is higher in the highly tree covered areas. To 
improve the effectiveness of the sewer choke prediction, 
Data61 has taken the tree canopy mapping data into 
consideration (as one weight parameter) within the 
stochastic point process-based statistical model to more 
accurately predict chokes. 

The data validation demonstrated that the Data61’s 

conceptual model for the total Sydney Water system 
can identify about 10% of tree root caused chokes  
with only 1% of the total length of the network 
inspected (Figure 9).

Conclusion
Factor analysis and sewer choke prediction have been 
conducted in a collaborative project between Sydney 
Water and Data61 based on Sydney Water’s asset and 
choke data. Various insights about factor influences 
have been derived from factor analysis. These insights 
help understand the importance of different factors 
and help build an accurate choke prediction model 
based on stochastic point process. The model considers 
intrinsic choke patterns caused by physical attributes 
and previous chokes together for predicting future 
chokes. Experiments have been conducted on Sydney 
Water data for justifying the effectiveness of the 
proposed model. Data61 is developing software tools 
for sewer choke prediction which can analyse multiple 
data sources, visualise factors, cohort analysis results, 
and support prediction result online generated and 
downloadable. This project is a finalist in the 2017 AWA 
NSW Water Awards Research and Innovation.

1. The plan view of a tree canopy is representative of the majority of the root zone. It is estimated that the root zone will extend to at least the 
tree canopy coverage.

2. There are a number of climate indicators that are considered to influence the likelihood of a tree root blockage. The conditions include 
rainfall, temperature, evaporation and soil moisture.

3. Hawkes process is a classic spatial-temporal statistical model which only considers the spatial-temporal relationship between points while 
our developed method considers both intrinsic pipe characteristics (e.g., laid year, length, and previous chokes) and external factors for 
predicting future chokes.

4. The choke rate from tree roots decrease between 90% and 100% tree coverage as a large proportion of these sewers are in undeveloped 
areas and often downstream in the system. There are two potential causes of this phenomenon: (1). there are less junctions on sewers with 
high tree coverage, and (2). downstream sewers are often deeper.

Figure 8. Tree canopy mapping example and the overall influence to 
choke rate4. 
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6. Prioritising 
active leakage 
detection areas
Opportunity
Each year Sydney Water 
inspects a subset of pipes 
through an active leak 
detection (ALD) program 
in order to find leaks. In 
2013-14 Sydney Water spent 
around $1.5M on 15,000 km 
of pipes for ALD. The ALD 
program involves scanning of 
reticulation pipes and fittings 
using acoustic leak detection 
equipment to locate leaks. 
Then pressure zones are 
selected for inspection based 
on the predicted leakage volume, cost of water and cost 
of intervention program.

The efficiency of the ALD program can be improved 
by segmenting large pressure zones into smaller 
segments with different leakage behaviours and better 
prioritisation of zones/segments. To achieve this, Data61 
uses two sets of data:

◗◗ Pipe network and reported leakage/break records, 
as described in water pipe failure prediction project.

◗◗ ALD records: more than 3,000 ALD inspection 
records from 2001 to 2015, including inspection 
date, zone, and different types of leaks found.	

Methodology
The technique uses data mining and machine learning 
methods, including Generalized Linear Model (Madsen & 
Thyregod, 2011) and Model-Based Recursive Partitioning 
(Zeileis et al, 2008), to first segment large pressure zones 
into segments, and then prioritize zones/segments to 
carry out active leak detection.

For zone segmentation, the method takes pipe location 
and leakage/break history into consideration, aiming to find 
segments of pipes that expose different leakage behaviour.

For zone/segment prioritisation, the model uses a 
range of pipe properties, including age, material, failure 
history and the previous ALD records. By looking at how 
these factors impact the outcomes of ALD inspections, 
the volume of leakage for each zone/segment can be 
predicted, and the inspection candidates can be selected 
based on the prediction. 

Current Progress and Outcomes
For zone segmentation, the algorithm has been validated 
on several large pressure zones. The merits of the 
algorithm include:

◗◗ Finer-grain inspection targeting: by segmenting 
large zones into segments of homogeneous leakage 
behaviour, different inspection strategies can be 
applied to each segment (e.g., lower inspection 
frequency for less leaky segments). One example of 
the segmentation is shown in Figure 10.

◗◗ Compatible to current practice: Sydney Water 
engages contractors for ALD based on catchment 
management authorities (CMA). The algorithm 
produces zone segments that aligns with CMA (or 
predefined areas), so that the change to the current 
ALD practice will be minimized.

For zone/segment prioritization, the outcomes are 
validated by measuring the errors between the predicted 
leakage volume and the actual leakage volume found on 
ALD inspections. The results of the validation include:

◗◗ More accurate inspection targeting: with better 
leakage volume prediction, the ALD program can 
target high-risk zones/segments more effectively. 

◗◗ Initial data validation demonstrated that the Data61 
conceptual model yields more accurate leakage 
volume prediction. The average prediction error is 
50% less than the industry practice (Lambert, 2009).

Conclusion and Future Work
This project has been successful in developing new data-
driven techniques to improve the effectiveness of the 
ALD program. Further validation and fine-tuning of the 
model will be done in the next step.

Figure 9. Short-term prediction for Ryde subcatchment for 2014. The model 
is trained by using all the choke data from 2000 to 2013 and tested by using 
the choke data in 2014. The selected pipe (Ryde) was correctly predicted if it 
choked in the following one year.
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OVERALL Conclusion
The collaborative machine learning based data analytics 
research will be further validated within an operational 
context to confirm and quantify the approach and benefits. 
This will be done over a 12-18 month period for all projects.

After validation, it is planned to incorporate the 
outcomes into normal business-as-usual practice. Work 
to date has demonstrated that these data analytical 
approaches can be used to optimise operational 
efficiencies and reduce costs. This will contribute to 
better services for customers and higher levels of 
confidence for stakeholders as well as regulators.
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