
“©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 



1

HCFL: A High Compression Approach for
Communication-Efficient Federated Learning in

Very Large Scale IoT Networks
Minh-Duong Nguyen, Sang-Min Lee, Quoc-Viet Pham, Member, IEEE, Dinh Thai Hoang, Member, IEEE,

Diep N. Nguyen, Senior Member, IEEE, and Won-Joo Hwang, Senior Member, IEEE

Abstract—Federated learning (FL) is a new artificial intelli-
gence concept that enables Internet-of-Things (IoT) devices to
learn a collaborative model without sending the raw data to
centralized nodes for processing. Despite numerous advantages,
low computing resources at IoT devices and high communication
costs for exchanging model parameters make applications of FL
in massive IoT networks very limited. In this work, we develop a
novel compression scheme for FL, called high-compression feder-
ated learning (HCFL), for very large scale IoT networks. HCFL
can reduce the data load for FL processes without changing
their structure and hyperparameters. In this way, we not only
can significantly reduce communication costs, but also make
intensive learning processes more adaptable on low-computing
resource IoT devices. Furthermore, we investigate a relationship
between the number of IoT devices and the convergence level of
the FL model and thereby better assess the quality of the FL
process. We demonstrate our HCFL scheme in both simulations
and mathematical analyses. Our proposed theoretical research
can be used as a minimum level of satisfaction, proving that the
FL process can achieve good performance when a determined
configuration is met. Therefore, we show that HCFL is applicable
in any FL-integrated networks with numerous IoT devices.

Index Terms—Communication efficiency, deep learning, dis-
tributed learning, federated learning, autoencoder, data compres-
sion, Internet-of-Things, machine type communication.

I. INTRODUCTION

The rapid increase in Internet-of-Things (IoT) applications
has revolutionized the big data and machine learning (ML)
technology fields [1]. Conventionally, ML and big data algo-
rithms are deployed in the centralized servers [2]. This central
deployment can be considered as an effective approach if all
the data are available in one consolidated database. Therefore,
the whole big data distribution can be processed without any
problems such as non independent and identically distributed

Minh-Duong Nguyen and Sang-Min Lee are with the Depart-
ment of Information Convergence Engineering, Pusan National Univer-
sity, Busan 46241, Republic of Korea (email: {duongnm@pusan.ac.kr,
pms88520@pusan.ac.kr}).

Quoc-Viet Pham is with the Korean Southeast Center for the 4th Indus-
trial Revolution Leader Education, Pusan National University, Busan 46241,
Republic of Korea (e-mail: vietpq@pusan.ac.kr).

Dinh Thai Hoang, and Diep N. Nguyen are with the School of Electrical
and Data Engineering, University of Technology Sydney, Sydney, NSW 2007,
Australia (e-mail: {hoang.dinh, diep.nguyen}@uts.edu.au).

Won-Joo Hwang is with the Department of Biomedical Convergence
Engineering, Pusan National University, Yangsan 50612, Republic of Korea
(e-mail: wjhwang@pusan.ac.kr).

This work was supported by a National Research Foundation of Korea
(NRF) Grant funded by the Korean Government (MSIT) under Grants NRF-
2019R1C1C1006143 and NRF-2019R1I1A3A01060518.

(non-IID) and lack of sampling population, which is unable to
represent the whole data distribution. The arrival of the golden
era of massive IoT, in addition to the development of the state-
of-the-art 5G and future 6G wireless systems, has expedited
the demands for distributed learning solutions at the edge of
the network [3], [4].

FL [5], an emerging AI paradigm, has recently attracted
considerable attention from the research communities thanks
to its nice features and wide-ranging applications. In con-
ventional ML techniques, a server collects the user data and
performs a computing process centrally, thereby increasing the
risk of high communication overload and data leakage. FL,
on the other hand, aims to mitigate the privacy concerns by
locally training the ML models, and thus the users only need
to dispatch to the server their model parameters [6]. Therefore,
this paradigm preserves the private and collaborative aspects of
the ML framework for distributed users. As a result, a number
of AI applications leveraging the FL process for IoT networks
have been developed recently, such as vehicular cloud [7],
remote applications [8], smart healthcare [9], and mobile edge
networks [10].

Despite recent advancements in computing hardware and
computing paradigms such as fog computing and mobile edge
computing (MEC), the limitation of communication resources
still remains as an obstacle in IoT systems [11]. With the
fact that the number of IoT devices is increasing dramatically
in the modern world and the wireless resources are limited,
communication proficiency sets off to be one of the key
challenges for carrying out massive IoT scenarios in which
the large-scale FL system is integrated. Therefore, some ap-
proaches to address the communication efficiency problem for
FL processes have been introduced recently [12]. For example,
the authors in [13] utilize the submodel framework, wherein
the clients decide which parts are necessary for the model
update process instead of implementing the whole model. The
FedBoost algorithm in [14] is a combination of an ensemble
learning and the random sampling theory. To be more specific,
FedBoost selects a random partial set of clients to deliver
the updates instead of sending all parameters to every client
in each round. The secure aggregation approach proposed in
[15] and [16] utilizes the random sampling method to cross-
validate the model updates between different pairs of clients
before forwarding the model parameters to the aggregation
module at the server. Furthermore, the authors in [17] and
[18] formulate the optimization problems to minimize the time



2

cost for each communication round [17] and maximize the
aggregation data rate from FL users [18]. In order to reduce
the communication load during the propagation phase, many
researches have applied sparsification and model pruning into
FL. Authors in [19] inherit the simple regularization method
to develop pruneFL algorithm. This algorithm can reduce
the number of parameters up to 7 times. PruneFL, on the
other hand, requires more than 6000 communication rounds to
reach convergence, which is inappropriate for IoT networks.
CA-DSDG [20] and CE-FedAvg [21] both employ the same
sparsification concept, in which model parameters that do not
change much are dropped from the updating phases. How-
ever, the efficiency by sparsification is not convincing where
the achieved compression ratio is capped at 70%. Another
effective method which is both efficient for communication
and computation is model quantization. The works in [22]–
[24] focus on model compression wherein the entire network
structure is estimated and incorporated into a new model
with a low definition model parameter set. The full-precision
weights are estimated into approximate set with ternary format
(which includes only three values: −1, 0, 1) [25]. Since the
deep network parameters are quantized into 2-bit values, the
method already reaches its compression limitation. Therefore,
the maximum compression efficiency that this method can
achieve is constrained by 90%.

In order to further improve the communication efficiency
of FL processes, in this work, we propose a new compression
strategy, called high-compression federated learning (HCFL),
for IoT networks with a very large number of IoT devices.
Remarkably, thanks to the compact design on the presentation
layer of the OSI model [26], HCFL is strictly in compli-
ance with the entity-specific information flow between current
3GPP interfaces while being communication efficient. Thus,
our proposed HCFL scheme can be cooperated with other
communication-efficient methods (e.g., quantization [22], [23],
[27], sparsification [20], model pruning [19], [21]) to improve
the performance of the whole FL process. We can sum up our
contributions in this paper as follows:

• We introduce a novel compression scheme, called HCFL,
for FL. We leverage an under-complete autoencoder
structure in the FL process to develop a communication-
efficient strategy that can reduce the transmission load
of the FL mega-system with a very large number of IoT
devices.

• We provide theoretical analysis of the proposed HCFL
method under the FL mega-system. We demonstrate that
the HCFL method can achieve a very high performance,
e.g., the models with HCFL can be compressed more
than 95% of their original size. We also prove that the
lossy compression by HCFL adds noise into the FL
training process, which encourages exploration efforts for
our large-scale IoT learning system. Thus, HCFL can
improve the FL’s overall performance and reduce FL’s
both convergence round and delays. Furthermore, we in-
vestigate a relationship between the system performance
and the other compress-aided FL process’s characteristics
such as the number of IoT devices and the compressor

reconstruction error.
• We conduct various simulations with an in-depth com-

parison with the conventional FL process in terms of
performance and communication efficiency. We evaluate
the proposed HCFL method under different conditional
simulations, including compression efficiency at different
compression ratios, convergence analysis at distinct FL
process and client predictor settings. The simulation
results reveal that the HCFL method can achieve a
compression ratio up to 32 times better than that of the
conventional FL process. Notably, the trade-off between
compression ratio and performance is acceptable when
the accuracy loss on the HCFL system is less than 3% in
comparison with the baseline method.

The rest of this article is organized as follows. Section II
briefly reviews the fundamental knowledge about FL and
autoencoder concept. Section IV demonstrates the theoretical
analysis of HCFL system and how the HCFL and FL process
support each other. Section III details the deployment strat-
egy of the compression-aided federated system along with
two appropriate compression model structures. Simulations
conducted to compare the performances of a standard FL
process and the proposed method in terms of global loss,
data reconstruction error and convergence rate are described in
Section VI. Finally, conclusions are presented in Section VII.

II. BACKGROUND AND METHODS

This section first presents the system model, then provides
some preliminaries of the conventional FL procedure and its
essential formulations, and finally shows the main features and
definitions of the autoencoder model.

A. System Model

We consider a mega FL-integrated IoT system involving one
server and a set of K clients (i.e., IoT devices), as illustrated
in Fig. 1. Clients and server jointly build a shared ML model
for processing and data analysis. Each client collects data from
its sensors or users. We assume that all the clients’ datasets
have the IID property in this study [5]. The client’s data
is processed through an ML-based predictor on each device
distributively. Because a large number of clients participate in
each communication round, every participating client needs to
share limited bandwidth resources. Thus, the transmission rate
of each client is also limited. This problem leads to the need
for communication efficiency in FL-integrated IoT networks
and motivates us to complete this work. Our work aims to
reduce the communication burden significantly in the meta
FL-integrated IoT system.

B. Federated Learning

FL is an up-to-the-minute concept of ML. In FL, instead of
collecting the data and utilizing them for central training at one
location, the data is processed distributedly at the clients. The
cooperation between the server and clients is to ensure that the
model losses are verified at the server, and the improvement
is updated onto the distributed clients gradually, as shown in



3

BS/Central 

Server

IoT device 2

IoT device 1

IoT device K

Dataset 1

Dataset 2

Dataset K

Send local weights to the 

server.

Update aggregated global 

weights to client

Figure 1. An illustration of FL. The users train the local predictors on their
distributed devices, and then the trained local neural networks are sent to the
server. The server then executes the aggregation to generate the global model
parameters. Lastly, the latest global model is uploaded back to the users, and
the process continues until the global model converges.

Fig. 1. The FederatedAveraging (FedAvg) algorithm, proposed
in [5], utilizes a sum averaging function to combine loss and
weight values from different clients as follows:

f(w) =
nk
n

K∑
k=1

Fk(w) where Fk(w) =
1

nk

∑
i∈Pk

fi(w),

(1)

Here, w denotes the parameters of the FL model, Fk(w) and
fi(w) denote the loss value on the client k and each data point
of the whole dataset with a size n, respectively. The dataset is
distributed over K clients with a data size of nk for each client
in FL. The gradient on the client k is given as gk = δFk(wk).
The aggregation function at the server generates a close-form
function with the loss sum-averaging update as follows:

wt+1 ←
K∑
k=1

nk
n
wkt+1. (2)

The equality n
nk

= K is valid when the dataset on each client
is IID with each other on the whole set of dataset of the system
[28] and every client samples the same amount of data each
communication round. Thus, the FedAvg algorithm updates
the model weights as follows:

wt+1 ←
1

K

K∑
k=1

wkt+1. (3)

C. Autoencoder

Autoencoders utilized in deep learning [2] are dual-
symmetric neural networks designed to produce the output
data that is approximately-but-not-equal to the intake of that
system. Autoencoders learn a concentrated representation of
the input while the most valuable information is retained.
There are two components in the aforementioned system: an
encoder that processes a transformation: h = fω(x), and a
decoder x̂ = gω′(h) that is responsible for the reconstruc-
tion. The f and g represent the encoder and decoder neural

Loss function

Figure 2. Structure of a general autoencoder.

networks, respectively, and h denotes the feature vector of
the model in the aforementioned functions. The encoder f
transforms the incoming matrix into a completely divergent
model, whereas the decoder g is tasked with rehabilitation. The
parameters of the proposed network is learned simultaneously
on the task of reconstructing the original output.

The loss function L(w), which is a measure of the discrep-
ancy between the input x and the output x̂, is applied to obtain
the lowest possible reconstruction error [29], which is defined
as follows:

L(w) = 1

2
‖x̂− x‖22 =

1

2

N∑
k=1

(x̂− x)2. (4)

The proposed back-propagation operation uses the conven-
tional mean squared error (MSE) loss function [2] to compute
the Euclidean distance between the two vectors of the output
and input of the autoencoder.

The illustration of a general autoencoder is shown in Fig. 2.
Autoencoders are designed to not copy the output from
the input perfectly, as aforementioned. Usually, restrictions
are conventionally imposed to make the distribution of the
output data to be exactly the same with that of the original
information. Because of the objective to prioritize the input
aspects, which can represent the whole data distribution, the
encoder manages to collect the valuable properties only. The
main objectives of autoencoders are conventionally feature
extraction, dimensionality reduction, and data augmentation.
Autoencoders learn the data characterization in a reduced
dimensional space by placing additional focus on essential
features while attempting to eliminate redundancy and noise.
It is based on the encoder-decoder architecture, wherein the
encoder encrypts the data with a high dimensional space to the
lower-dimensional version. Moreover, the decoder performs in
a reverse way, i.e., the decoder reconstructs the initial high-
dimensional information from the reduced-dimensional data.

III. PROPOSED COMPRESSION-AIDED FL ALGORITHM

In this section, we present how to implement our proposed
HCFL-integrated FL in massive IoT networks. We first pro-
pose the problem formulation for our HCFL method. Then, we
propose the system deployment of HCFL in an FL process
and clarify the procedure of the HCFL-aided FL. Secondly,
we find that when implementing a traditional multi-layered
autoencoder, the performance of the HCFL model is degraded
due to the curse of dimensionality. Therefore, we propose
new model architectures for the compressor and extractor that
improve the integration efficiency of the HCFL into the FL



4

FedAvg

Scheduler

Decoder

Encoder

...

Client 1

Server

Predictor

EncoderEncoder

Predictor Predictor

Client 2 Client k

Communication Links

Figure 3. HCFL system deployment.

process. Furthermore, we reveal how to pre-process the input
model weights and how the model is trained given the model
parameter dataset.

A. Problem Formulation

In this part, we aim to develop the framework to minimize
the reconstruction error between the original model at input
and reconstructed model at output for HCFL in the FL process.
In general, HCFL operates as an autoencoder to compress
the distributed clients’ model and reconstruct the encoded
model. Nevertheless, because the clients apply gradient de-
scent stochastically, the models’ weight distribution transfor-
mation remains undercover. To acknowledge those problems,
we need to capture the generalization and transforming trends
of every model’s distributions, especially when the model’s
gradient descent is operated in different directions. Thus,
our proposed HCFL should be satisfied the two following
conditions:
• Minimize the reconstruction error between the original

model and reconstructed model as mentioned in (4).
• Maximize the mutual information between the original

model and encoded data. Therefore, we can maximize
the information transferred from the original data to
the encoded data, which improves the performance of
the encoder and thus enhance the decoder quality. The
optimization problem problem is introduced as follows:

max
θ
I(W,C) = DKL

[
p(W,C) ‖ p(W )⊗ p(C)

]
, (5)

where ⊗ is the Kronecker product between two matrices
W and C, θ is the model parameters of the HCFL model,

and the DKL stands for relative entropy between two data
distribution.

In this way, we can formulate a joint optimization problem
to solve both of the aforementioned tasks. Meanwhile, to
conjugate the distance-based problem in (4) and entropic
problem in (5), we consider the relationship between MSE
and cross entropy (CE). We follow an assumption that the
output of deep network in HCFL is demonstrated as Gaussian
distribution with variance of σ2 [2]:

p(Ŵ |W ) = N (W,σ2)

=
1√
2πσ2

exp

(
−1

2

(W − Ŵ )2

σ2

)
.

(6)

Applying CE on the HCFL’s output, we have:

H(W, Ŵ ) = −Ep(W ) log p(Ŵ )

= −Ep(W ) log
[ 1√

2πσ2
exp
(
− 1

2

(W − Ŵ )2

σ2

)]
= O

(
− Ep(W )(W − Ŵ )2

)
.

(7)

The O describes the growth rate of the function, Ep(W ) is the
expectation over distribution of model parameters W . From
the above formula, we can see that H(W, Ŵ ) is proportional
with MSE loss Ep(W )(W − Ŵ )2. Thus, we have the joint
problem formulation as follows:

min
θ

L = H − I (8a)

s.t. H = λH(W, Ŵ ), (8b)

I = (1− λ)DKL
[
p(W,C) ‖ p(W )⊗ p(C)

]
, (8c)

where θ is the parameter set of the HCFL model and λ is
the scale coefficient between two tasks H and I . Intuitively,
the problem in (8) is the alternative version of bottleneck
technique. Therefore, the choice of λ is similar to the scaling
factor choice in [30], [31]. The HCFL is thus trained by the
following gradient descent process:

θ = θ − γ∇L, (9)

where γ is the learning rate for the HCFL training process.

B. System Deployment

This part discusses the system deployment of the HCFL
in the FL. As we can see from Fig. 3, the HCFL comprises
two components: encoders which are located on each client’s
domain, and a single decoder which is embedded in the
server’s firmware. Although numerous encoders are required
for the activation of the compression operation on the clients,
the server’s side only requires a single decoder because the
incoming client-training-information from all clients is dis-
continuous and can be scheduled using the First-In-First-Out
rule. This ensures that the hardware requirement of the server
can still be satisfied.

Algorithm 1 shows the complete pseudo-code for the
HCFL-integrated FL. After the initialization, the server starts
its training iterations. Each iteration is named as one com-
munication round. At every communication round, the server



5

Algorithm 1 HCFL compression-aided FedAvg FL. We de-
note k to be the client index in a total number of K clients;
E is the local epochs, η is the learning rate, and the local
mini-batch size is represented as B.

procedure SERVEREXECUTES
Initialize w0

for each round t = 1, 2, . . . do
m← max(1,K × C)
St ← (random set of m clients)
for all k ∈ St in parallel do

hkt+1 ← CLIENTUPDATES(wt, k)
wkt+1 ← DECODE(hkt+1)
wt+1 ← (k−1)

k wt+1 +
(1)
k w

k
t+1

Updates w to the clients.

procedure CLIENTUPDATES(w, k)
B ← (divide Pk into batches of size B)
for each local epoch e from 1 to E do

for batch b ∈ B do
w ← w − ηOl(w; b)

h = Encode(w) return h to server

uploads global weights to every client and calls for updates
from K selected clients. The selected clients train their models
in parallel and then send their new local models to the server.
The server decodes all of the received local parameters and
then executes the accumulation and averaging to acquire a new
global model. This process is continuously processed until
the FL achieves the desired convergence or when the max
communication round value is reached. Moreover, the encoder
compresses the model prior to the packaging and modulating
phases of the communication process on the transmitting
links. Likewise, the decoder reconstructs the model after the
demodulation and de-packaging phases in the receiving links.
This closed-loop process ensures the compatibility of HCFL
in any IoT systems.

C. HCFL Network Architecture

The proposed HCFL framework is expected to compress the
model parameter data with a ratio of 1:4 to 1:32 in terms of
size. This rate can be achieved by dealing with the loss of data
during the encoding scheme. Hence, a deep neural network is
leveraged to reduce the loss between the reconstructed and the
original data.

1) Definition of Datasets: To develop HCFL, we first define
the dataset for the network. The data are extracted from
the model parameter dataset. Instead of extracting the model
parameters towards the end of the training, the data prepared
for this system is generated after each epoch in each client
to assist the compressor in learning the values and spatial
distributions of the neural network‘s coefficients. The curse
of dimensionality and the computation cost at the client’s end
were reduced by splitting the data into two components to be
trained with two different compressors, namely the convolu-
tion kernel dataset and dense network dataset, where elements
in each part have the similar dispensational characteristics.

2) The Proposed Compression System: uses V fully-
connected (FC) layers at the encryptor (Fig. 4a) and (l − V)
FC layers at the extractor (Fig. 4b), where l is the total hidden
layers of the HCFL system to activate the dimensionality
reduction. Each FC layer consists of a dense layer followed
by a Tanh activation function for each layer node. The usage
of Tanh is to guarantee the output of the HCFL in the range
[−1, 1], which is the value range of original model parameters.
The FC layer also uses an additional batch normalization in
the input in order to make the HCFL more stable and faster
by re-centering and re-scaling, as in Fig. 5. The depth of the
HCFL hidden layer is set according to the compression ratio of
the HCFL and the complexity of the input model. The higher
the HCFL compression ratio is, the more FC layers are added
into the deep network. As more layers being added to the
neural network, the lower bound of the log probability that
the model assigns for the training data ascends (which will
be presented in Section V). Thus, the deep neural networks
deliver better compression performance than those of shallow
or linear neural networks [32], [33].

3) Data Pre-processing: A detailed description is given
below:

• Data preparation: The model parameters are stored
during the FL execution. To avoid the dataset imbalance,
we only fetch the pre-saturated client’s predicting models.
Moreover, with the proposed method, the HCFL com-
pressor can learn the model general distribution at every
learning state.

• Data segmentation: We apply the divide-and-conquer
algorithm [34] to break down each individual model
parameter into two or more sub-datasets whose distri-
butions have the high mutual information. Therefore,
the clustered dataset distributions become simple enough
that HCFL can avoid the curse of dimensionality. The
performance analysis of the data segmentation technique
is proposed in Section 2.

D. Proposed Training Phase

We adopt the transfer learning technique to implement the
HCFL. Firstly, we train a pre-model with a small amount
of dataset on the server. By applying augmentation on small
dataset on server, the set of model data samples is thus has
an additional variation on data distribution [35]. As a result,
we incidentally add noise to the gradient, which raises the
variance of the norm of the gradient. This high variance thus
increases the gradient stochasticity for the pre-train model
[36], which improves the model parameters dataset general-
ization. Therefore, the received dataset is appropriate for the
HCFL training phase. Afterward, the model which is obtained
at each epoch from the pre-model training phase is utilized
for our HCFL model training process. The training process is
illustrated in Figures 4a and 4b. In these figures, the HCFL is
trained as demonstrated in (9). As explained in Section III-A,
the trained HCFL model thus has the generalized features of
the distributed clients’ models in practice.



6

FC Layer 

FC Layer 

FC Layer 

layers

B
ack propagation 

Original model parameters

Compressed data

(a) Architecture of HCFL compressor.

FC Layer 

FC Layer 

FC Layer 

layers

B
ack propagation 

Compressed data

Reconstructed model parameter

(b) Architecture of HCFL extractor.

Figure 4. HCFL network architecture. There are V FC layers on the compressor and l − V FC layers on the extractor, respectively. The FC layers in each
HCFL part is connected sequentially.

FC
Layer 

Fully connected

Hyperbolic Tangent

Batch normalization

1

0

-1
-10 100

Figure 5. Composition of an FC layer.

E. Discussion on the compatibility of HCFL with asyn-
chronous FL

In its simplest version, our proposed HCFL, like the ma-
jority of existing FL approaches, suffers from the stragglers
in asynchronous FL. Nevertheless, due to the similar structure
with the conventional FL process, various resource allocation
techniques (e.g., [37], or [38]) can integrate into HCFL to mit-
igate the straggling phenomenon. we reserve further research
on this topic for the future.

IV. PERFORMANCE ANALYSIS ON LOSSY COMPRESSION

In this section, we theoretically analyze the convergence
of HCFL-integrated FL when applied in IoT networks which
consist of a large number of devices. We first evaluate the

Encoder

Predictor

Uplink

Downlink

Client Server

Decoder

Decoder

Encoder

Aggregator

Figure 6. Structure of a general autoencoder with HCFL compression.

performance of FL by considering its impacts on HCFL. We
then prove that in an FL process with a lot of clients in general
or in FL-integrated massive IoT network system in particular,
HCFL can achieve a performance which is as good as that
of the conventional FL process. Furthermore, we analyze the
performance of HCFL model and provide more detailed anal-
ysis on relationship between the model reconstruction error
and three features, including model complexity, compression
ratio, and original data entropy.

A. Convergence Analysis

Using the FedAvg method [5], we can demonstrate the
convergence properties of FL when implementing our pro-
posed HCFL scheme. As the number of clients (i.e., IoT
devices) increases, it is guaranteed that aggregated weights are
close to the initial desired values. We consider a compression-
integrated FL scenario between a single client in a group of
selected clients and a server as shown in Fig. 6. The proposed
compression consists of two components: the encoder (which
is integrated in the clients) and the decoder which extracts the



7

compressed model sent by the client through the propagation
channel. By applying the undercomplete autoencoder [2], we
can compress the original data by reducing its dimensions and
important information simultaneously. The ratio of input data
to the output data of the encoder, which is equal to the ratio
of the output data to the input data of the decoder, represents
the compression ratio of the model compressor.
The autoencoder only extracts useful information on the
distribution of the data due to the reduced dimension of the
encoded data. The number of faded features increases as we
configure the HCFL at a higher compression ratio [2] (the
HCFL compression ratio is defined by the proportion between
the encoder input size and the encoder output size). Thus,
the decrypted data at the output of the decoder in the server
always have a reconstruction error rate in comparison with
the original data. The problem of autoencoder error and the
capability of the compression in FL is simplified by converting
original form of the autoencoder’s representation into another
close-form.

Theorem 1. Given the model compression distortion rate
L(w), the uncertainty that the geometrical distance between
aggregated model from lossy compression wt and ideal aggre-
gated model w̃t is inversely proportional to number of user K.

P
(
|wt − w̃t| ≥ α

)
≤ 2

(Kα)2
L(w). (10)

Proof. The proof is demonstrated in Appendix A.
The theorem 1 is the proof of convergence of implemen-

tation of the aggregations algorithm at the server when the
number of clients in the federated network is large enough.
Despite the high loss value from the autoencoder, we can
achieve the aggregated model, which is close to the ideal
value of the model weights without the HCFL compression.
For instance, the uncertainty of an event when L(w) = 2.5,
an expected loss of the aggregated weights compared to the
client weights is α = 0.01, and K = 10000 FL devices, is:
P
(
|wt − w̃t| ≥ α

)
≤ 2

(10000∗0.01)2 2.5 = 0.0005. Therefore,
the certainty is equal to 99.95%. According to [4], the number
of IoT and mobile devices with MEC capabilities will be
extremely large in beyond 5G and future 6G systems, i.e.,
24 billion devices by 2030 [4]. As a result, the certainty
induced by the proposed HCFL system can be further reduced
emerging scenarios with massive IoT connectivities, showing
the efficiency and great potential of the HCFL system.
On the one hand, we prove that the distortion rate induced
by the HCFL’s lossy compression process is decreased sig-
nificantly by the FL’s number of participated clients. On the
other hand, the distortion rate from the lossy compression
also encourages FL models in distributed devices to execute
the exploration steps toward gradient descent. This noise acts
similarly with the gradient noise, which is proposed in [39].

V. IMPACT OF MODEL COMPLEXITY TO HCFL SETTINGS

In the HCFL system, the encoder aims to extract the
representative features of the original data. There is a direct
mapping through the neural network from each individual

Compressor Extractor

Original
data

Compressed
data

Extracted
data

Data pool

Original
data point

Reconstructed
data point

Compressed
data point

Figure 7. Visualization of mutual information between original data and
extracted data in HCFL.

particle from the primordial model to the compressed output at
the encoder. The compressed data is then mapped straightfor-
wardly to the extracted output at the decoder. The procedure
can be described in Fig. 7. As we can see from the figure, there
is a representative vector for each pool of original data points
that have the same characteristics. The reconstructed vector is
sampled from the previously mentioned pool and can represent
a group of data points in that pool. Hence, the compressed
data is the mutual information between the original and the
reconstructed data. The lower the compression ratio is, the
more information that the compressed data transfers from the
original data to the extractor. Therefore, the fewer the number
of original data features that one compressed data component
needs to represent, the better the HCFL can perform.

Theorem 2. The reconstruction loss L(w) of HCFL is pro-
portional to

L(w) ≈ H(W )−H(C)

N log (2πe)

=

∑
N P (w) logP (w)−

∑
M P (c) logP (c)

N log (2πe)
, (11)

where the distribution of C follows the joint distribution
P (X, g1, . . . , gV) with V being the depth of the compressor’s
hidden layer. Thus, we have

P (c) =

V+1∏
i=1

P (gi|gi+1)

=

V∏
i=1

ni∏
j=1

P (gij |gi+1)

M∏
k=1

P (cj |gV)

= P (g1, . . . , gV)

M∏
k=1

P (cj |gV),

(12)

where P (g1, . . . , gV) is the joint probability of the V hidden
layers neural network of the compressor and the factorized
conditional distribution of the compressed output data.

Proof. The proof is demonstrated in Appendix B.



8

The two equations (11) and (12) give us a prerequisite
for the convergence of the HCFL compression. To achieve
the HCFL compression system with low restoration error, the
HCFL network’s complexity and compression ratio need to be
taken into account. When the HCFL with higher compression
ratio and more complicated input data is applied, the neural
network model is needed to be the deeper. Moreover, the
data segmentation technique is considered as a robust method
when dealing with models with a huge size and tremendously
complex structure.

VI. PERFORMANCE EVALUATION

In this part, we evaluate the performance of the proposed
HCFL compression. Depending on different testing scenarios,
we establish multiple settings to examine the HCFL under
distinct conditions in Section VI-A. We then evaluate the
HCFL compression efficiency with various compression ratios
in Section VI-B. Our experiments show that HCFL can achieve
up to 32 times of reduction in data size. Then, we evaluate
the impact of clients number on FL convergence rate in
Section VI-C. Section VI-D shows the influence of the client’s
predictor hyper-parameters on the HCFL-integrated FL to
analyze the suitable setting when applying HCFL on FL.

A. Settings

The reconstruction error of the HCFL-compression frame-
work is considered along with the losses of the predictors at
the clients’ ends with the updated model parameters under
different FL settings to simplify the evaluation. For the simu-
lation, we use a set of 100 clients in synchronous FL system
for assessments. A comprehensive description of the setting is
presented below.

Evaluation on communication efficiency: As mentioned
in Section I, our proposed network model is in compliance
with the 3GPP standard. To be more specific, our proposed
HCFL is located as the effectiveness encoder in [40, Fig-
ure 3a]. Therefore, any package error is pre-processed and
corrected via HARQ protocol [41]. Therefore, the encoded
data from HCFL is guaranteed to be flawless and independent
of the channel model. As a result, we only consider the data
compression ratio as a communication efficiency evaluation
metric in this research.

Dataset: We choose two popular benchmark datasets that
are widely used for classification. We focus on the perfor-
mance of FL which is not affected by the non-IID data, where
each client holds a separated dataset from the other.
• MNIST [42]: consists of 60, 000 training and 10, 000

testing gray-scale images of ten classes of handwritten
digits. Each image has the dimension of 28× 28 pixels.
For more details, there are 100 clients in the system
where each client has 600 samples that are independent
and identical with each other. Because of the simplicity
of MNIST, this dataset is mostly used to train small
networks.

• EMNIST [43]: includes 131, 600 images of 47 balanced
classes with a size of 28 × 28 pixels. The dataset is
partitioned into 100 independent and identical clusters

Table I
PERFORMANCE OF HCFL AND OTHER COMPRESSION METHODS ON

LENET-5 MODEL TRAINING WITH MNIST DATASET WITH DIFFERENT
COMPRESSING RATIO (COMMUNICATION COST IN 100 ROUNDS ON IID
DATA). EACH ROUND, TEN OUT OF 100 CLIENTS ARE PARTICIPATED IN

THE TRAINING (C = 0.1).

Compress Reconstruction Encoded Size True

Method error Up/Download Compress
(MB) Ratio

FedAvg 0.0 20500/20500 1.000

T-FedAvg N/A 1281/1281 15.999

HCFL 1:4 0.0016 5170/5170 3.965

HCFL 1:8 0.0037 2620/2620 7.824

HCFL 1:16 0.0037 1370/1370 14.963

HCFL 1:32 0.0040 757/757 27.080

of 11, 280 images, each is represented for the dataset of
each different client.

Models: In order to assess the performance of HCFL, we
use two deep learning models: LeNet-5 and 5-CNN, which
represent two popular convolutional deep network architec-
tures. The configuration is described in detail as follows:
• LeNet-5 [44] is a simple convolutional neural network.

It contains the basic units of a convolutional neural
network. In LeNet-5, in which the data is first feed-
forward through two sets of feature mapping. Each set
includes one convolutional layer, with the max-pooling
layer is followed subsequently. The two proposed sets
are connected sequentially, followed by a fully connected
layer that uses ReLU as their main activation function. A
ten-node group of softmax is applied at the output layer
in order to execute the probability classification for the
model.

• 5-CNN is an advanced deep neural network. It comprises
two main components: the first component includes five
convolutional layers, and the second consists of two fully
connected layers. A max-pooling layer is used after each
convolutional layer, and a ReLU activation function is
applied at the end of each max-pooling layer. Then,
additional fully connected layer is applied to process the
classification works. Dropout layers are added, followed
by each fully connected layer to reduce the impact of
overfitting.

Dataset segmentation: The model parameter datasets of
the FL model in our simulations are processed as follows:
• MNIST: The convolutional layers and dense layers are

trained in different HCFL compressors and extractors.
Each of the HCFL learns the different distribution of each
group of convolution kernel parameters or fully connected
weights. Hence, we can achieve the high compression
efficiency for the HCFL.

• EMNIST: Due to the complexity of the 5-CNN model
parameters, we fractionate the dense layers’ parameters
into 8 balanced parts in order to reduce the entropy of
each part. The HCFL compressor needs to execute eight
different trainings and the HCFL compressor setting is
stored in the HCFL memory. Whenever the FL model



9

Table II
PERFORMANCE OF HCFL COMPRESSION ON 5-CNN MODEL TRAINING

WITH EMNIST DATASET WITH DIFFERENT COMPRESSING RATIO
(COMMUNICATION COST IN 100 ROUNDS ON IID DATA). EACH ROUND,

100 OUT OF 100 CLIENTS ARE PARTICIPATED IN THE TRAINING (C = 0.1).

Compress Reconstruction Encoded Size True

Method error Up/Download Compress
(MB) Ratio

FedAvg 0.0 27200/27200 1.000
T-FedAvg N/A 1,650/1,650 16.485
HCFL 1:4 0.0486 5630/5630 4.831
HCFL 1:8 0.0495 2930/2930 9.283

HCFL 1:16 0.0501 1570/1570 17.324
HCFL 1:32 0.0693 910.55/910.55 29.872

applies the HCFL, the particular HCFL setfting is loaded
from the memory to process the corresponding segmented
dataset.

Initial implementation details: Each round, the server
selects 10 customers from a pool of 100 clients at random.
We will use a fixed learning rate of 0.01 as an example. The
number of epochs at each client is set to five, and the mini-
batch size is set to 64. This implementation is applied to the
experiment in Section VI-B. In Sections VI-C and VI-D, the
numbers of participating clients K, local epoch E and local
batch-size B are applied with different values to evaluate the
HCFL under different settings. The detailed settings of those
experiments are demonstrated in sections VI-C and VI-D.

B. Robustness to Compression Proficiency
We first perform some experiments with the HCFL compres-

sion only to validate the affection of the compression ratio on
the reconstruction error of the extracted data. We evaluate the
algorithm after 100 training rounds with an equal number of
training samples for each client, and every client is computed
in 10 independent runs each round for a fair comparison. In
this subsection, we consider three main compression efficiency
features, including compression efficiency, computational de-
lay, and HCFL-assisted FL accuracy.

From the perspective of compression efficiency, we evaluate
the actual compression performance when applying different
compression ratio settings in HCFL on FL. Tables I and II
show the reconstruction error and the compression efficiency
of HCFL and the benchmarks, including FedAvg [5] and T-
FedAvg [22], respectively, under different compression ratio
settings. We apply the benchmarks on two dataset: MNIST and
EMNIST. Assume that there are 10 users participating in each
round over 100 rounds, the total capacity which is necessary
for the transmission between clients and the centralized server
is 20.5 GB for the LeNet-5 model and 27.2 GB for the 5-CNN
model, respectively. This large amount of data is an enormous
burden on large-scale IoT networks. The communication cost
is expected to be more significant in high complexity deep
networks (ie., AlexNet [45] or ResNet [46]). The relationship
between the model parameter size and the communication time
is given as

T commk = sk/Rk, (13)

0 20 40 60 80 100
0.95

0.96

0.97

0.98

0.99

1
1:32
1:16
1:8
1:4
1:1

Communication Rounds

Te
st

 A
cc

ur
ac

y

Figure 8. Aggregation accuracy of HCFL on MNIST dataset at different
compression ratio settings.

Table III
COMPUTATIONAL DELAY OF HCFL-ASSISTED FL ON LENET-5 MODEL

TRAINING WITH MNIST AND ON 5-CNN MODEL TRAINING WITH
EMNIST (EVALUATION IS AVERAGED IN 100 ROUNDS OF FL PROCESS).

EACH ROUND, TEN OUT OF 100 CLIENTS ARE PARTICIPATED IN THE
TRAINING (C = 0.1).

Compression
Ratio

Computational time (second)
LeNet-5-integrated client 5-CNN-integrated client
client server client server

Baseline 2.133 0.0142 2.171 0.0228
1:4 2.146 0.1095 2.190 0.2353
1:8 2.178 0.1136 2.192 0.2793

1:16 2.183 0.1143 2.195 0.3130
1:32 2.283 0.1231 2.209 0.3435

where sk is the model parameter size and Rk is the transmis-
sion rate. From (13), by reducing transmitting model parameter
size, we can reduce the communication time with the same
ratio. It is worth noticing that when we increase the compres-
sion ratio, the communication efficiency is improved. In case
HCFL-assisted FL is applied, we can reduce a huge amount of
data on the transmission link and the required communication
time as well. In particular, there are four proposed compression
ratios in our work: 1:4, 1:8, 1:16, and 1:32. The data from the
two tables reveals that applying the setting of 1:4 helps to
reduce the communication cost to 25.22% and 20.7% when
working on LeNet-5 model and 5-CNN. Especially, by apply-
ing the 1:32 setting, the communication cost can be reduced
to 3.7% (from 20.5 GB in the conventional FL to 757 MB in
HCFL-assisted FL) in LeNet-5-integrated clients and 3.35%
(from 27.2 GB in the conventional FL to 910.55 MB in HCFL-
assisted FL) in 5-CNN-integrated clients. Furthermore, it can
be observed from Table I that HCFL at compression ratio
of 1:32 outperforms the T-FedAvg [22] in communication
efficiency as the T-FedAvg’s maximum compression ratio is
capped at 16 times.

From the perspective of computational delay, we assess the
average computational time for both clients and server in a
long-term FL process. Because the HCFL components are
deployed in both server and clients, we conduct the delay
calculations on both centralized server and distributed clients.



10

We calculate the average delay value over 100 communication
rounds in order to get the fair assessment. The computation
delay is demonstrated in Table III. As observed in the table,
the assessment is implemented on both LeNet-5-integrated
client (MNIST dataset) and 5-CNN-integrated client (EMNIST
dataset). The HCFL process time can be calculated as follows:

THCFLr = T compr − T comp1 , (14)

where r is the compression ratio of the HCFL system, THCFLr

is the HCFL process computation delay and T compr is the
client’s total computation delay with the compression ratio r.
From the table, we can see that the HCFL process on both
clients and server is low (less than 40 milliseconds on client
and 350 milliseconds on server). This time amount is much
lower than the predicting process delay on the client (around
2.1 to 2.2 seconds).

In the following evaluation of HCFL compression efficiency,
we consider the HCFL-assisted FL accuracy. The assessment
uses the same setting with ten clients randomly selected from
100 clients in total, the selected client ratio is set at 0.1, and the
batch size is set to the maximum possible value (i.e., equal to
the data size at each client) with the number of training epoch
set at five. To compare the performance between different
compression ratios of HCFL, we train different neural network
models for the encoder and decoder of each particular HCFL
with the determined compression ratio and then embed them
into the recommend FL model. Fig. 8 shows the predicting
accuracy at clients with different compression ratio settings
at the HCFL compressor. The test accuracy is calculated by
the percentage of data in the test set with the predicting label
matching their original label. As we can see from the figure,
the accuracy of HCFL at the beginning of the distributed
training session is relatively low due to the internal error of
the data generated by the HCFL compressor when working
on MNIST dataset with LeNet-5 as the predicting model.
However, the performance of the HCFL-integrated FL can
be converged after only six to seven communication rounds.
Moreover, although the global accuracy is decreased at the
compression rate of 16 and 32, the test accuracy at 98%
for 1:32 compression rate is at the acceptable threshold.
Alternatively, this decline may be attributed to the fact that
the more representation of the data vanishes from the original
information, the more error-prone that the HCFL-assisted IoT
system is exposed to.

When dealing with such model with higher complexity as
5-CNN for the EMNIST, we need to apply the pre-mentioned
dataset segmentation technique for the model parameters. The
performance of HCFL on the proposed model is demonstrated
in Fig. 9. As observed from the figure, due to the random
shuffle and division of the full EMNIST dataset for the clients
and the stochastic initiation of the client predicting model,
the test accuracy of all five cases shows the high fluctuation
and different convergence speeds at the primitive stage of
the HCFL training. However, the HCFL system can converge
within after less than 100 communication rounds, regardless
the proposed compression ratio. The high performance of dif-
ferent compression schemes in the prolonged term is believed

0 20 40 60 80 100
0.88

0.9

0.92

0.94

0.96

0.98
1:32
1:16
1:8
1:4
1:1

Communication Rounds

Te
st

 A
cc

ur
ac

y

Figure 9. Aggregation accuracy of HCFL on EMNIST dataset at different
compression ratio settings.

to attain on account of the reduction in entropy of the model
parameters which is proposed in Section V.

C. Contribution of Participating Client Quantity to Global
Convergence

In this assessment, we evaluate the impact of the number
of participating clients on the convergence of the error-prone
compressed data. The HCFL compression is applied in FL
with a dissimilar quantity of clients. We evaluate them on two
datasets, i.e., MNIST and EMNIST. The results obtained by
the HCFL-assisted FL on MNIST and EMNIST are shown in
Fig. 10a and Fig. 10b, respectively. In general, it is shown
that the performance of the HCFL compression function in
the FL model can attain expected efficiency with a various
number of clients participating in the FL model. However,
the larger the number of clients is, the sooner the system will
converge to the global extrema. Therefore, with a large number
of clients using HCFL, predictors accuracy can quickly achieve
a high performance, and thus the accuracy will be more stable
through communication rounds. For example, for the setting
K = 100, the test accuracy of the LeNet-5 model on MNIST
dataset reaches 99% after less than 20 communication rounds
with a low standard deviation (less than 1%). In contrast, the
system with a low number of assigned clients (K = 10) has a
relatively high standard deviation of accuracy (more than 3%)
after 80 communication rounds.

In particular, different deep network models being used
on the clients make distinct impacts on the whole HCFL-
assisted FL. For instance, the complex model 5-CNN with the
EMNIST dataset shows a more significant outcome than the
mentioned evaluation on the MNIST dataset. For the system
with 100 clients in comparison with the 10-client system,
the test accuracy is higher with a notably lower variance.
Generally, in a predetermined number of training rounds,
the number of clients affects the FL process accuracy and
convergence speed. As more clients participating in the FL
process each round, the model’s absolute precision and training
speed suffer from fewer adverse effects. Nevertheless, once
K is improved to a particular level, the advancement of the
system performance will be less noteworthy, and sometimes



11

0 20 40 60 80 100
0.95

0.96

0.97

0.98

0.99

1
K=10
K=20
K=30
K=50
K=100

Communication Rounds

Te
st

 A
cc

ur
ac

y

(a)

0 20 40 60 80 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
K=10
K=20
K=30
K=50
K=100

Communication Rounds

Te
st

 A
cc

ur
ac

y

(b)

Figure 10. Implementations of the FL process applying HCFL for MNIST and EMNIST handwritten digit dataset. In these simulations, we set up the FL
with different numbers of clients. (a) Number of clients affects the aggregation accuracy of the FL process on MNIST dataset. (b) Number of clients affects
the aggregation accuracy of the FL process on EMNIST dataset.

0 100 200 300
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
E=1
E=2
E=5
E=20

Communication Rounds

Te
st

 A
cc

ur
ac

y

(a)

0 100 200 300
0

0.2

0.4

0.6

0.8

1
E=1
E=2
E=5
E=20

Communication Rounds

Te
st

 L
os

s

(b)

Figure 11. Aggregation accuracy on LeNet-5 model with MNIST dataset for different local epochs (E). Number of total clients and participated ratio are
fixed (K = 100, C = 0.1).

it even sets about degrading. When bringing the FL process
into practice, we can face difficulties that as K expands, more
and more clients update their local parameters to the server.
As a consequence, the communication and computation cost
of the FL model amplify significantly. Fortunately, as we
can see in the simulation results in Fig. 10a and Fig. 10b,
there always exists an upper bound of performance saturation
when K increases. This is encouraging because in real-world
applications with large scale of clients, we only need to
select a set of clients from the network to execute the FL
process in each communication round. This procedure save
a considerable amount of communication cost for the FL
process.

D. Contribution of Distributed Model Hyper-parameters to
Global Convergence

In this part, we investigate the impact of compression
reconstruction error on different FL process settings. Two
client model’s hyper-parameters that we consider are: Epoch
and batch size. From the perspective of epoch analysis, as
the number of epochs training on each selected client at
each communication round increases, the system can achieve
significantly better test accuracy (Fig. 11a) and loss (Fig. 11b)
after each round. To be more specific, the system in which the

number of epochs is set at 20 can converge after few rounds
of communications. Meanwhile, the system with a minimum
setting of training epoch gets saturated at the accuracy of
around 86% and the loss of 0.4. The number of epochs affects
the number of iterations that the model completes the training
throughout the entire training dataset. Hence, the predictor can
achieve the better performance when we train the model with
more epochs. However, when the number of epochs becomes
too large, the system can suffer from overfitting and extreme
computational burden. In this work, we use five epochs for
a balanced trade-off between the system computation and the
system performance since the convergence of that setting is
close to the capability of the pre-mentioned high epoch setting.

In the following analysis, the batch size is taken into
account. As observed from Fig. 12a and Fig. 12b, HCFL-
integrated FL can achieve better performance when the small
batch size is applied. The test loss reflects the categorical
cross-entropy between the original and predicted labels of the
data collected on clients. The maximum batch size can hardly
attain the expected efficiency with a low-par accuracy and
loss after 300 communication rounds (60% and more than one
respectively). It can be observed that, the setting of batch size
can make a big contribution to the computation load of every
client. Reducing the batch size helps the networks train faster



12

0 100 200 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B=600
B=100
B=50
B=10

Communication Rounds

Te
st

 A
cc

ur
ac

y

(a)

0 100 200 300
0

0.5

1

1.5

2

2.5

3

3.5

4
B=600
B=100
B=50
B=10

Communication Rounds

Te
st

 L
os

s

(b)

Figure 12. Aggregation accuracy on LeNet-5 model with MNIST dataset for different batch size (B). Number of total clients and participated ratio are fixed
(K = 100, C = 0.1), number of epoch (E = 5).

and requires less memory with mini-batches. Moreover, the
weight updates have more variance when applying a smaller
batch size than when we use the larger batch size. This noise
can act as a regularizing effect in weight updating, making the
FL operate with better performance.

We make all our code publicly available for reproduction
of results and extension 1.

VII. CONCLUSION AND FUTURE WORKS

A new compression scheme for FL was developed in this
study. In particular, the proposed technique possesses several
advantages over the conventional technique, such as high
compression proficiency, high accuracy, and viability for the
FL process (especially the FedAvg algorithm, wherein it is
embedded at the server). For example, when the HCFL-
integrated FL was set at the high compression ratio (i.e.,
1:32), the global test accuracy of the FL process was reduced
by approximately 1% − 2% in comparison to the baseline
method. It was confirmed that the HCFL can be implemented
to compensate for the susceptibility to the error of the au-
toencoder reconstruction output. Further, the low complexity
of the proposed compression scheme makes it highly suitable
for the FL process, especially the state-of-the-art machine type
communication systems such as unmanned aerial vehicle and
smart city applications.

In future work, we aim to improve the HCFL proficiency
and reduce the supervised-training dependencies by applying
deterministic algorithms on the encoder phase. Thus, HCFL is
then only needed to train the decoder to adapt to the encoder’s
behavior. Moreover, multi-task learning is a promising method
to aid the autoencoder’s performance when implemented on
deeper deep models such as ResNet, DenseNet, AlexNet, or
VGG-16. Hence, HCFL can further be applied to a wide range
of FL concepts.

1https://github.com/skydvn/hcfl-compression

APPENDIX A
PROOF ON THEOREM 1

Taken account of probability, the neural network is demon-
strated in a synthesized model with many layers of hidden
causal variables [47].

P (x, g1, . . . , gl) = P (x|g1) . . . P (gl−2|gl−1)P (gl−1, gl),
(15)

where all the conditional layers P (gl|gl+1) are factorized
distributions which are easy for computation of probability
and sampling. Alternatively, each of the hidden layer can be
represented by:

P (gl|gl+1) =

n∏
j=1

P (glj |gl+1). (16)

The model of the autoencoder consequently can easily be
described through a Markov Chain with a close form of a
system model similar to that of the Kalman filter, which can be
built on linear operators that are perturbed by errors including
Gaussian noise [48]. It may be assumed that the multi-layer
autoencoder model has a series of x̂i as output values in
discrete time space, where i is the index of the discrete-time
event. x̂i is the total of the original data input xi with Gaussian
noise vi, which is IID and drawn from a zero-mean distribution
as follows:

x̃i = xi + vi. (17)

The aggregation model proposed in (3) was used to aggregate
the decoded weights at the server according to the following
equation:

w̃t =
1

K

K∑
k=1

w̃kt =
1

K

K∑
k=1

(wkt + vkt )

=
1

K

K∑
k=1

wkt +
1

K

K∑
k=1

vkt = wt +
1

K

K∑
k=1

vkt . (18)

A set of noise data at weight t is given as: Vt = {v1t , . . . , vKt }.
Assume SK =

∑K
k=1 v

k
t the following equation is obtained:

E

(
SK
K

)
= µ. (19)

https://github.com/skydvn/hcfl-compression


13

µ is the expected value of the distribution V , and E(·)
denotes the expectation function in (19). Furthermore, Vt
is regarded as a sequence of serially uncorrelated random
variables because of their white noise property. Therefore,
we have Cov(vit, v

j
t ) = 0 (∀i, j), where Cov(vit, v

j
t ) is the

covariance of two noise values corresponding to user i, j, and
sampled from the set of noise data Vt. Hence, we have the
following function:

E

(
SK
K
− µ

)2

= E

(
SK

2

K2

)
− E

(
SK
K

)2

=
1

K2

[
E
(
SK

2
)
− E (SK)

2
]

=
1

K2
(var(SK))

=
1

K2

 K∑
i=1

var(vit) +
K∑

i,j=1

Cov(vit, v
j
t )


=

1

K2

(
var(v1t ) + . . .+ (var(vKt )

)
,

(20)

and the variance of each vkt can be formulated as

var(vkt ) =
1

K

K∑
k=1

(vkt )
2 −

(
1

K

K∑
k=1

(vkt )

)2

. (21)

Applying the functions (4) and (17) into (21) yields:

var(vkt ) =
1

K

K∑
k=1

(vkt )
2 −

(
1

K

K∑
k=1

(vkt )

)2

≤ 1

K

K∑
k=1

(vkt )
2 =

2

K
L(w).

(22)

From (20) and (22), we have

E

(
SK
K
− µ

)2

≤ 2

K2
L(w). (23)

It can be observed that, the function (23) gets converged at
zero when the number of FL users K approaches infinity. It
is evident that SK

K also converges at µ. As vi is drawn from a
standard normal distribution, SK is also drawn from the same
distribution and has the mean value µ = 0. We have:

lim
K→∞

Sn
K

= lim
K→∞

1

K

K∑
k=1

vkt = 0. (24)

Thus, when the number of clients in the FL model is large
enough, the parameters aggregated at the server (3) converge
at their expected values:

lim
K→∞

wt = lim
K→∞

1

K

K∑
k=1

w̃kt

= lim
K→∞

(
1

K

K∑
k=1

wkt +
1

K

K∑
k=1

vkt

)

= lim
K→∞

1

K

K∑
k=1

wkt .

(25)

The following paragraphs discuss the relationship between the
number of clients, the loss function of autoencoder and the
accuracy rate of the aggregated data at the server. Applying
Chebyshev’s inequality [17] into (13), we have the following
formulation to prove the aggregated model convergence:

P
(
|w̃t − wt| < α

)
= P

(∣∣∣∣SKK − µ
∣∣∣∣ < α

)
, (26)

where α denotes the desired low-threshold of the weight
deviation on each client. We can take the aggregated model
accuracy as the certainty when |w̃t − wt| is larger than a
determined value α in the left side of the function. Applying
the inequality in [49] yields

P
(
|w̃t − wt| ≥ α

)
≤ 1

α2
E

(
SK
K
− µ

)2

. (27)

Apply the inequality (22), we have an upper boundary for the
certainty when the deviation of each parameter is larger than
a predefined threshold:

P
(
|w̃t − wt| ≥ α

)
≤ 2

(Kα)2
L(w). (28)

APPENDIX B
PROOF ON THEOREM 2

Denote H(·) to be the entropy of the given dataset and
I(·; ·) as the mutual information between 2 given sets of data,
we have

H(C) = I(W ; Ŵ ) = H(W )−H(W |Ŵ )

= H(W )−H(W − Ŵ |Ŵ )

≈ H(W )−H(W − Ŵ ), (29)

where W and Ŵ are the sets of original model parameters
W = {w1, . . . , wN} and reconstructed model parameters
Ŵ = {ŵ1, . . . , ŵN}, respectively. C = {c1, . . . , cM} is the
set of compressed data with N and M being the sizes of the
model parameters and compressed data, respectively.
Because the HCFL consists of two sequential neural networks,
the proposed model can be demonstrated in a Deep Belief
Nets [47] structure where each neural node in the network
contributes an independent probability to the output of the
network’s distribution:

P (Ŵ ,W ) =

l∏
i=1

P
(
gi|gi+1

)
=

l∏
i=1

ni∏
j=1

P
(
gij |gi+1

)
, (30)

where i and j are the layer index of the neural network and
the neural node index on each layer, respectively. The l and nl
denote the total layers and the number of nodes on each layer
of the HCFL model, respectively. From (30), we can assume
that the noise generated during the HCFL process follows the
Gaussian distribution N

(
0, E

[
(W − Ŵ )2

])
(as described in

A). The E
[
(W − Ŵ )2

]
is the variance of the reconstructed



14

parameter set Ŵ . Therefore, the entropy of the loss between
W and Ŵ yields:

H(W − Ŵ ) = H
(
N
(
0, E

[
(W − Ŵ )2

]))
=

1

2
log (2πe)E

[(
W − Ŵ

)2]
= N log (2πe)L(w),

(31)

where H(·) denotes the entropy of the equivalent information.
Hence, we can estimate the loss function L in terms of the
relationship between the input data and compressed data. We
have

L(w) ≈ H(W )−H(C)

N log (2πe)

=

∑
N P (w) logP (w)−

∑
M P (c) logP (c)

N log (2πe)
.

(32)

REFERENCES

[1] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain, “Machine learning
for resource management in cellular and IoT networks: Potentials,
current solutions, and open challenges,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 2, pp. 1251–1275, Jan. 2020.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press
Cambridge, Nov. 2016.

[3] X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and
R. Schober, “Massive access for 5G and beyond,” IEEE Journal on
Selected Areas in Communications, vol. 39, no. 3, pp. 615–637, Mar.
2021.

[4] C. De Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang,
and M. Liyanage, “Survey on 6G frontiers: Trends, applications, re-
quirements, technologies and future research,” IEEE Open Journal of
the Communications Society, pp. 836–886, Apr. 2021.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, Feb. 2017, pp.
1273–1282.

[6] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet of Things Journal, Apr. 2021, early access.

[7] A. Du, Y. Shen, and L. Tseng, “CarML: Distributed machine learning
in vehicular clouds,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’20.
London, United Kingdom: Association for Computing Machinery, Sep.
2020.

[8] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma,
and X. Chen, “OnRL: Improving mobile video telephony via online
reinforcement learning,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’20.
London, United Kingdom: Association for Computing Machinery, Sep.
2020.

[9] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intelligent
Systems, vol. 35, no. 4, pp. 83–93, Apr. 2020.

[10] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, Apr. 2020.

[11] Q.-V. Pham, H. T. Nguyen, Z. Han, and W.-J. Hwang, “Coalitional
games for computation offloading in NOMA-enabled multi-access edge
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 2,
pp. 1982–1993, Feb. 2020.

[12] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proceedings of the Na-
tional Academy of Sciences, vol. 118, no. 17, Apr. 2021.

[13] C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and G. Chen,
“Billion-scale federated learning on mobile clients: A submodel design
with tunable privacy,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’20.
London, United Kingdom: Association for Computing Machinery, Sep.
2020.

[14] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A communication-
efficient algorithm for federated learning,” in International Conference
on Machine Learning. PMLR, Jul. 2020, pp. 3973–3983.

[15] K. Bonawitz, F. Salehi, J. Konečný, B. McMahan, and M. Gruteser,
“Federated learning with autotuned communication-efficient secure ag-
gregation,” in 2019 53rd Asilomar Conference on Signals, Systems, and
Computers, Nov. 2019, pp. 1222–1226.

[16] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. Dallas, Texas, USA: Association for Computing
Machinery, Oct. 2017, p. 1175–1191.

[17] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efficient federated learning and permissioned
blockchain for digital twin edge networks,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 2276–2288, Aug. 2021.

[18] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efficient federated learning for digital twin edge net-
works in industrial IoT,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 8, pp. 5709–5718, Aug. 2021.

[19] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” Oct 2020.

[20] M. M. Amiri and D. Gunduz, “Federated learning over wireless fading
channels,” Feb 2020.

[21] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in iot,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2020.

[22] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, “Ternary compression
for communication-efficient federated learning,” IEEE Transactions on
Neural Networks and Learning Systems, Dec. 2020, early access.

[23] F. Li and B. Liu, “Ternary weight networks,” ArXiv, vol. abs/1605.04711,
Nov. 2016.

[24] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, Aug. 2016, pp.
525–542.

[25] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary
quantization,” CoRR, vol. abs/1612.01064, Dec. 2016. [Online].
Available: http://arxiv.org/abs/1612.01064

[26] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach (6th Edition), 6th ed. Pearson, 2012.

[27] T. Dumas, A. Roumy, and C. Guillemot, “Autoencoder based image
compression: Can the learning be quantization independent?” in 2018
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Sep. 2018, pp. 1188–1192.

[28] V.-D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. Ottersten,
“Efficient federated learning algorithm for resource allocation in wireless
IoT networks,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3394–
3409, Sep. 2021.

[29] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” Apr. 2014.

[30] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv:physics/0004057, Apr. 2000.

[31] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” in International Conference on Learning Rep-
resentations, Oct. 2019.

[32] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504 – 507, Jul. 2006.

[33] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
Deep Belief Nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
Aug. 2006.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, Jul. 2009.

[35] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learn-
ing,” Mar 2017.

[36] C. Lee, K. Cho, and W. Kang, “Directional analysis of stochastic
gradient descent via von mises-fisher distributions in deep learning,”
Nov 2018.

[37] R. Hamdi, M. Chen, A. Ben Said, M. Qaraqe, and H. V. Poor,
“User scheduling in federated learning over energy harvesting wireless
networks,” in 2021 IEEE Global Communications Conference (GLOBE-
COM), Dec 2021.

[38] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, Mar. 2021.

http://arxiv.org/abs/1612.01064


15

[39] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, “Adding gradient noise improves learning for very deep
networks,” 2015.

[40] Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, and
K. Huang, “What is semantic communication? a view on conveying
meaning in the era of machine intelligence,” Oct. 2021.

[41] 3GPP, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Radio Resource Control (RRC); Protocol specifica-
tion,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 38.300, Sep. 2021, version 16.7.0. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3191

[42] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[43] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “EMNIST: Ex-
tending MNIST to handwritten letters,” in 2017 International Joint
Conference on Neural Networks (IJCNN). Anchorage, AK, USA: IEEE,
Mar. 2017, pp. 2921–2926.

[44] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
Jan. 2012, p. 1097–1105.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, Dec. 2015. [Online].
Available: http://arxiv.org/abs/1512.03385

[47] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proceedings of the 19th International
Conference on Neural Information Processing Systems, ser. NIPS’06.
MIT Press, Dec. 2006, p. 153–160.

[48] H. Musoff and P. Zarchan, Fundamentals of Kalman filtering: a practical
approach. American Institute of Aeronautics and Astronautics, Aug.
2009.

[49] O. Ibe, “Markov processes for stochastic modeling: Second edition,”
Markov Processes for Stochastic Modeling: Second Edition, pp. 1–494,
May 2013.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3191
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3191
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1512.03385

	2022 IEEE
	HCFL_R2_Main.pdf
	Introduction
	Background and Methods
	System Model
	Federated Learning
	Autoencoder

	Proposed Compression-Aided FL Algorithm
	Problem Formulation
	System Deployment
	HCFL Network Architecture
	Definition of Datasets
	The Proposed Compression System
	Data Pre-processing

	Proposed Training Phase
	Discussion on the compatibility of HCFL with asynchronous FL

	Performance Analysis on Lossy Compression
	Convergence Analysis

	Impact of model complexity to HCFL settings
	Performance Evaluation
	Settings
	Robustness to Compression Proficiency
	Contribution of Participating Client Quantity to Global Convergence
	Contribution of Distributed Model Hyper-parameters to Global Convergence

	Conclusion and Future Works
	Appendix A: Proof on Theorem 1
	Appendix B: Proof on Theorem 2
	References


