
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

1

A Graph Neural Network and Pointer
Network-Based Approach for QoS-Aware

Service Composition
Xiao Wang, Hanchuan Xu, Xianzhi Wang, Member, IEEE , Xiaofei Xu, Member, IEEE ,

and Zhongjie Wang, Member, IEEE

Abstract—QoS-aware service composition aims to aggregate multiple existing services to meet users’ complex functional and
nonfunctional requirements that cannot be met by simple services. The accumulation of user tasks and service composition solutions
makes it possible to mine empirical rules from those historical compositions to reduce the search space and thus improve the
composition efficiency. Traditional empirical rule-based methods focus on mining with well-designed rules, ignoring the underlying
correlations between tasks and between services. At the same time, infrequently used services are not valued by these methods, but
these services may still be used in constructing optimal service solutions. In addition, many methods use reinforcement learning to
compose services to efficiently construct service solutions, but they do not achieve the same effect as traditional meta-heuristic
methods. In view of the above shortcomings, considering the ability of graphs to express relationships, we first construct tasks and
services as graphs and then use a graph neural network (GNN) to mine underlying correlations and predict the probability that each
service will be used to construct the solution corresponding to the task. Next, based on these high-probability services, we utilize
pointer network-based reinforcement learning to efficiently construct the initial service solution. The pointer network is often used to
solve combinatorial optimization problems and is noninferior to meta-heuristics in small-scale data. To increase its generalization, we
superimpose another layer on the pointer network. Finally, to take advantage of infrequently used services, we use the local whale
optimization algorithm to fine-tune the initial service solution to obtain an improved service solution. Experimental results show that our
approach outperforms several existing methods in terms of both composition efficiency and solution quality.

Index Terms—Service composition, deep learning, graph neural network, pointer network, empirical rule.

✦

1 INTRODUCTION

THE rapid development of big data, cloud computing,
and the Internet of things has increased the availability

of software services on the Internet. Many services offer
similar functions with different quality of service (QoS).
Meanwhile, user tasks are becoming complex and include
a workflow of many subtasks. This complexity makes it
difficult to fulfill tasks with a single service. As a counter-
measure, QoS-aware service composition enables the aggre-
gation of multiple services into a QoS-optimal solution that
not only fulfills the complex functional requirements but
also optimizes the nonfunctional requirements of users [1].
Constructing a QoS-optimal service solution is a typical
nondeterministic polynomial (NP) problem [2].

Service composition is one of the hot topics in service
computing. Many methods have been developed for service
composition [3]. We classify them into several categories
according to the algorithms they use: exact algorithms [4],
[5], meta-heuristic-based methods [6], [7], [8], reinforcement
learning-based methods [9], [10] and graph-based meth-
ods [11], [12]. Although these “from-scratch” approaches
have yielded good results on various datasets, they do not

• Xiao Wang, H. Xu, X. Xu and Z. Wang are with the Faculty of
Computing, Harbin Institute of Technology, Harbin, China, 150001.
E-mail: {wxlxq, xhc, xiaofei, rainy}@hit.edu.cn

• Xianzhi Wang is with the School of Computer Science, University of
Technology Sydney, Australia.
E-mail: XIANZHI.WANG@uts.edu.au

Manuscript received ; revised .

take advantage of historically successful service composi-
tion solutions.

Existing experience demonstrates that maximizing the
use of empirical rules from historical service composition
solutions can improve composition efficiency and solution
quality [13], [14]. Some studies have explored mining em-
pirical rules from historical service solutions and using
them for service composition, such as the service domain-
oriented artificial bee colony algorithm (S-ABC) [15], [16]
and the service domain features-oriented genetic algorithm
(SDF-GA) [17]. However, these methods usually have the
following shortcomings:

• Their mining of empirical rules is relatively simple,
such as reusing successful partial solutions, reusing
frequently proposed task fragments, and designing
rules to classify services; they lack deeper and more
comprehensive mining.

• Although some algorithms explore the use of re-
inforcement learning to solve service composition
problems, the effect is far from the effect of meta-
heuristic algorithms. More algorithms use traditional
meta-heuristic algorithms to construct service solu-
tions, but these algorithms only converge after many
iterations, resulting in low efficiency.

• They do not pay sufficient attention to infrequently
used services. Although these services have a low
probability of use, they may still be used in the

2

optimal service solution.

For the first shortcoming, if we want to fully utilize
the experience in historical compositions, we must mine
the underlying correlations between tasks, between services,
and between tasks and services. To capture the underlying
correlation between services, a service relationship graph
is constructed based on the service history usage records.
Considering the ability of graphs to represent relationships,
using GNNs on the service relationship graph, informa-
tion between related services can be propagated to learn
interdependent service features. To relate the subtasks to
the corresponding constraints in the task, we construct the
constraint graph. Using GNN on the constraint graph allows
sharing features between subtasks and constraints and be-
tween subtasks. As a result, the learned task features contain
subtask features, constraint features, and their relationships.
Further, to mine the correspondence between tasks and
services, we transform the mining problem into a multilabel
classification problem. Combined with the representations
of tasks and services, a multilabel classifier is trained to
predict the probability that each service is used to construct
the service solution corresponding to the task. Through the
above two steps, we eliminate low-probability services and
reduce the search space of the subsequent service composi-
tion.

To address the second shortcoming, since the search
space has been reduced by GNN, a pre-trained model is con-
sidered to improve the composition speed while avoiding
degrading the quality of the solution. Since most deep Q-
learning-based service composition methods do not perform
well, we use pointer network-based reinforcement learn-
ing to construct service solutions efficiently. The pointer
network is not inferior to the meta-heuristic algorithm in
small-scale data and is superior to other machine learning
methods in solving combinatorial optimization problems.
Meanwhile, it can also handle variable-length inputs [18].
Since the generalization of the network is weak in solv-
ing constrained optimization problems, we use a two-layer
pointer network to increase the generalization.

To address the third shortcoming, we leverage all ser-
vices to fine-tune the initial service solution through a local
meta-heuristic algorithm. Here, we take full advantage of
infrequently used services, treat all services equally (the
frequently used services cannot be ignored, after all, they
are more likely to be used), and avoid overusing empirical
rules. After fine-tuning, we can obtain an improved service
solution, and since it is only a partial fine-tuning, the effi-
ciency can be guaranteed. Since there are numerous meta-
heuristic algorithms that can be employed, it is difficult
to find the most suitable one for this problem, so we pay
more attention to the solution idea, that is, whether the
use of low-probability services will further improve the
quality of the solution. We compare several meta-heuristic
algorithms and choose the shrink-wrapped strategy and
spiral update strategy of the whale optimization algorithm,
which performed the best in our experiments, as the fine-
tuning algorithm.

Based on the above improvements for the three short-
comings, we propose a framework for solving the service
composition problem, as shown in Figure 1, which includes

three main approaches: GNN-based candidate service re-
duction, pointer network-based initial service solution con-
struction, and whale optimization algorithm-based service
solution fine-tuning.

The main contributions of this paper are as follows:

• We represent the historical tasks and service usages
as graphs and pioneer the use of GNNs to mine
empirical rules in historical compositions.

• To improve the composition efficiency on the premise
of ensuring the solution quality, we use pointer
network-based reinforcement learning to construct
the initial service solution and add another layer to
the pointer network to increase its generalization.

• We fine-tune the initial service solution by taking ad-
vantage of infrequently used services, avoiding the
inadequacy of using empirical rules — potentially
missing out on more optimal solutions.

The rest of this paper is organized as follows. In Section
II, we discuss the related works. In Section III, we introduce
the problem definition and the research framework. In Sec-
tion IV, we describe our method. In Section V, the focus is on
evaluating our method in comparison with others. Finally,
Section VI offers some concluding remarks.

2 RELATED WORK

In this section, we provide a review of service composition
and its empirical rules, including three different perspec-
tives: the empirical rules and their mining approaches in
service composition, the empirical rule-based service com-
position approaches and traditional service composition
approaches without empirical rules.

2.1 Empirical Rules and Their Mining in Service Com-
position
With the rapidly increasing number of available services
and service solutions, discovering and exploiting empirical
rules to improve composition efficiency from large historical
compositions is a critical and time-consuming task [19],
[20], [21]. Some studies utilize historical service solutions
to generate reusable and flexible service solution fragments
and classify them for subsequent extraction and reuse [22],
[23]. Furthermore, some studies consider the problem from a
task perspective, mining frequently proposed similar tasks
and exploiting them in the modeling and service compo-
sition of new tasks [13], [24]. Although discovering and
mining empirical rules has received substantial attention
from researchers, these approaches are not sufficiently com-
prehensive. A complete empirical rule should cover the
correlations between tasks, between services and between
tasks and services. Moreover, the research depth is slightly
insufficient: mining with rules alone is not adequate to mine
all the underlying correlations.

2.2 Empirical Rule-Based Service Composition Ap-
proaches
Using the mined empirical rules, researchers design corre-
sponding algorithms and complete service composition. Liu
et al. [23] mine valuable fragments from historical service

3

Task Part

Service Part Classifier

Pointer Network-Based Initial Service

Solution Construction

Whale Optimization Algorithm-Based

Service Solution Fine-Tuning

GNN-Based Candidate Services Reduction

User

Task

GINs

N
o
rm

L
in

ea
r

R
eL

U

Dot

Service Relationship

GCNs

…

First Layer

Second Layer

si

si+1

2*

LSTM
Attention

ui

2*

LSTM
Attention Softmax

Initial

service

solution

Services with

the highest

Probabilities

Whale

optimization

algorithm

Final service

solution

G
C

N

N
o
rm

R
e
L

U

G

IN

Norm

ReLU

Constraint

Graph

All services

Fig. 1. Research Framework

solutions and incorporate these reusable service solution
fragments into the global planning optimization algorithm
(GP) and artificial bee colony algorithm (ABC) to improve
the composition efficiency. Xu et al. [15] propose a service-
domain-oriented ABC (S-ABC) that utilizes the a priori cor-
relation and similarity of service. Liu et al. [16] improve
S-ABC and use the C4.5 algorithm and neural network for
parameter tuning and dependency establishment between
problem features and parameters. Liu et al. [17] divide the
candidate services into multiple service spaces according
to the service domain characteristics and use the genetic
algorithm to select services in these service spaces. Although
these methods improve the composition efficiency and so-
lution quality, as mentioned in Section 1, these methods are
typically characterized by overuse of the empirical rules or
insufficient research on algorithms.

2.3 Service Composition Approaches without Empiri-
cal Rules

For the service composition approaches without empiri-
cal rules, algorithmic innovation is especially important.
Meta-heuristic-based algorithms and Q-learning-based al-
gorithms are the two main approaches to solve the service
composition problem. Gavvala et al. [7] propose an eagle
strategy with the whale optimization algorithm (ESWOA)
that ensures a proper balance between exploration and
exploitation. Yang et al. [8] propose a dynamic ant-colony
genetic hybrid algorithm, and the execution time of the two
algorithms can be controlled dynamically based on the cur-
rent solution quality. Wang et al. [9] adopt a recurrent neural
network to improve Q-learning. The algorithm employs the
heuristic behavior selection strategy to perform targeted be-
havior selection when facing different types of states. Liang
et al. [10] propose a deep reinforcement learning algorithm
that combines basic deep Q-learning, the dueling archi-
tecture, and the prioritized replay mechanism. Although
these approaches have made considerable improvements,

they are still limited to these two types of algorithms. The
composition efficiency and solution quality cannot be bal-
anced: meta-heuristic-based algorithms generate solutions
of high quality but low efficiency, while Q-learning-based
algorithms generate solutions of high efficiency but much
lower quality than meta-heuristic-based algorithms.

Based on these previous works, we use GNN to mine
empirical rules, use the pointer network for effective and
efficient composition, and fine-tune the initial service solu-
tion with infrequently used services to further improve the
performance.

3 PROBLEM DEFINITION

We divide the service composition problem into four com-
ponents - user task, service solution, objective function, and
constraints. The goal of the problem is to find a service
solution that satisfies all subtasks (functional attributes)
and constraints (nonfunctional attributes) with the optimal
objective function value. These four components are defined
below.

3.1 User Tasks

A user task is usually decomposed into several subtasks and
the corresponding workflow in the service composition. Let
Task =< T,workflow >, where T = {t1, t2, ..., tn} is the
subtask set, workflow is the priority between subtasks, and
n denotes the number of subtasks for a Task.

3.2 Services and Service Solutions

Each subtask ti is performed by the abstract service
Si, which is the collection of candidate services Si =
{si,1, si,2, ..., si,ni}, where ni refers to the number of can-
didate services for Si. Thus, the service solution of Task
is sol = {s1, s2, ..., sn} ⊆

⋃n
i=1 Si, where si is a candidate

service from Si.

4

3.3 Objective Function
We use the objective function F to evaluate the fitness of
sol. Each service si corresponds to a set of QoS values,
QoSi = {qi,1, qi,2, ...}, where qi,l denotes the l-th QoS value
of service si. Since the minimization and maximization
problems can be transformed into each other, we take the
minimization problem as an example. The service composi-
tion for minimization of F is defined as follows:

minF (sol) =

|QoS|∑
l=1

AGG(ql)× wl (1)

where |QoS| is the number of QoS attributes, wl is the
weight of the l-th QoS value, which is fixed by the user
based on his or her interest, Σlwl = 1. AGG(ql) is the l-
th QoS aggregation function value of sol. The calculation
of AGG(ql) is based on the workflow composed of se-
quential, parallel, conditional, and loop. Some common QoS
aggregation functions are shown in Table 1, where pi is the
probability of si in the conditional structure. In addition,
the QoS aggregation functions of the loop structure are
calculated by multiplying the number of loops by the value
of the aggregation function of the internal structure.

TABLE 1
QoS aggregation functions for different workflow structures

QoS attributes Sequential Parallel Conditional(pi)
Response Time

∑n
i=1 qi,rt max qi,rt

∑n
i=1 qi,rt × pi

Throughput min qi,tp min qi,tp
∑n

i=1 qi,tp × pi
Reliability

∏n
i=1 qi,rel

∏n
i=1 qi,rel

∏n
i=1 qi,rel × pi

Availability
∏n

i=1 qi,avl
∏n

i=1 qi,avl
∏n

i=1 qi,avl × pi

3.4 Constraints
Constraints are the user QoS limits for one or more subtasks.
Let the constraint set C = {c1, c2, ...}, where ci can be an
equation or inequality. We define the inequality constraint
as an example:

ci = AGGTci
(ql) < ki (2)

where Tci is the subtasks constraint by ci, AGGTci
(ql) is

the l-th QoS aggregation function value of the subsolution
corresponding to Tci and ki is the constraint value of ci.
For example, the user has a constraint c1 that requires the
overall response time of the three subtasks t1, t2, t3 to be less
than 100ms. If they are sequential, c1 =

∑3
i=1 qi,rt < 100ms,

where qi,rt is the response time of the service corresponding
to ti in the service solution.

4 METHODS

In this section, we first provide a general overview of the
research framework, followed by a detailed description of
the approaches used in each part of the framework.

4.1 Overview
The research framework shown in Figure 1 is divided into
three main approaches.

GNN-Based Candidate Service Reduction: In this sec-
tion, we use GNN to mine the empirical rules in the his-
torical compositions and further predict the probability that

each service is used to construct the service solution cor-
responding to the task. Subsequently, selecting the services
with high probability for composition can effectively reduce
the candidate service space and improve the composition
efficiency. The approach mines the empirical rules from
three different perspectives:

• The empirical rules between tasks: We transform the
functional and nonfunctional attributes of the user
task into a constraint graph (see Section 4.2.1) and
then use a graph isomorphism network (GIN) [25] to
learn the representation for the transformed task.

• The empirical rules between services: We construct
a service relationship graph (see Section 4.2.3) to
model the correlation between services and then use
a graph convolutional network (GCN) [26] to mine
the underlying correlation between services in the
graph. Finally, we obtain a representation of each
service.

• The empirical rules between tasks and services: We
map the service representation into a multilabel
classifier and train it with the correspondence be-
tween historical tasks and services. Application of
the trained classifier directly to the task representa-
tion yields the probability that each service is used to
construct the service solution corresponding to the
task.

Pointer Network-Based Initial Service Solution Con-
struction: In this section, we construct the initial service
solution using the two-layer pointer network-based rein-
forcement learning on the top-k high-probability services
obtained in the previous section. The first layer optimizes
the constraints and finds a service solution that meets the
constraints. The second layer optimizes the objective func-
tion to find an improved service solution while meeting the
constraints.

Whale Optimization Algorithm-Based Service Solu-
tion Fine-tuning: In this section, we use the local meta-
heuristic algorithm to fine-tune the initial service solution
constructed in the previous section to take advantage of
infrequently used services. After experiments, we choose to
use the shrinking encircling strategy and spiral updating
strategy in the whale optimization algorithm as the local
meta-heuristic algorithm.

We summarize the main symbols in a table of notations,
as shown in Table 2.

To make our framework easier for the reader to under-
stand, we give a qualitative running example in Appendix
A.

4.2 GNN-Based Candidate Service Reduction
In this section, we use GNN to mine the empirical rules in
the historical compositions and obtain the probability that
each service can be used to construct the service solution
corresponding to the task. To make the presentation clearer,
we present each part separately.

4.2.1 Constraint Graph
To relate the functional and nonfunctional attributes of the
task, we propose the constraint graph G =< V,E > as

5

TABLE 2
Summary of the Notations

Approaches Notations Descriptions

GNN-Based
Candidate

Service
Reduction

G The constraint graph constructed from the user task

V
The node set consisting of the subtasks T and
constraints C in G

E The edge set connecting subtasks and constraints in G

D
The hidden dimension of each model in the candidate
service reduction

N
The node feature consisting of the node category and
node constraints

NG
The node features of the constraint graph,
i.e., the input of the task representation learning

V
The node embeddings of the constraint graph,
i.e., the output of the task representation learning

vG
The constraint graph embedding accumulated by
node embeddings

S
The service feature consisting of the service category
and the QoS

SG
The service features of the service relationship graph,
i.e., the input of the service representation learning

W
The service embeddings of the service relationship graph,
i.e., the output of the service representation learning

ŷ
The service predicted probabilities multiplied
by SG and vG

Pointer
Network-Based
Initial Service

Solution
Construction

k
The top-k services with the highest probability
corresponding to each subtask based on the results of
the candidate service reduction

d
The hidden dimension of each layer in the initial service
solution construction

S
′

The service feature consisting of the QoS and constraints

SPN
The service matrix including k|T | service features,
i.e., the input of the pointer network

S
′
PN The input matrix after a linear layer

ENC The latent memory state matrix of the encoder
enci The i-th latent memory state of the encoder
deci The i-th latent memory state of the decoder

uj
i

The output of the pointer mechanism to deci in j-th layer
pointer network

Whale
Optimization

Algorithm-Based
Service Solution

Fine-tuning

pop The population size
tmax The maximum number of iterations
soli The service solution corresponding to the i-th individual
solinit The initial service solution constructed by the pointer network
sol∗ The current optimal solution
D,D

′
, A, a, c, r Other parameters used in the whale optimization algorithm

the input of the task model, where V = T + C is the
node set consisting of the subtask and constraints and
E = {e1, e2, ...} is the edge set. Edge ek =< ci, tj >
indicates that there is an edge ek between ci and tj when
tj ∈ Tci .

In addition, the constraint graph consists of two special
merging rules.

• If ci and cj constrain the same subtask set, i.e., Tci =
Tcj , they are merged into one node.

• If ci constrains only one subtask, i.e., Tci = {tj}, ci
and tj are combined into one node.

For example, in Figure 2, there are 5 subtasks T =
{t1, t2, t3, t4, t5} and 4 constraints C = {c1, c2, c3, c4},
where the subtask sets corresponding to each constraint are
Tc1 = Tc2 = {t1, t2, t3, t4, t5}, Tc3 = {t1, t2} and Tc4 = {t5}.
Since Tc1 = Tc2 , according to merging rule 1, c1 and c2 are
merged into one node, which is represented as a dashed
box containing c1 and c2 in Figure 2. Since c4 constrains
only one subtask t5, according to merging rule 2, c4 and t5
are merged into one node, which is represented as a dashed
box containing c4 and t5 in Figure 2.

t1 t2 t3 t4 t5

c3 c1 c2

c4

Fig. 2. Constraint graph

In the constraint graph, the node feature N =
concat(n1,n2) ∈ R1+2|QoS| is represented by two parts,
where concat means concatenating two vectors. The first
part is for the node category, n1 ∈ R1. For constraint nodes,
the node category is 0. For subtask nodes, the node category
is from 1 to n. The second part is for the node constraints,
n2 ∈ R2|QoS|. Each QoS occupies two dimensions: the
former dimension is the constraint minimum value and
the latter dimension is the constraint maximum value. If
there is no constraint minimum value for a QoS, set it to 0
(before this, Min-Max normalization is performed for each
QoS value). Similarly, when there is no constraint maximum
value, set it to 1.

4.2.2 Task Representation Learning
Graph representation learning is a hot topic of recent re-
search. It can convert graph data into a vector that machine
learning can process to support subsequent optimization
and analysis. Researchers have proposed a number of graph
representation learning approaches [25], [27]. In this section,
we use the GIN [25] as the representation learning model for
constraint graphs. Let vi ∈ RD be the node representation
vector, where D is the dimension of the node representation.
For the first layer, the input is a NG ∈ R|T |×(1+2|QoS|)

matrix. For the last layer, the output is V ∈ R|T |×D. GIN
updates vi as

v′
i = hΘ

(
(1 + ϵ) · vi +

∑
j∈N (i)

vj

)
(3)

where N (i) is the set of the nodes directly connected to
node i and hΘ denotes a neural network, for which we use
a multilayer perceptron (MLP). ϵ is a trainable parameter.

After obtaining the output of the last layer, we use
summation to aggregate the node features and obtain the
graph representation vector vG ∈ RD :

vG =
∑
i∈V

vi (4)

The GNNs will be trained together with the classifier
and more details will be provided in Section 4.2.4.

4.2.3 Service Relationship Graph
In this section, we define the correlation between services
by mining the co-occurrence of services in the historical
compositions, i.e., the service relationship graph.

Before introducing the service relationship graph, we
first define the service feature. As for the constraint graph
node feature, the service feature S = concat(s1, s2) ∈
R1+|QoS| contains two parts. The first part s1 is the service
category, where s1 ∈ R1 is from 1 to |T |. The second part
s2 is the QoS, where s2 ∈ R|QoS|. Each standardized QoS
occupies one dimension.

In the service relationship graph, nodes are services and
edges are conditional probabilities between services. An
edge pointing from si to sj denotes the probability that
service sj is used under the condition that service si is used.
To construct the service relationship graph, we first calculate
the number of occurrences ni for each service si and the
number of co-occurrences ni,j for each two services si and
sj in the historical service solutions. Then, we approximate

6

the conditional probability p(sj |si) ∼= ni,j

ni
, which is the edge

pointing from si to sj in the graph, and the edge weight is
the value of the conditional probability.

Figure 3 shows a subgraph of the service relationship
graph that contains three services: s1, s2 and s3. The figure
shows that the edge weight from s1 to s2 is different from
that from s2 to s1, indicating that when s2 appears in the
service solution, s1 will also occur with a high probability
(p(s1|s2) = 0.7). However, when s1 appears in the service
solution, s2 will not necessarily occur (p(s2|s1) = 0.2).

s1

s2

s3

p(s2|s1)=0.2

p(s1|s2)=0.7

p(s3|s1)=0.3

p(s1|s3)=0.5

s1 s2

s1 s3

…

Fig. 3. Service relationship graph

4.2.4 Classifier Learning
GNNs are widely used in multilabel classification prob-
lems [28], [29]. In this section, we learn the service repre-
sentation in the service relationship graph via a GCN [26]
and map the service representation as a multilabel classifier.
The trained classifier is applied to the task representation to
obtain the selection probability of each service.

Let wi ∈ RD be the service representation vector. For the
first layer, the input is the matrix of the service relationship
graph SG ∈ R|S|×(|1+|QoS|). For the last layer, the output is
W ∈ R|S|×D . GCN updates wi as

w′
i = Θ

∑
sj∈N (si)∪{si}

p(sj |si)√
djdi

wj (5)

with di = 1 +
∑

sj∈N (si)
p(sj |si). Θ ∈ RD×D is a trainable

parameter matrix. By applying the learned classifier to the
output vG of the task part, we can obtain the predicted
probabilities ŷ ∈ R|S| as

ŷ = σ(WvG) (6)

where σ is a sigmoid function.
We assume that the correct classifications is y. Our net-

work is trained using binary cross-entropy loss as follows:

loss = − 1

|S|

|S|∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (7)

where yi = {0, 1} indicates whether si is used to construct
the service solution corresponding to the task and ŷi is the
predicted probability of si.

4.3 Pointer Network-Based Initial Service Solution
Construction
In this section, we first find the top-k services with the
highest probability corresponding to each subtask based on
the results of the candidate service reduction section. These

|T | × k services are then used as input and optimized using
two-layer pointer network-based reinforcement learning to
obtain an initial service solution solinit.

4.3.1 Service Feature
The service feature S

′ ∈ R|QoS|+2|C| consists of the QoS
and constraints, where the QoS part is the same as in
Section 4.2.3, and the constraint part is constraint s2 ∈ R2|C|.
Each constraint ci occupies two dimensions. If subtask tj
corresponding to service sj is in Tci , the values of the service
in these two dimensions are the minimum and maximum
constraint values; otherwise, both values are set to 0.

4.3.2 Pointer Network
The pointer network (PN) [30] is a novel policy model for
solving combinatorial optimization problems. The trained
model performs well on many problems, such as the trav-
eling salesman problem (TSP) [18] and the vehicle routing
problem (VRP) [31]. Another advantage of PN is that it can
handle variable-length inputs [30], making the approach
much more adaptable. It uses a pointing mechanism, re-
sembling the attention mechanism [32], to make the model
point to a specific position in the input sequence (i.e., the
input services).

Input

and

LSTM

Layers

E
n

co
d
er

S1 Sk|T|

E
n

co
d
er

E
n

co
d
er

……

Linear

……

enc1 enc2 enck|T|-1 enck|T|

D
ec

o
d

er

Init

Linear

dec1

dec2

Concatnate Pointing Mechanism

S2

D
ec

o
d

er

D
ec

o
d

er

dec1

……

dec|T|-1

S2 Sj

dec|T|

…… ……

……

Concatnate Pointing Mechanism

Input and LSTM Layers

…… ……

……

Softmax

S2 Sj…… Sk

First

Layer

Second

Layer

u
1

1 u
1

2 u
1

|T|-1 u
1

|T|

u
2

1 u
2

2 u
2

|T|-1 u
2

|T|

{enci}

Fig. 4. Two-layer pointer network

A one-layer PN consists of two long short-term memory
neural networks (LSTM) [33], i.e., an encoder and a decoder,
a point mechanism, a d-dimensional vector of trainable
parameters, and a linear layer. It consists of three main steps
as follows.

• Input: After the candidate service reduction, we
find the top-k services with the highest probabilities
based on each subtask and encode them according
to the rules in Section 4.3.1 to obtain the service
matrix SPN ∈ Rk|T |×(|QoS|+2|C|). This matrix is
passed through a linear layer to obtain the input to
the model S

′

PN ∈ Rk|T |×d, where d is the output
dimension of the linear layer.

7

• Encoder: The encoder of PN is a d-dimensional
LSTM. We transform S

′

PN into an input sequence
containing k|T | vectors. At this time, each vector in
the sequence is a service. These services are input to
the LSTM in turn to get latent memory state (hid-
den state) matrix ENC = LSTM(S

′

PN) ∈ Rk|T |×d,
where the row vector enci ∈ Rd is the i-th hidden
state of the encoder.

• Decoder: Like the encoder, the decoder is also an
LSTM. We define a d-dimensional vector of train-
able parameters Init as the initial input to the
decoder. Meanwhile, enck|T | ∈ Rd from the en-
coder (i.e., the last hidden state) is also input as
the initial hidden state to the decoder. The first
hidden state output from the decoder is saved as
dec1 = LSTM(Init, enck|T |) ∈ Rd. Then, dec1 is
input as the query with ENC from the encoder into
the pointer mechanism to get u1 = ENC × dec1 ∈
Rk|T |. Here, we choose the most straightforward
dot product as our pointer mechanism. However,
other mechanisms such as the multi-head attention
mechanism can also be used. In the service com-
position problem, each subtask corresponds to only
one service. Therefore, to avoid the duplication of
the same category of services in the final solution,
we also need to adjust u1 by modifying the weights
of the latter (k − 1)|T | dimensions to −∞ so that
the service corresponding to the first subtask can be
correctly selected. The modified u1 is passed through
a softmax layer to obtain the selection probabilities
of the services. Finally, the selected service is input
into the decoder as the next vector. Thus, after |T | se-
lections, we can construct the initial service solution
based on the selected services.

Since there are many constraints in the task, we use a
two-layer pointer network to increase the generalization of
the model. With the two-layer pointer network, we restrict
the results of the first layer to feasible service solutions
so that the optimization of the objective function F at the
second layer can find a more optimal solution among these
service solutions.

Our two-layer PN depicted in Figure 4 differs from the
above steps in only the encoder step. The output of the
first layer pointer mechanism u1

i is directly added to the
output of the second layer pointer mechanism u2

i . Thus, the
training results of the first layer can be used as a guide for
the second layer to select services that are more likely to
meet the constraints.

4.3.3 Optimization Strategies
The pointer network can be trained by both supervised
learning with labels and reinforcement learning (samples
without labels). Two reasons motivate us to choose rein-
forcement learning to optimize PN over supervised learning
with labels.

1) In supervised learning with labels, the model’s per-
formance is closely related to the quality of the
supervised labels. However, in practice, the cost
(i.e., label generation time) of obtaining high-quality
labels is very high.

2) Combinatorial optimization problems usually have
multiple feasible solutions, and other solutions can
guide the model to converge to the optimal solu-
tion. However, labels can usually only record the
optimal solution. Limited by their generalization
ability, training with labels cannot predict the results
completely and accurately, resulting in poor training
performances. To solve this problem, further pro-
cessing of the labels is required, bringing more pre-
processing costs.

Therefore, we use a policy-based reinforcement learning
algorithm [34] to optimize the parameters of the pointer
network, denoted as θ. The training objectives are different
in the two-layer PN. For the first layer, the training objective
is the number of constraint violations. For the second layer,
the training objective is the objective function value F . We
take the second layer as an example; given the input service
sequence seq, the training objective is defined as

J(θ|seq) = Eπ∼pθ(.|seq)F (π|seq) (8)

where we replace solinit with the generic state notation π in
reinforcement learning. pθ(π|seq) is the selection probability
of π, which can be decomposed as

p(π|seq) =
|T |∏
i=1

p(π(i)|π(< i), seq) (9)

The gradient of Equation 8 with the policy gradient
method is:

∇θJ(θ|seq) = Eπ∼pθ(.|seq)

[(
F (π|seq)−b(seq)

)
∇θ log pθ(π|seq)

]
(10)

In the actual training process, each batch will have B
samples. This gradient can be approximated via Monte
Carlo sampling as:

∇θJ(θ|seq) ≈
1

B

B∑
i=1

(
F (πi|seqi)− b(seqi)

)
∇θ log pθ(πi|seqi)

(11)
where b(seqi) is a baseline function.

We use active search [18] for training. In the active
search, b(seqi) is unified into a parameter b, and this param-
eter is continuously updated during training. The training
pseudo-code for a batch B is shown in Algorithm 1.

Algorithm 1 Active search training
Input: Batch size B, Parameter β.
Output: Network parameters θ.

1: for i ∈ {1..B} do
2: πi ∼ SAMPLESOLUTION(pθ(·|seqi));
3: Calculate F (πi|seqi);
4: end for
5: b = b× β + (1− β)×

(
1
B

∑B
i=1 F (πi|seqi)

)
6: gθ = 1

B

∑B
i=1

(
F (πi|seqi)− b

)
∇θ log pθ(πi|seqi)

7: θ = ADAM(θ, gθ)
8: return θ

For our two-layer PN, the first layer is trained first. Then,
after the first layer results have converged, the two layers

8

are trained together. The service sequence from the second
layer’s output is the initial service solution obtained.

4.4 Whale Optimization Algorithm-Based Service Solu-
tion Fine-tuning
Since the initial service solution is constructed of only ser-
vices with high probability, in this section, we fine-tune the
initial service solution in the global service repository to take
advantage of infrequently used services.

We compare several local strategies of classical evolu-
tionary algorithms and finally choose the shrinkage enve-
lope strategy and spiral update strategy from the whale
optimization algorithm (WOA) for local optimization (see
Section 5.3.6 for comparison results). WOA mimics the be-
havior of humpback whales swimming towards their prey
and performs well in classical optimization problems [35].

In this section, we use an integer encoding scheme.
The service solution is defined as a vector soli =
{ps1 , ps2 , ..., ps|T |}, where sj denotes the psj -th candidate
service of Sj .

The pseudo-code of the algorithm is presented in Algo-
rithm 2.

Algorithm 2 Service solution fine-tuning
Input: solinit, S
Output: sol∗

1: Initialize pop, tmax; sol∗ = solinit; t = 0;
2: Randomly generate pop service solutions soli;
3: while t < tmax do
4: calculate parameters by Equation 13;
5: for each soli do
6: update soli by Equation 12;
7: if F (soli) < F (sol∗) then
8: sol∗ = soli;
9: end if

10: end for
11: end while
12: return sol∗

First, the population size pop, the maximum number of
iterations tmax, and the current optimal solution sol∗ =
solinit are initialized. Then, pop service solutions soli are
randomly generated.

Each soli is the updated using the following equa-
tions [36], where the first equation corresponds to the
shrinking encircling strategy and the second equation corre-
sponds to the spiral updating strategy.

solti =

{
sol∗ −A ·D, p < 0.5, |A| < 1
D′ · ebl · cos(2πl) + sol∗, p > 0.5

(12)
where p is a random number from 0 to 1, l is a random
number from -1 to 1, and b is a parameter to ensure the
logarithmic shape. The other parameters in the equation are
defined as follows:

D = c · sol∗ − solt−1
i

D′ = sol∗ − solt−1
i

A = 2a · r − a
c = 2r

(13)

where a is decreased from 2 to 0 linearly in every iteration
and r is a random number from 0 to 1.

After tmax iterations, the algorithm terminates. The ser-
vices corresponding to each dimension in sol∗ are com-
posed to obtain the final service solution.

5 EXPERIMENTAL ANALYSIS

In this section, we first introduce the experimental setup
and the dataset and then calibrate the parameters in the
model. Finally, we compare the calibrated approach with
other novel approaches to demonstrate the effectiveness of
our approach.

5.1 Experimental Setup and Dataset
Since there is no publicly available dataset with tasks and
services on the service composition problem, as the majority
of experiments in service composition [7], [8], [37], we use
synthetic tasks with publicly available service QoS datasets
for our experiments.

We synthesize two datasets; the first one uses the ser-
vices from the normalized QWS dataset [38], including
various QoS attributes. To improve the composition com-
plexity, we remove the service categories with the number
of services less than 5. The cleaned service dataset has a total
of 2507 services in 48 categories.

In addition, to demonstrate the generalizability of our
approach, we synthesize a more extensive and differently
distributed dataset. We first count the QoS in the QWS
dataset, and the result shows that it follows a long-tailed
distribution. Then, we synthesize a dataset (Normal dataset)
with 50 abstract services, each with 500 services. The QoS in
our synthetic dataset is shown to obey a normal distribution
by the Shapiro–Wilk test [39]. Except for the difference in
the number of abstract services for the tasks, the rest of the
design of the Normal dataset is similar to the QWS dataset.

We randomly select from 20 to 30 (from 40 to 50 for the
Normal dataset) abstract services (subtasks) from the service
dataset to form the user task and randomly add global and
local constraints. According to such rules, four thousand
tasks are generated as a task dataset, of which 3000 are
used for model training and 1000 are used for algorithm
performance testing.

We use a pruning search algorithm (an exact algorithm
with a longer time) to generate the optimal service solution
as the historical service solution dataset. These historical
service solutions are combined with the corresponding tasks
to train multilabel classifiers or to test the performance of the
algorithm.

All algorithms are evaluated in terms of the composition
time and solution quality. The definition of solution quality
is as follows:

sq =
F (sol∗)

F (sol)
(14)

where sol∗ denotes the optimal service solution. The opti-
mal solution has a solution quality of 1. All other solutions
have values between 0 and 1. The greater the solution
quality, the better the solution.

We use response time and throughput as the objective
functions and use availability and reliability as the con-
straints. The objective function is defined as follows.

minF (sol) =
1

2

[∑n
i=1 qi,rt
n

+max(1− qi,tp)
]
+ v (15)

9

TABLE 3
The performance of the multilabel classification approach with different

numbers of GIN and GCN layers

Layers Performance Evaluation

GINs GCNs QWS Normal
p@1 p@5 p@1 p@5

2 2 0.9190 0.5152 0.9330 0.7648
2 3 0.9050 0.5084 0.9730 0.8148
2 4 0.9120 0.5134 0.9930 0.8360
3 2 0.9130 0.5142 0.9170 0.7700
3 3 0.8900 0.5032 0.9700 0.8254
3 4 0.8920 0.4974 0.9930 0.8328
4 2 0.8940 0.4928 0.9000 0.7634
4 3 0.8910 0.5052 0.9480 0.7960
4 4 0.8940 0.5152 0.9750 0.8360

where qi,rt and qi,tp are the response time and throughput
of the i-th service in sol and v is the number of constraint
violations.

Since availability and reliability are calculated in the
same way, we take availability as an example and define
the constraint ci as shown below.

ci =
∏

sj∈Sci

qj,avl > ki (16)

where qj,avl is the availability of the j-th service in sol,
Sci is the service constraint by ci, and ki is the constraint
value of ci.

Due to space limitations, the statistics for the distribution
of the data are shown in the Appendix B.

All experiments are executed on a PC with an 8-core
CPU, 32.0 GB RAM, and a 10.0 GB GPU.

5.2 Parameter Calibration

We calibrate the parameters in the model to obtain better
results for our approach.

5.2.1 Calibration of the number of GIN and GCN layers
In the GNN-based candidate service reduction, with GIN
and GCN as the main components of the approach, the
number of layers is essential for the model testing perfor-
mance. Therefore, we calibrate the number of GIN and GCN
layers in this section.

We evaluate the performance of the multilabel classifi-
cation in the GNN-based candidate service reduction with
2 to 4 GIN layers and 2 to 4 GCN layers using the classic
p@k in the extreme multilabel classification problem. p@k is
defined as follows:

p@k =
1

k

∑
l∈rankk

yl (17)

where rankk denotes the predicted highest probability k
labels and yl denotes the actual value of the l-th label. In
this experiment, we set k = 1, 5.

We run 20 epochs for each set of parameters and record
the best p@k. The results are shown in Table 3.

For the QWS dataset, the best performance is obtained
when the number of GIN and GCN layers is 2, and for
the Normal dataset, the best performance is obtained when
the number of GIN layers is 2 and the number of GCN

layers is 4. A greater number of model layers does not
necessarily lead to better results. A reasonable explanation
for the result is that as the number of model layers increases,
the propagation between nodes will accumulate and lead to
oversmoothing.

Therefore, in the subsequent experiments, we choose a
2-layer GIN and a 2-layer GCN for the QWS dataset and a
2-layer GIN and a 4-layer GCN for the Normal dataset.

5.2.2 Calibration of top-k between the candidate service
reduction and the initial service solution construction

Before the initial service solution construction, it is necessary
to choose a suitable k and find the top-k services based on
the results of the candidate service reduction.

Since the composition time is essentially the same, we
only compare the solution quality for each value. We ex-
periment for k from 2 to 10, and the results are shown in
Figure 5.

Figure 5 indicates that when k < 6, the solution quality
increases roughly with increasing k, but when k ≥ 6, the
solution quality does not change substantially as k increases.
As k increases, the number of services available for op-
timization increases, as does the quality of the solution.
However, when k exceeds a certain threshold (5 in the
experiments), the limitations of the two-part model for the
candidate service reduction and the initial service solution
construction lead to an inability to continue increasing the
solution quality. The reasons are as follows. First, the can-
didate service reduction approach has already selected the
high-probability services. The vast majority of the remaining
services with small probability are not suitable for this task,
and increasing the value of k does not cause much change
in the quality of the solution. Second, when the pointer
network has an excessive number of inputs, the quality of
the solution output from the pointer network is limited by
the network’s generalization ability. Although the training
dataset results will be better, they will not have much effect
on the results of the test dataset.

Therefore, we set k = 5 for the QWS dataset experiment.
For the Normal dataset, we do the same experiment and set
k = 10.

2 3 4 5 6 7 8 9 10
Parameter k

0.91

0.92

0.93

0.94

0.95

0.96

so
lu

tio
n

qu
al

ity

Fig. 5. The performance of the initial service solution construction ap-
proach with different k in the QWS dataset

10

TABLE 4
Comparison of performance for different deep learning approaches

Algorithms ML C-Tran SCoNE Q2L

QWS
p@1 0.9190 0.9151 0.8090 0.9184
p@5 0.5152 0.5179 0.3990 0.5125
Training
Time(min) 5.833 8.043 5.297 8.111

Normal
p@1 0.9930 0.8820 0.9530 0.9890
p@5 0.8360 0.8126 0.8200 0.8280
Training
Time(min) 31.81 28.31 26.96 35.38

5.3 Ablation Experiments
To demonstrate that each module in the network has a posi-
tive impact on the algorithm’s performance, we decompose
each module and design ablation experiments.

The results shown in Sections 5.3.2, 5.3.4, 5.3.5 and 5.3.6
are for the QWS dataset, and the results for the Normal
dataset are similar. However, due to space limitations, the
results of the Normal dataset are omitted.

5.3.1 Comparison of Approaches with and without GNN in
terms of Candidate Service Reduction
To demonstrate the effectiveness of using GNN, in this sec-
tion, we compare our GNN-based candidate service reduc-
tion approach (ML) with three state-of-the-art multi-label
classification approaches without using GNN: C-Tran [40]
(CNN and Transformer-Based), SCoNE [41] (CNN and
Attention-Based), and Q2L [42] (Transformer-Based). We
modify the necessary parts, such as the input and output
formats and some preprocessing models that do not fit the
problem (e.g., Bert, for text representation of labels). As
described in Section 5.2.1, we evaluate the performance with
p@k. The comparison results are shown in Table 4.

For the performances of the approaches, our approach
performs better than the other approaches in most of the in-
dicators, and only p@5 in the QWS dataset is slightly lower
than C-Tran. For the generalizations of the approaches, Q2L
and our approach are applicable to all datasets, while C-
Tran is more applicable to small-scale datasets (QWS, 2.5k
labels) and SCoNE is more applicable to large-scale datasets
(Normal, 25k labels).

Therefore, after balancing the performance and gener-
alization, we conclude that the architecture with GNN is
better than the architectures without GNN in this problem.

5.3.2 Impact of the Service Relationship Graph on the Can-
didate Service Reduction
The service relationship graph (SRG) defines the correlation
between services by mining the conditional probability of
their co-occurrence with other services in the historical com-
positions. In this section, we demonstrate the effectiveness
of SRG via experiments.

We evaluate the performance of our multilabel clas-
sification in the GNN-based candidate service reduction
(ML) with SRG and without SRG using p@5 defined in
Equation 17, where ML without SRG replaces the GCN layer
with a linear layer and the other parts are unchanged. The
results are shown in Figure 6.

By comparing the two curves with different epochs, we
can find that ML with SRG outperforms ML without SRG

0 5 10 15 20 25 30 35 40
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p@
5

with SRG
without SRG

Fig. 6. Comparison of p@5 with SRG and without SRG in the QWS
dataset

TABLE 5
Comparison of the performance for PN training approaches

Training Approaches Supervised Learning
with Labels

Reinforcement
learning

Label Generation Rule Optimal ML+ESWOA -

QWS
Solution Quality 0.8698 0.8670 0.9576
Label Generation
Time (min) 1000+ 43.76 -

Training Time (min) 1.388 1.405 48.18

Normal
Solution Quality 0.8909 0.8698 0.9482
Label Generation
Time (min) 1000+ 165.9 -

Training Time (min) 1.572 1.536 72.99

in terms of convergence speed and algorithm performance.
Therefore, SRG proves to be effective.

5.3.3 Comparison of Different Training Approaches for the
Initial Service Solution Construction
To demonstrate the effectiveness of using reinforcement
learning to optimize PN, we compare it with supervised
learning with labels.

We generate labels of different qualities with the follow-
ing two different rules:

1) Generate labels with a pruned search algorithm,
obtaining optimal solution labels.

2) Generate labels with ML+ESWOA, the best-
performing baseline in the experiments (see Sec-
tion 5.4).

The results are shown in Table 5. For the solution quality,
regardless of which label generation rules are compared,
reinforcement learning is far better than other approaches.
Meanwhile, although their training times are shorter, the
total time is closer to or even exceeds that of reinforcement
learning after adding the label generation time because
reinforcement learning does not need to generate labels in
advance. Therefore, we can conclude that using reinforce-
ment learning to train pointer networks is superior to using
supervised learning with labels.

5.3.4 Impact of Modules on the Initial Service Solution
Construction
For the two-layer pointer network-based initial service so-
lution construction, we first use the ML module to reduce

11

the search space and then add a layer to PN to improve
the generalization. In this section, we illustrate the effect of
these two modules on the result of the initial service solution
construction with experiments.

We add a layer to PN, ML module to PN, and ML
module and a layer to PN (the model used in this paper),
respectively, named 2PN, ML+PN, and ML+2PN. Then, we
compare the solution qualities of the initial service solu-
tion construction based on the three models with different
epochs. The results are shown in Figure 7.

0 20 40 60 80 100
epoch

0.70

0.75

0.80

0.85

0.90

0.95

1.00

so
lu

tio
n

qu
al

ity

ML+2PN
ML+PN
2PN

Fig. 7. Comparison of solution qualities of ML+2PN, ML+PN and 2PN in
the QWS dataset

Since the results of each epoch are relatively scattered,
we fit the results of each algorithm as a curve.

First, observing the ML+PN curve, we can see that
although we add the ML to reduce the search space, ML+PN
still has a gap with 2PN. This result proves that we need a
model with stronger generalization ability.

Then, by comparing the results of 2PN and ML+2PN,
we can find that the convergence of ML+2PN is faster than
that of 2PN, and the solution quality is better. Although the
range of services available is larger in 2PN, most services are
not suitable for this task. The excessive search space reduces
the convergence speed of 2PN.

Finally, by comparing the three curves, we demonstrate
that the two modules positively impact the initial service
solution construction result.

5.3.5 Impact of Modules on the Service Solution Fine-
Tuning
The trained ML+2PN module can obtain a near-optimal
service solution with very high efficiency. However, if the
user is still unsatisfied with this service solution, we use
the WOA-based service solution fine-tuning (WOA(local))
to optimize it further. In this section, we illustrate the
effect of the previous modules (ML and 2PN) on the result
of the service solution fine-tuning via experiments. Since
using the local meta-heuristic algorithm alone results in low
effectiveness, we use its corresponding global meta-heuristic
algorithm (WOA) instead.

We add the ML module and ML+2PN module be-
fore WOA(local), respectively, named ML+WOA(local) and
ML+2PN+WOA(local), and compare the solution quality of
these three approaches. ML+WOA(local) means we choose

the services with the highest probability from ML as the
initial service solution and execute WOA(local). The results
are shown in Figure 8.

0 100 200 300 400 500
epoch

0.5

0.6

0.7

0.8

0.9

1.0

so
lu

tio
n

qu
al

ity

ML+2PN+WOA(local)
ML+WOA(local)
WOA

Fig. 8. Comparison of solution qualities of WOA, ML+WOA(local) and
ML+2PN+WOA(local) in the QWS dataset

By comparing the curves of WOA with those of the other
two algorithms, we can find that in terms of both the conver-
gence speed and the solution quality, ML+2PN+WOA(local)
is significantly better than the other two algorithms. The
solution quality of ML+WOA(local) at 500 epoch is only
close to the initial solution quality of ML+2PN+WOA(local),
and the solution quality of WOA is even worse. Therefore,
we can conclude that each module added before the service
solution fine-tuning positively impacts the service solution.

5.3.6 Selection of the Local Meta-Heuristic Algorithm in the
Service Solution Fine-Tuning
As mentioned in Section 4.4, we compare the meta-heuristic
algorithms used in the service solution fine-tuning to
demonstrate that our chosen local strategy in WOA outper-
forms the other algorithms.

We compare the local policies in three algorithms com-
monly used in service compositions, genetic algorithm
(GA) [43], artificial bee colony algorithm (ABC) [15], and
ant colony optimization algorithm (ACO) [8].

To satisfy the requirements of local fine-tuning, we must
adapt the algorithms. For GA, we always keep the initial ser-
vice solution in the population. If there is no better solution,
the other individuals in the population gradually approach
the initial solution and perform a local search. For ABC,
we initialize the leader bee on the initial service solution,
and the follower bee will search locally in the neighborhood
of that solution. For ACO, since ACO in DAAGA [8] is
responsible for the local search and GA is responsible for
the global search, we directly use the local ACO as the local
search strategy.

The parameters of the three baselines and WOA are set
according to those in previous papers [7], [8], [15], [43].
To reduce the effect of search time, we fix the algorithm
running time and proportionally increase or decrease the
parameters that affect that time.

The results shown in Table 6 demonstrate that WOA
outperforms the other three algorithms in both the QWS and
Normal datasets. Therefore, we choose the local strategy in
WOA as the service solution fine-tuning approach.

12

TABLE 6
Comparison of solution qualities of different local meta-heuristic

algorithms

Algorithms Datasets
QWS Normal

GA 0.9712 0.9601
ABC 0.9789 0.9630
ACO 0.9752 0.9589
WOA 0.9831 0.9653

5.4 Algorithm Comparisons

To evaluate the performance of our approach, we compare
it with recently proposed approaches.

Empirical rule-based service composition approaches are
the focus of the comparison. We choose SDFGA [17] and
DPKSD [24] as the baselines. These methods mine empirical
rules in two different ways: designing rules to classify ser-
vices and reusing successful partial solutions and frequently
proposed task fragments.

Additionally, we compare our approach with algorithms
without empirical rules. We choose the recently proposed
algorithms ESWOA [7], DAAGA [8] (two meta-heuristic
algorithms) and PDDQN [10] (a reinforcement learning
algorithm) as the baselines. Due to the weak performance
of PDDQN alone and the fact that this approach and our
pointer network-based initial service solution construction
approach are both reinforcement learning algorithms, we
add an ML module in front of this algorithm to improve its
performance.

To demonstrate the effect of 2PN, we replace 2PN in
ML+2PN with DAAGA and ESWOA, named ML+DAAGA
and ML+ESWOA, and involved in the comparison.

The parameters of the above baselines are either adopted
from the original paper or increased proportionally to en-
sure convergence.

We compare the average solution quality (demonstrating
the performance of the approaches), the standard deviation
(demonstrating the stability of the approaches), composition
time and training time obtained by ML, ML+2PN, and
ML+2PN+WOA(local) with that of the five baselines. The
results are shown in Table 7.

First, we compare the solution quality of the approaches.
The performance of ML is the poorest, not only in terms of
its average solution quality but also in terms of its stability.
Due to the limitation of the model generalization, some of
the solutions are not of high quality (manifested by a high
number of violated constraints), which reduces the overall
performance of the method.

To solve this problem, we use 2PN to optimize
the services with higher probabilities obtained by ML.
ML+2PN has outperformed all approaches without ML.
Compared with ML+metaheuristics (i.e., ML+ESWOA and
ML+DAAGA), ML+2PN is superior to the two compar-
ison methods on the Normal dataset but superior to
ML+DAAGA and inferior to ML+ESWOA on the QWS
dataset. Considering the composition time, using a two-
layer pointer network after ML achieves the desired result
of increasing the composition efficiency without degrading
the solution quality.

Further, we add WOA(local) to ML+2PN.
Compared with other approaches, we can find that
ML+2PN+WOA(local) performs much better. Therefore,
our approach can construct an improved service solution in
less time than the other approaches.

Then, we compare the composition time and training
time of the approaches and give a trade-off for them. Since
our methods are based on deep learning and reinforcement
learning, the composition times are shorter than other meth-
ods, but there is an extra training time. For ML, although
the composition time and training time are short, the solu-
tion is with lower quality and less stable, so the method
is not suitable for using alone. ML+metaheuristics (i.e.,
ML+ESWOA and ML+DAAGA) trade a longer composition
time for better solution quality. Therefore, they are suitable
for providing better service solutions for users who do not
care about the composition time when the training time
is insufficient. ML+2PN trades a longer training time for
a very short composition time and better solution quality.
Therefore, it is suitable for providing better service solutions
for users who need immediate access to service solutions
when the training time is sufficient. ML+2PN+WOA(local)
gives the best solution quality but requires a longer training
time and some composition time. Therefore, it is suitable for
providing service solutions for users who prefer the solution
quality when the training time is sufficient.

In addition, to demonstrate that our method is not com-
pletely dependent on WOA(local), we add WOA(local) to
the baselines and compare our method with them.

The results for the QWS dataset are shown in Table 8
and those for the Normal dataset are similar. Although the
addition of the local algorithm improves the quality of the
baselines’ solution qualities, the results are still worse than
those of our method. We omit the results of ML+PDDQN
because this method has already utilized the results of ML.

Due to space limitations, the results of the Friedman
test [44] and Nemenyi test [45] which are often used to
compare the performance of multiple models [45] are shown
in the Appendix C.

6 CONCLUSION AND FUTURE WORK

With the massive increase in candidate services and user
tasks, the service composition problem has become more
complex. Researchers have found that mining empirical
rules from historical compositions can effectively reduce the
search space and improve composition efficiency. Existing
methods do not mine the empirical rules comprehensively
and deeply, and they do not pay attention to services that are
not frequently used. Therefore, in this paper, we propose a
graph neural network and pointer network-based approach
to address the shortcomings of existing methods. Our ap-
proach consists of three methods: GNN-based candidate ser-
vice reduction, pointer network-based initial service solu-
tion construction, and whale optimization algorithm-based
service solution fine-tuning. The candidate service reduction
approach first mines empirical rules using graph neural
networks and predicts the probability that each service
is used to construct the service solution corresponding to
the task. The initial service solution construction approach
uses a two-layer pointer network to construct an initial

13

TABLE 7
Comparison of the performances of different approaches. * indicates that ML+2PN+WOA(local) significantly outperforms the best baseline based

on the Nemenyi test (p− value < 0.005). - indicates that the time is very short or meaningless.

Approaches QWS Normal

Solution Quality Composition
Time(s)

Training
Time(min) Solution Quality Composition

Time(s)
Training

Time(min)
SDFGA 0.8809±0.1428 1.183 <1 0.8581±0.1669 3.751 3.340
DPKSD 0.9015±0.1453 0.9524 <1 0.8770±0.1489 3.287 <1
ESWOA 0.8901±0.1512 1.334 - 0.8707±0.1648 4.197 -
DAAGA 0.8923±0.1387 1.822 - 0.8756±0.1524 4.369 -
ML 0.8520±0.2305 - 5.833 0.8049±0.2267 - 31.81
ML+PDDQN 0.8856±0.1375 1.568 5.833 0.8355±0.1621 3.239 31.81
ML+ESWOA 0.9609±0.0699 0.9691 5.833 0.9364±0.0443 3.295 31.81
ML+DAAGA 0.9475±0.0724 1.464 5.833 0.8994±0.0509 3.925 31.81
ML+2PN 0.9576±0.0574 - 54.01 0.9482±0.0229 - 104.8
ML+2PN+
WOA(local) 0.9831*±0.0199 0.6848 54.01 0.9653*±0.0180 2.149 104.8

TABLE 8
Comparison of the performances after adding WOA(local) to the

baselines in the QWS dataset

Approaches Solution Quality Composition Time(s)
SDFGA+WOA(local) 0.9352 1.842
DPKSD+WOA(local) 0.9417 1.576
ESWOA+WOA(local) 0.9158 1.995
DAAGA+WOA(local) 0.9383 2.427
ML+2PN+WOA(local) 0.9831 0.6848

service composition solution. Finally, to take advantage of
infrequently used services, the service solution fine-tuning
approach fine-tunes the initial service solution to construct
an improved service solution. Comparative experiments
with five other related methods are used to evaluate the
performance of our method.

Since the datasets used in the experiments are synthetic,
one of our future works is to construct a real task and service
dataset to support service compositions. Simultaneously, we
will explore new and better network structures used for
each part of the framework to improve the composition
efficiency and solution quality.

ACKNOWLEDGMENTS

Research in this paper is supported by the National
Key Research and Development Program of China
(No.2021YFB3300700) and the National Natural Science
Foundation (NSF) of China (Nos.61832004, 61832014).

REFERENCES

[1] Q. Z. Sheng, X. Qiao, A. V. Vasilakos et al., “Web services com-
position: A decade’s overview,” Information Sciences, vol. 280, pp.
218–238, 2014.

[2] D. Ardagna and B. Pernici, “Adaptive service composition in flex-
ible processes,” IEEE Transactions on software engineering, vol. 33,
no. 6, pp. 369–384, 2007.

[3] A. S. da Silva, H. Ma, Y. Mei et al., “A survey of evolutionary com-
putation for web service composition: A technical perspective,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 4, no. 4, pp. 538–554, 2020.

[4] V. Gabrel, M. Manouvrier, and C. Murat, “Optimal and automatic
transactional web service composition with dependency graph
and 0-1 linear programming,” in ICSOC. Springer, 2014, pp. 108–
122.

[5] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Hybrid op-
timization algorithm for large-scale qos-aware service composi-
tion,” IEEE Transactions on Services Computing, vol. 10, no. 4, pp.
547–559, 2015.

[6] F. Seghir and A. Khababa, “A hybrid approach using genetic
and fruit fly optimization algorithms for qos-aware cloud service
composition,” Journal of Intelligent Manufacturing, vol. 29, no. 8, pp.
1773–1792, 2018.

[7] S. K. Gavvala, C. Jatoth, G. Gangadharan et al., “Qos-aware cloud
service composition using eagle strategy,” Future Generation Com-
puter Systems, vol. 90, pp. 273–290, 2019.

[8] Y. Yang, B. Yang, S. Wang et al., “A dynamic ant-colony genetic
algorithm for cloud service composition optimization,” The In-
ternational Journal of Advanced Manufacturing Technology, vol. 102,
no. 1, pp. 355–368, 2019.

[9] H. Wang, M. Gu, Q. Yu et al., “Adaptive and large-scale service
composition based on deep reinforcement learning,” Knowledge-
Based Systems, vol. 180, pp. 75–90, 2019.

[10] H. Liang, X. Wen, Y. Liu et al., “Logistics-involved qos-aware ser-
vice composition in cloud manufacturing with deep reinforcement
learning,” Robotics and Computer-Integrated Manufacturing, vol. 67,
p. 101991, 2021.

[11] P. Wang, Z. Ding, C. Jiang et al., “Automatic web service composi-
tion based on uncertainty execution effects,” IEEE Transactions on
Services Computing, vol. 9, no. 4, pp. 551–565, 2015.

[12] P. Hennig and W.-T. Balke, “Highly scalable web service compo-
sition using binary tree-based parallelization,” in ICWS. IEEE,
2010, pp. 123–130.

[13] X. Xu, R. Liu, Z. Wang et al., “Re2sep: A two-phases pattern-based
paradigm for software service engineering,” in 2017 IEEE World
Congress on Services (SERVICES). IEEE, 2017, pp. 67–70.

[14] X. Xu, G. Motta, Z. Tu et al., “A new paradigm of software service
engineering in big data and big service era,” Computing, vol. 100,
no. 4, pp. 353–368, 2018.

[15] X. Xu, Z. Liu, Z. Wang et al., “S-abc: A paradigm of service domain-
oriented artificial bee colony algorithms for service selection and
composition,” Future Generation Computer Systems, vol. 68, pp. 304–
319, 2017.

[16] R. Liu, Z. Wang, and X. Xu, “Parameter tuning for s-abcpk:
An improved service composition algorithm considering priori
knowledge,” IJWSR, vol. 16, no. 2, pp. 88–109, 2019.

[17] T. Li, T. He, Z. Wang et al., “Sdf-ga: a service domain feature-
oriented approach for manufacturing cloud service composition,”
Journal of Intelligent Manufacturing, vol. 31, no. 3, pp. 681–702, 2020.

[18] I. Bello, H. Pham, Q. V. Le et al., “Neural combinatorial opti-
mization with reinforcement learning,” in The 5th International
Conference on Learning Representations (ICLR), Toulon, France, April
24-26, 2017, 2017.

[19] J. Liu, J. Jiang, X. Cui et al., “Power consumption prediction of
web services for energy-efficient service selection,” Personal and
ubiquitous computing, vol. 19, no. 7, pp. 1063–1073, 2015.

[20] H. Wang, X. Xu, Z. Wang et al., “Analyzing the influence of domain
features on the optimality of service composition algorithm,” in
SCC. IEEE, 2015, pp. 427–434.

[21] S. Wang, Z. Wang, and X. Xu, “Mining bilateral patterns as priori

14

knowledge for efficient service composition,” in ICWS. IEEE,
2016, pp. 65–72.

[22] R. Yang, B. Li, J. Wang et al., “Scky: A method for reusing service
process fragments,” in ICWS. IEEE, 2014, pp. 209–216.

[23] R. Liu, X. Xu, Z. Wang et al., “Probability matrix of request-solution
mapping for efficient service selection,” in ICWS. IEEE, 2017, pp.
444–451.

[24] H. Xu, X. Wang, Y. Wang et al., “Domain priori knowledge based
integrated solution design for internet of services,” in SCC. IEEE,
2020, pp. 446–453.

[25] K. Xu, W. Hu, J. Leskovec et al., “How powerful are graph neural
networks?” in International Conference on Learning Representations,
2019.

[26] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[27] F. M. Bianchi, D. Grattarola, L. Livi et al., “Graph neural networks
with convolutional arma filters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[28] Z.-M. Chen, X.-S. Wei, P. Wang et al., “Multi-label image recog-
nition with graph convolutional networks,” in CVPR, 2019, pp.
5177–5186.

[29] R. You, Z. Guo, L. Cui et al., “Cross-modality attention with
semantic graph embedding for multi-label classification,” in AAAI,
vol. 34, no. 07, 2020, pp. 12 709–12 716.

[30] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” NIPS,
vol. 28, 06 2015.

[31] M. Nazari, A. Oroojlooy, M. Takáč et al., “Reinforcement learning
for solving the vehicle routing problem,” in NIPS, 2018, pp. 9861–
9871.

[32] S. Chaudhari, V. Mithal, G. Polatkan et al., “An attentive survey of
attention models,” arXiv preprint arXiv:1904.02874, 2019.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[34] R. S. Sutton, D. A. McAllester, S. P. Singh et al., “Policy gradient
methods for reinforcement learning with function approxima-
tion,” in NIPS, 2000, pp. 1057–1063.

[35] F. S. Gharehchopogh and H. Gholizadeh, “A comprehensive sur-
vey: Whale optimization algorithm and its applications,” Swarm
and Evolutionary Computation, vol. 48, pp. 1–24, 2019.

[36] S. Mirjalili and A. Lewis, “The whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[37] C. Jatoth, G. Gangadharan, U. Fiore et al., “Qos-aware big service
composition using mapreduce based evolutionary algorithm with
guided mutation,” Future Generation Computer Systems, vol. 86, pp.
1008–1018, 2018.

[38] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on
the world wide web,” in WWW, 2008, pp. 795–804.

[39] J. A. Villasenor Alva and E. G. Estrada, “A generalization of
shapiro–wilk’s test for multivariate normality,” Communications in
Statistics—Theory and Methods, vol. 38, no. 11, pp. 1870–1883, 2009.

[40] J. Lanchantin, T. Wang, V. Ordonez et al., “General multi-label
image classification with transformers,” in CVPR, 2021, pp. 16 478–
16 488.

[41] K. Pham, K. Kafle, Z. Lin et al., “Learning to predict visual
attributes in the wild,” in CVPR, 2021, pp. 13 018–13 028.

[42] S. Liu, L. Zhang, X. Yang et al., “Query2label: A simple transformer
way to multi-label classification,” arXiv preprint arXiv:2107.10834,
2021.

[43] A. E. Yilmaz and P. Karagoz, “Improved genetic algorithm based
approach for qos aware web service composition,” in ICWS, 2014,
pp. 463–470.

[44] P. B. Nemenyi, Distribution-free multiple comparisons. Princeton
University, 1963.

[45] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

Xiao Wang received his B.SC., M.SC. in me-
chanical engineering, computer science and
technology from Harbin Institute of Technology,
Harbin, China, in 2017 and 2020. He is currently
pursuing his Ph.D. in Computer Science and
Technology at Harbin Institute of Technology,
Harbin, China. His research interests include
service computing, service compositions, graph
neural network, etc.

Hanchuan Xu received his B.SC., M.SC. and
Ph.D. degrees in computer science and tech-
nology from the Harbin Institute of Technology,
Harbin, China, in 1999, 2003 and 2011, respec-
tively. He is currently a lecturer at the Faculty
of Computing, Harbin Institute of Technology,
Harbin, China. He is the author or co-author over
more than 20 academic papers. His current re-
search interests include service computing, soft-
ware service engineering, enterprises comput-
ing.

Xianzhi Wang is a lecturer at School of Com-
puter Science, University of Technology Syd-
ney. His research lies in the fields of Internet
of Things (IoT), data mining, machine learning,
recommender systems, and cybersecurity, with
a focus on misinformation detection, cognitive
analysis, and domain big data analytics (health,
transport, e-commerce). His work has been pub-
lished in top-tier journals and conferences such
as IEEE TNNLS, IEEE MC, IEEE TSC, ACM
TIST, ACM TOIT, ICDM, KDD, AAAI, IJCAI, Ubi-

Comp, SIGIR, CIKM, ER, PAKDD, IJCNN, ICSOC, ICWS.

Xiaofei Xu is a professor at Faculty of Comput-
ing, and vice president of the Harbin Institute
of Technology. He received the Ph.D. degree in
computer science from Harbin Institute of Tech-
nology in 1988. His research interests include
enterprise intelligent computing, services com-
puting, internet of services, and data mining.
He is the associate chair of IFIP TC5 WG5.8,
chair of INTEROP-VLab China Pole, fellow of
China Computer Federation (CCF), and the vice
director of the technical committee of service

computing of CCF. He is the author of more than 300 publications. He is
member of the IEEE and ACM.

Zhongjie Wang is a professor at Faculty of
Computing, Harbin Institute of Technology (HIT).
He received the Ph.D. degree in computer sci-
ence from Harbin Institute of Technology in
2006. His research interests include services
computing, mobile and social networking ser-
vices, and software architecture. He is the author
of more than 80 publications. He is a member of
the IEEE.

	Clipboard Data(1)
	A_GNN_and_Pointer_Network_based_Approach_for_QoS_Aware_Service_Composition__1_

