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Abstract. In the 1950’s, Ford and Fulkerson introduced dynamic flows
by incorporating the notion of time into the network flow model (Oper.
Res., 1958). In this paper, motivated by real-world applications includ-
ing route planning and evacuations, we extend the framework of multi-
commodity dynamic flows to the heterogeneous commodity setting by
allowing different transit times for different commodities along the same
edge.
We first show how to construct the time-expanded networks, a classical
technique in dynamic flows, in the heterogeneous setting. Based on this
construction, we give a pseudopolynomial-time algorithm for the quickest
flow problem when there are two heterogeneous commodities. We then
present a fully polynomial-time approximation scheme when the nodes
have storage for any number of heterogeneous commodities. The algorithm
is based on the condensed time-expanded network technique introduced
by Fleischer and Skutella (SIAM J. Comput., 2007).

Keywords: Multi-Commodity Network Flow · Dynamic Flow.

1 Introduction

Network flows form a well-studied and hugely successful area in optimisation,
with many deep theorems and efficient algorithms. Still, in some real-world
applications, it is natural to augment the basic network flow model further. One
such example, described in [13], is to consider scheduling cars in a traffic network.
In this setting, it is clear that time is an essential factor to take into consideration.
Therefore, it is natural to associate each edge in the network a transit time, and
consider flows that can vary with time. It is not hard to come up with other
examples in production systems, communication networks, and financial flows,
where time plays a key role in the corresponding network flow problems.
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A formal study of network flows where flows vary with time was initiated
in the 1950’s by Ford and Fulkerson in their seminal works [7, 8]. It has now
become a rather mature area with many basic questions answered. We refer
the reader to [15] for an excellent introduction. There are also several nice
surveys [1,2, 13,14], and the thesis of Hoppe [11], where the reader can find an
abundance of information. In the literature, several names have been used for
network flows with flow transit times, including flows over time [5], dynamic
flows [13], and time-dependent flows [3]. In this paper we adopt flows over time,
following works of e.g. Fleischer and Skutella [5, 15].

In this paper, we consider a further augmentation to the multi-commodity
network flows over time model. The key assumption is that various commodities
can have different speeds when traveling along the same edge. We shall call such
commodities as heterogeneous, as opposed to the homogeneous commodities in
previous models where commodities have the same speed along a fixed edge.

To see the motivation of doing so, consider the following setting. Suppose
a factory needs two types of raw materials, material A and material B, for
production. Each of the materials A and B needs to be transported by special
trucks in a common road network. When traveling along the same road, these two
types of trucks can have different speed limits. To make things more interesting,
it is possible that different roads have different speed limits for even the same
truck. It is also not hard to come up with other situations in say emergency
evacuation, where different commodities or agents have different speeds when
traveling along the same edge.

1.1 An overview of the heterogeneous model and our results

In this subsection, we outline our model, review some results from literature, and
briefly introduce our results.

The heterogeneous model. The above discussions motivate us to study the multi-
commodity network flows over time problem with heterogeneous commodities.
Recall that, compared to the homogeneous commodities that have been studied
previously, heterogeneous commodities may have different speeds when traveling
along the same edge. This amounts to setting different transit times for different
commodities for each edge.

A key new feature of the heterogeneous model is that, because of the differences
in speeds, it is possible for a faster commodity to catch up with a slower one in
the middle of an edge, therefore causing a violation of the capacity constraint. We
shall refer to such event as a collision, where flows of multiple commodities sent
at different times meet at the same point within an edge. A concrete example is
shown in Figure 1.
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Fig. 1: An example of an edge e = (s, t) of capacity 1, and two heterogeneous
commodities A and B, where commodity A flows twice as fast as commodity B.
Suppose one unit of B flows into edge e in the time interval [0, 1), and one unit
of B flows into e in the time interval [1, 2). The two flow packets never overlap
at point s. However, because commodity A flows faster than B, its packet would
catch up and collide with the packet of B, hence causing a capacity violation in
the middle of edge (s, t).

How to handle collisions will be the key technical problem in this model. To
the best of our knowledge, no studies on such collision issues have yet addressed
these issues adequately.

For network flows over time, the time can be either discrete or continuous,
and the nodes may have storage or cannot – if nodes have storage, then the flow
can be held at this node and only released later if needed. In this paper, we work
in the continuous-time model, and most of our results require node storage. For a
detailed description of the model, see Section 3.

In the Heterogeneous Multi-commodity Flows over Time problem (HeteroMFTfor
short), we are given a network with capacities and transit times, a time horizon,
and for each commodity a source node, a sink node, and a demand. The goal is
to obtain a multi-commodity flow over time within the time horizon satisfying
the demands, if there exists one. For a formal definition of the problem, see
Definition 2. Clearly, HeteroMFT is closely related to the quickest version of the
heterogeneous multi-commodity flow over time problem, which asks to find a
multi-commodity flow that satisfies the demands of all commodities from their
sources to their respective destinations within the minimal time horizon.

Review of some works in the homogeneous setting. Since the heterogeneous model
is a generalisation of the homogeneous model, it is necessary to review some
results from the homogeneous multi-commodity dynamic network flow problem
(HomoMFT).

Using the classical technique of time-expanded networks [7], HomoMFT can
be solved in pseudo-polynomial time, i.e. polynomial in the time horizon. (A true
polynomial-time algorithm needs to run in time polynomial in the logarithm of the
time horizon.) From the perspective of approximation algorithms for HomoMFT, a
breakthrough result is a fully polynomial-time approximation scheme (FPTAS) in
the setting of bounded costs and with storage [5]. In [9], the HomoMFT problem
is shown to be weakly NP-hard for two or more commodities, and it is also
NP-hard to design fully polynomial-time approximation scheme (FPTAS) for the
quickest HomoMFT with simple paths and without storage.
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Since the HeteroMFT problem is a generalisation of the HomoMFT problem,
the NP-hardness results for HomoMFT apply to HeteroMFT as well. Therefore,
we focus on designing approximation algorithms for the HeteroMFT problem.

Our first result: time-expanded networks in the heterogeneous setting. We first
examine the classical time-expanded network technique. Briefly speaking, in the
homogeneous setting, given a network G = (V, E), a time-expanded network G̃
with time horizon T is built by replicating T copies of V , with each copy called
a layer. Then for each edge in the original graph with transit time τ , connect the
corresponding nodes in ith layer and the (i + τ)th layer.

In the heterogeneous setting, the construction of time-expanded networks
is trickier. Suppose the number of commodities is k. As the transit times are
different for different commodities on a fixed arc in the heterogeneous setting, it
is natural to split an arc in the original network into k arcs in the time-expanded
network, one for each commodity. Figure 2 gives such an example.

u v w
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e1

= 6

τ2
e2

= 2

τ1
e1

= 4

τ2
e2

= 0

(a) dynamic network G

u

v

w

T
0 1 2 3 4 5 6

(b) time-expanded network GT

Fig. 2: A dynamic network with two commodities and its corresponding time-
expanded network with time horizon T = 6.

Here, we come across the first difficulty caused by the heterogeneity regarding
the capacity constraints. First, note that the capacities of these k arcs starting
from the same layer need to be considered altogether as not to exceed the capacity.
However, this just suggests that the flows on this arc in the original network do
not exceed the capacity at the tail of the arc. In order to avoid collison, we also
need to examine the capacities of several arcs starting from different layers. At



Heterogeneous Multi-Commodity Network Flows Over Time 5

first sight, this seems to involve enumerating every point in e, leading to possibly
exponentially many constraints. Fortunately, Proposition 1 indicates that only a
polynomial number of additional capacity constraints need to be considered.

While the above gives a proper definition of time-expanded networks in
the heterogeneous setting, there is a more serious problem which prevents it
from yielding a pseudo-polynomial time algorithm for the HeteroMFT problem.
This is because, the key observation for using time-expanded networks in the
homogeneous setting is the following (see e.g. [15, Lemma 4.4]): A feasible flow
over time in G with time horizon T yields a feasible static flow in G̃ (by averaging
according to each time interval), and the inverse direction is also true (by a
straightforward construction). However, in the heterogeneous setting, while we
can still construct a feasible flow over time from a feasible static flow, the inverse
direction does not necessarily hold, as the averaging technique no longer works
due to the collision issue.

Despite the above difficulty, we show that by incorporating a further observa-
tion, the averaging technique still works for two commodities (Proposition 2),
giving a pseudopolynomial-time algorithm for this case.

Theorem 1. There exists a pseudopolynomial-time algorithm for the HeteroMFT
problem when the number of commodities is 2.

The proof for Theorem 1 does not apply to more than two commodities; see
Remark 1 for some discussions. We leave designing a pseudo-polynomial time
algorithm for more than two commodities as an intriguing open problem.

Our second result: an FPTAS for HeteroMFT. Given the problems encountered
in the time-expanded network construction, it is perhaps rather surprising that
a fully polynomial-time approximation scheme (FPTAS) can still be achieved
for HeteroMFT, when the nodes are allowed to have storage. In Theorem 2, we
present such an FPTAS.

Theorem 2. For any ϵ > 0, a (1 + ϵ)-approximate solution to the HeteroMFT
problem can be found in time polynomial in the input size and 1

ϵ .

Note that by [9], unless P=NP, there is no FPTAS for the quickest multi-
commodity flow problem when node storage is prohibited and flows are only sent
on simple paths, even in the homogeneous setting. So allowing node storage is
unavoidable.

An FPTAS for the homogeneous version of the problem was given in [5],
and our algorithm builds upon and generalises that algorithm. More specifically,
we utilize the condensed time-expanded network technique introduced there,
which are time-expanded networks with longer time intervals. Figure 3 gives an
illustration of this idea, following the example in Figure 2.
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Fig. 3: ∆-condensed time-expanded network GT /∆ with ∆ = 2

Overcoming the difficulties brought by the heterogeneity of the commodities
requires some non-trivial technical works. Indeed, in the construction of time
expanded networks, we need to adjust existing constraints and introduce new
constraints on the static flow network to ensure that the solution corresponds to
a feasible flow over time, and that the static network problem is of polynomial
size. This means that the analysis in [5] cannot be directly applied to prove
the correctness of this algorithm. More specifically, the averaging step there no
longer yields a feasible flow in the time expanded network in the heterogeneous
setting. Our main technical contribution is to show that the feasibility is still
approximately preserved thanks to a previous flow smoothing step , which is a
key step for the FPTAS.

1.2 Structure of the paper

In the following, we give a detailed account of our results. In Section 2, to prepare
for introducing our model, we review the static and homogeneous dynamic
network flow models. In Section 3, we formally define the heterogeneous multi-
commodity flow over time model. In Section 4, we describe the time-expanded
network construction in the heterogeneous setting. In Section 5, we present the
FPTAS for the HeteroMFT problem. Due to space constraints, some proofs are
omitted and can be found in the full version of this paper.

2 Review of static and homogeneous flows over time

In this section we review the classic static multi-commodity network flow model,
and the homogeneous multi-commodity network flow over time model.

Static flows in networks. In a static network flow problem, we are given a network
(directed graph) G = (V, E) with |V | = n nodes and |E| = m edges. Each edge
e ∈ E has a capacity ue : E → R≥0, which bounds the total amount of flow
allowed to go through this edge at any time. For each edge e = (v, w), we denote
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tail(e) = v and head(e) = w. We also let δ+
v (resp. δ−

v ) to denote the set of edges
e ∈ E going out of v, i.e. tail(e) = v (resp. going into v, i.e. head(e) = v).

Our goal is to transport k types of commodities through the same network
G by sharing edges. More specifically, assume that each commodity i ∈ [k] :=
{1, 2, . . . , k} has a source node si ∈ N , a sink node ti ∈ N , and a demand di that
represents the amount of commodity i that needs to be transported from si to ti.

A static flow x in network G allocates a flow value xi
e : E → R≥0 to each

edge e ∈ E and each commodity i ∈ [k] := {1, . . . , k}. A static flow is called
feasible if it satisfies the following constraints.

∀e ∈ E, 0 ≤
∑
i∈[k]

xi
e ≤ ue (capacity constraints)

(1)

∀i ∈ [k], v ∈ V \{si, ti},
∑

e∈δ−
v

xi
e −

∑
e∈δ+

v

xi
e = 0 (flow conservation constraints)

(2)

∀i ∈ [k],
∑

e∈δ−
ti

xi
e −

∑
e∈δ+

ti

xi
e = di (demand constraints)

(3)

Network flows over time. When taking time into consideration, we arrive at the
network flow over time problem. There are two main approaches to model time.
The first one is the discrete-time model, first studied by Ford and Fulkersen [7,8].
The second one is the continuous model. Fleischer and Tardos showed strong
connections between these two models [6]. In this paper, we focus on a continuous-
time model, mostly following notations in [5, 15].

Another feature of the flow over time model is that storing flows in the
intermediate nodes becomes possible. That is, we may assume that intermediate
nodes have storage that could hold inventory of (any amount of) flow before
sending it forward. Allowing storage is a common assumption in most previous
works on flows over time. On the other hand, to fit certain applications such as
telecommunications, one could also consider a model in which storage is limited, or
even no storage is allowed, at any intermediate node. Then the flow conservation
constraints simply change the inequality condition to equality. Flows over time
with no storage or restricted storage were studied in several works [4, 10–12]. In
this paper we will adopt the model with intermediate storage.

For network flows over time, apart from capacity ue, every edge e ∈ E also
has a transit time τe ≥ 0 that specifies the time it takes for a unit of flow of a
commodity to travel from tail(e) to head(e). That is, the flow for a commodity
sent at time θ from tail(e) will reach head(e) at time θ + τe.

The following definition of dynamic flows (named flows over time in this
paper) is standard (cf. e.g. [15, Definition 2.1]).
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Definition 1. A flow over time f with time horizon T ≥ 0 is a Lebesgue-
integrable function f i

e : R → R≥0 for each edge e ∈ E and i ∈ [k].
We will only consider flows that can arrive at its destination by time T , that

is, we require that f i
e(θ) = 0 for all θ ≥ T − τe or θ < 0.

That is, for any θ ∈ [0, T ) and any commodity i, f i
e(θ) denotes the flow rate of

commodity i going into the tail of edge e at time θ.
We now discuss on feasibility constraints for a multi-commodity flow over

time f = (f i
e) with time horizon T . Let G = (V, E) be the underlying directed

graph. Suppose that there are k types of commodities, and each commodity has
a source node si and a sink node ti.

– The capacity constraint is

∀e ∈ E, θ ∈ [0, T ), 0 ≤
k∑

i=1
f i

e(θ) ≤ ue. (4)

– Flow conservation constraints. Recall that storing flows in the intermediate
nodes may be allowed. This leads to the following weak flow conservation
constraints.

∀v ∈ V \{si, ti}, i ∈ [k], θ ∈ [0, T ],
∑

e∈δ−
v

∫ θ−τe

0
f i

e(ξ)dξ−
∑

e∈δ+
v

∫ θ

0
f i

e(ξ)dξ ≥ 0

(5)
In the above equation, when ≥ is replaced by =, the conservation constraint
is called strict.

– Demand constraints. Finally, demand constraints state that for each com-
modity i, the net flow that has reached sink ti by time T should equal its
demand di.

∀i ∈ [k],
∑

e∈δ−
ti

∫ T −τe

0
f i

e(ξ)dξ −
∑

e∈δ+
ti

∫ T

0
f i

e(ξ)dξ = di (6)

3 Our model: heterogeneous multi-commodity dynamic
flow

In this paper, we generalise the above multi-commodity network flow over time
model by introducing speed heterogeneity among different commodities. In the
previous network flow over time model, on each edge all commodities are assumed
to have the same speed, i.e., the flows are homogeneous. We propose a model in
which commodities may have different speeds on the same edge, and we refer to
this as the heterogeneous multi-commodity flow over time model. This is achieved
by allowing an edge e to have k transit times {τ1

e , τ2
e , . . . , τk

e }, for which τ i
e is the

time needed for one unit of flow of commodity i to go through edge e. In this
paper, we also assume that the transit times τ i

e are integral, which is a realistic
assumption for most potential applications.
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Flow feasibility. We now define the feasibility constraints of a heterogeneous
multi-commodity flow over time.

The flow conservation constraint 5 and the demand constraint 6 are de-
fined with regard to each commodity. So they carry over from homogeneous to
heterogeneous setting, after changing τe to τ i

e, namely:

∀v ∈ V \ {si, ti}, i ∈ [k], θ ∈ [0, T ],
∑

e∈δ−
v

∫ θ−τ i
e

0
f i

e(ξ)dξ −
∑

e∈δ+
v

∫ θ

0
f i

e(ξ)dξ ≥ 0.

(7)

∀i ∈ [k],
∑

e∈δ−
ti

∫ T −τ i
e

0
f i

e(ξ)dξ −
∑

e∈δ+
ti

∫ T

0
f i

e(ξ)dξ = di,

(8)

We need to pay special attention to the capacity constraints. Because of the
heterogeneity of commodity speeds, it no longer suffices to only require capacity
constraints only at the entrance of each edge. That is, when k commodities move
in a common pipeline at various speeds, some fast commodity may catch up with
the slower commodities to create congestion in the middle of the edge. Figure 1
above shows a concrete example.

Therefore, we need to require that at any moment, at any point of any edge,
the sum of the rates of all flows together must not exceed the capacity of that
edge. The capacity constraint is then the following.

∀e ∈ E, θ ∈ [0, T ), α ∈ [0, 1] :
k∑

i=1
f i

e(θ − α · τ i
e) ≤ ue. (9)

The heterogeneous multi-commodity flow over time problem. In this paper, we
focus on the problem of transporting each commodity to their respective destina-
tions within a pre-set time horizon.
Definition 2. An instance of the heterogeneous multi-commodity flow over time
problem, denoted by HeteroMFT, consists of the following.
Input: A network G = (V, E). For every edge e ∈ E, a capacity ue ≥ 0. There

are k commodities. For every commodity i ∈ [k], a source node si ∈ V , a sink
node ti ∈ V , and a demand di ≥ 0. For every e ∈ E and i ∈ [k], the transit
time of commodity i on e is τ i

e ≥ 0. A time horizon T ≥ 0.
Output: A feasible multi-commodity flow over time with time horizon T satisfy-

ing the given demands, if there exists one.
Correspondingly, the homogeneous multi-commodity flow over time Problem,

studied in e.g. [5, 9], is denoted by HomoMFT.

Approximations. In Section 5, we will focus on FPTAS for HeteroMFT. Here, a
(1 + ϵ)-approximate solution to HeteroMFTmeans that the output is a feasible
multi-commodity flow over time with time horizon (1 + ϵ)T satisfying the given
demands.
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4 Time-expanded networks in the heterogeneous setting

4.1 Time-expanded networks: from homogeneous to heterogeneous

As already mentioned in Section 1.1, a classical technique for tackling flows over
time problem is to construct time-expanded networks. The underlying principle
for using time-expanded networks lies in the conversions between feasible static
flows in the time-expanded network and feasible flows over time in the original
network. To convert feasible flows over time in the original network to feasible
static flows in the time-expanded network, we need the averaging technique. That
is, by averaging the flows in each time unit, we can start from any feasible flow
over time, to obtain a “stair-case” like flow which is also feasible and completes
within the same time horizon.

A surprising feature of the heterogeneous setting is that the averaging tech-
nique does not result in a feasible flow, when the number of commodities is
larger than 2. Even for the case of two commodities, some subtle argument is
needed. In the following, we first define time-expanded networks in the heteroge-
neous setting. As the readers will see, the time-expanded networks need to be
adjusted to accommodate different speeds, and the feasibility condition is also
more complicated due to the need to avoid collisions in the middle of the edges.

4.2 Heterogeneous time-expanded networks

We now present a construction of time-expanded static networks in the heteroge-
neous setting. Let G = (V, E) be a network with capacities ui

e, transit times τ i
e,

and time horizon T . We assume T and τ i
e are integers.

First, we construct a static network GT = (NT , ET ) as follows.

– The set of nodes NT consists of T + 1 copies of the set of vertices N , labeled
from N0 to NT . For any v ∈ N and ζ = 0, 1, . . . , T , vζ in GT is the ζth copy
of node v.

– For every commodity i and every edge e = (v, w) ∈ E and ζ = 0, 1, . . . , T −τ i
e,

there is an edge ei
ζ = (vζ , wζ+τ i

e
) in ET .

– For each v ∈ N and ζ = 0, 1, . . . , T − 1, there is an edge (vζ , vζ+1). It is used
to model storage at the node.

– Finally, for each commodity i, its source node is si
0, and its sink node is ti

T .

The following table summarizes the correspondences of the network structures.

Dynamic network Time-expanded network

Network G = (N, E)

GT = (NT , ET )
NT = N0 ∪ · · · ∪ Nζ ∪ · · · ∪ NT −1
ET =

⋃
e∈E{ei

0, . . . , ei
ζ , . . . , ei

T −τ i
e
|i = 1, 2, . . . , k}⋃

v∈N {(vζ , vζ+1)|ζ = 0, 1, . . . , T}

Nodes v ∈ N vi ∈ Ni

Edges e = (v, w) ∈ E ei
ζ = (vζ , wζ+τ i

e
)
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See also Figure 2 (a) and (b) for an instance of a dynamic network and its
corresponding time-expanded network.

Next, let us define flow feasibility in this situation. The constraints for
feasibility will be closely related to the construction of flows over time, so let us
first illustrate the desired static-to-dynamic conversion here.

Definition 3 (Static to flow over time conversion). Let x be a static flow in
GT in which xi(e) denotes the flow of commodity i on edge e. For ei

ζ = (vζ , wζ+τ i
e
),

we interpret the value of xi(ei
ζ) as the flow rate of commodity i entering edge

(v, w) in the time interval [ζ, ζ + 1). This gives a flow fx in the original dynamic
network.

Our goal now is to introduce appropriate constraints on the static flow in
the time-expanded network, so that the above procedure can convert it into a
feasible flow over time.

1. (Flow conservation.) This constraint is the same as for static network flows;
see Equation 2.

2. (Each edge is exclusive to a specific commodity.) Note that for problem
HeteroMFT, for vζ ∈ NT , every edge e = (v, w) in G is converted into k
different edges (vζ , vζ+τ i

e
) in ET , where k is the number of commodities.

Since each edge ei
ζ is GT is now catered only for the specific commodity i,

we need to add further constraints to the feasible static flow conditions to
forbid other commodities to travel along this edge.
We therefore add the following constraints

xi(ej
ζ) = 0 ∀ζ ∈ {0, 1, . . . , T − 1}, i ̸= j. (10)

3. (Capacity constraints at edge tails.) Again, since we split an edge e at time ζ
into k edges ei

ζ , we need to impose∑
i∈[k]

xi(ei
ζ) ≤ ue.

4. (Capacity constraints along the edges.) The above capacity constraints at
edge tails, when interpreted in the context of the flow over time fx as defined
in Definition 3, only impose the flows not to exceed the edge capacity at
the entrance of each edge. However, the capacity constraints for a feasible
flow over time in G, as shown in Equation 9, are defined not only at the
entrance of each edge, but also at every point along the edge; see Figure 1
for an example where collision happens in the middle of an edge.
To take care of that issue, let us first focus on the set of edges {ei

ζ : i ∈ [k], ζ ∈
{0, 1, . . . , T −1}} which are derived from the edge e ∈ E. To analyze collisions
happening in the middle of edges, we need to identify those (ζ1, . . . , ζk),
ζi ∈ {0, 1, . . . , T}, such that there exist χi ∈ [ζi, ζi + 1), and the flows sending
commodity i at time χi arrive at the same point along the edge e at the same
time. For such (ζ1, . . . , ζk), we need to ensure that the sum of static flows
along ei

ζi
is within the capacity ue.
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At first sight, this seems to involve enumerating every point in e, leading
to infinitely many constraints. Fortunately, this can be reduced to finitely
many points in e. Thanks to the following Propostion 1, we can first compute,
for each pair of commodities j, j′ ∈ [k], every two time points ζj , ζj′ ∈
{0, . . . , T − 1}, and every edge e, whether flow of commodity j at time ζj

meets with flow of commodity j′ at time ζj′ , or catches up with commodity
j′ at time ζj′ + 1, at some point α ∈ [0, 1] along e at time t. If so, for every
i ̸= j, j′, compute ζi such that [ζi, ζi + 1) covers α at time t. After computing
such ζi’s, i ∈ [k], we set up the constraint that∑

i∈[k]

xi(ei
ζi

) ≤ ue. (11)

Proposition 1. Suppose flows only change rate at integral time steps. Given
α ∈ [0, 1] and time θ. For every commodity i ∈ [k], let χi be the point in time
such that χi + ατ i

e = θ, and let ζi = ⌊χi⌋.
Then there exists another set of times {χ′

i ∈ [ζi, ζi + 1]}, α′ ∈ [0, 1], and time
θ′, such that we have χ′

i + α′τ i
e = θ′ for each i ∈ [k], and one of the following

cases hold:

1. α′ = 0, and ∀i, j ∈ [k], ζi = ζj;
2. there exist ℓ ̸= j ∈ [k], such that χ′

ℓ = ζℓ, χ′
j = ζj;

3. there exist ℓ ̸= j ∈ [k], such that χ′
ℓ = ζℓ, χ′

j = ζj + 1 − ϵ for any small ϵ > 0.

Proof. If α = 0, then we have χi = χj for any i, j ∈ [k]. Since χi ∈ [ζi, ζi + 1),
we have ζi = ⌊χi⌋ = ⌊χj⌋ = ζj .

If α ̸= 0, then take ℓ ∈ [k] such that χℓ − ζℓ is the minimum among χj − ζj ,
j ∈ [k]. For any j ∈ [k], let χ′

j = χj − (χℓ − ζℓ), so χ′
ℓ = ζℓ. Note that for any

i, j ∈ [k], we still have χ′
i + ατ i

e = χ′
j + ατ j

e .
If there exists j ∈ [k] and j ̸= ℓ, such that χ′

j = ζj , then case (b) holds.
Otherwise, we have χ′

j > ζj for any j ̸= ℓ.
For any δ > 0 and j ∈ [k], we have

ζℓ + ατ ℓ
e − δ = χ′

j + ατ j
e − δ.

Note that the left-hand side is ζℓ + (α − δ/τ ℓ
e)τ ℓ

e , and the right-hand side is
χ′

j + τj
e −τℓ

e

τℓ
e

· δ + (α − δ/τ ℓ
e )τ j

e , and we need to ensure that (1) α − δ/τ ℓ
e > 0, (2) for

any j ̸= ℓ, ζj < χ′
j + τj

e −τℓ
e

τℓ
e

· δ, and (3) for any j ̸= ℓ, χ′
j + τj

e −τℓ
e

τℓ
e

· δ < ζj + 1 − ϵ

for arbitrarily small ϵ > 0. We now increase δ, and take χ′
j + τj

e −τℓ
e

τℓ
e

· δ to be the
new χ′

j for each j, until one of (1), (2), and (3) is violated.

– If (1) is violated, then we are back to the α = 0 setting.
– If (2) is violated, then we are in case (b). This means τ j

e < τ ℓ
e , i.e. ℓ is slower

than j.
– If (3) is violated, then we are in case (c). This means τ j

e > τ ℓ
e , i.e. ℓ is faster

than j.
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This concludes the proof.

After the above adjustments, we can ensure that any static flow in the time-
expanded network satisfying all the above constraints corresponds to a feasible
flow over time in the original network.

4.3 A pseudo-polynomial-time algorithm for two commodities

In the homogeneous setting, a well-known application of time-expanded networks
is a pseudo-polynomial-time algorithm to decide whether a feasible flow exists
with time horizon T (cf. e.g. [15, Theorem 4.2]). The key is to realise that a flow
over time can be converted to a static flow using the averaging technique, and a
static flow can be converted to a flow over time using the obvious transformation
in Definition 3.

However, it is not clear that the averaging technique can be applied to the
heterogeneous setting in general, due to the possible violations of the capacity
constraint due to heterogeneity. Interestingly, when the number of commodities
is 2, a simple argument ensures that the averaging technique still works. This
will also suggest why the averaging technique cannot work, at least not directly,
for three or more commodities.

Given an instance of the HeteroMFT problem, suppose f i, i = 1, 2, are feasible
flows over time with time horizon T . We also assume that all transit times are
integral. By averaging f i in [ζ, ζ + 1) for ζ ∈ {0, 1, . . . , T − 1}, we obtain a static
flow xi on GT :

∀e ∈ E, x(ei
ζ) :=

∫ ζ+1

ζ

f i
e(ξ)dξ.

Proposition 2. Let f i and xi, i = 1, 2, be as above. Then xi’s form a feasible
flow on GT .

Proof. Note that feasible flows on GT correspond exactly to those feasible, stair-
case like, flows over time in the original network. So we need to show that the
flow over time fx corresponding to x as defined in Definition 3 form a feasible
flow over time. The flow conservation constraint clearly holds. We then examine
the capacity constraint. Fix an edge e, and suppose commodity 1 is faster than
commodity 2, i.e. τ1

e < τ2
e . Consider two flow intervals, f1

e in [ζ1, ζ1 + 1) and f2
e

in [ζ2, ζ2 + 1). Suppose the first interval catches up with the second. Then there
exists a time θ ∈ [0, T ], 0 ≤ α ≤ 1, and χ2 ∈ [ζ2, ζ2 + 1), such that θ − α · τ1

e = ζ1,
and θ − α · τ2

e = χ2. It follows that α = (ζ1 − χ2)/(τ2
e − τ1

e ). Note that τ i
e, i = 1, 2,

and ζ1 are integers. So if χ2 is not an integer, α cannot be 1. We then also have
that (ζ1 − ζ2)/(τ2

e − τ1
e ) ≤ 1. Let α′ = (ζ1 − ζ2)/(τ2

e − τ1
e ). Because α′ ≤ 1, the

flow sent by f1
e at time ζ1 also catches up with the flow sent by f2

e at time ζ2 at
the α′ fraction of e. We can then use the capacity constraint 9 at the α′-fraction
of e to conclude that the averaged flows also satisfy the capacity constraint.

Proposition 2 immediately gives the following.
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Proof (Proof of Theorem 1). By a binary search, we can determine the optimal
time T ∗ for which there exists a solution to the given instance of HeteroMFT in
poly(T ∗) rounds. For each time T ′ guessed during this procedure, we construct
the time expanded network, solve the corresponding static flow problem in time
polynomial in the input size and T ′, and convert that static flow (if it is solvable)
to a dynamic one using the procedure in Definition 3. Proposition 2 ensures
that for T no less than the optimal value in the dynamic network, there exists a
feasible flow in GT . This concludes the proof.

Remark 1. When the number of commodities is more than 2, the argument to
prove Proposition 2 does not work, at least directly, due to the following. Suppose
the intervals of f i

e sent at [ζi, ζi + 1), i = 1, 2, 3, do overlap at some point. Then
we cannot ensure that the flows sent at time ζi meet at some time, which causes
difficulty as we then cannot use the dynamic capacity constraints.

5 An FPTAS for HeteroMFT

In [5], Fleischer and Skutella designed a fully polynomial-time approximation
scheme (FPTAS) for the HomoMFT problem. The key idea in their algorithm is
to convert the dynamic network into a static ∆-condensed time-expanded network,
whose definition we will discuss in detail later, and find a static flow in that
network to approximate the optimal flow over time.

In this section we design an FPTAS for the more general HeteroMFT problem
and any number of commodities. The main ideas supporting our FPTAS for
HeteroMFT are drawn from [5]. However, because of the heterogeneity of the
commodity speeds and the possible failure of the averaging technique for more
than 2 commodities (see Section 4.3), it is not clear that any feasible flow over
time can be converted to a feasible static flow in the condensed time-expanded
network, which does hold in the homogeneous setting [5, Lemma 4.1]. Therefore,
though our techniques are mostly already in [5], new analyses are needed to
show that the best static flow produced by our algorithm is indeed a good
approximation to the optimal dynamic problem for HeteroMFT.

Below we first present some preliminaries that support our algorithm, and
then explain our algorithm and its analysis.

5.1 Preliminaries

∆-condensed time-expanded network. The size of the static time-expanded net-
work is linear in the value of time horizon T . Therefore, even though one can find
a static flow in that network in polynomial time, it will be polynomial in T and
therefore pseudo-polynomial in the input-size. To overcome this issue, Fleischer
and Skutella introduced in [5] the ∆-condensed time-expanded network. More
specifically, when the transit time of each commodity on each edge is always
a multiple of ∆ > 0, then the time-expanded network GT can be rescaled to a
∆-condensed time expanded network, denoted by GT /∆, in which each unit time
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interval now has length ∆. The new network contains only T/∆ copies of N , as
depicted in Figure 3. All capacities are also multiplied by ∆ because each edge
in GT corresponds to a time interval of length ∆ in GT /∆.

Paths with delays. In the static flow setting, the well-known flow decomposition
theorem states that a flow can be decomposed into a sum of path and cycle flows.
In the flow over time setting, such a nice decomposition may not exist in general.
Still, every infinitesimal unit of flow can be viewed as following a particular
path. Since we allow node storage, we also need to record how long it stays at
each node. This leads to the notion of paths with delays from [5, Sec. 4.6]. Let
P = (v0, . . . , vℓ) be a path in G, and let ι = (ι1, . . . , ιℓ), ιi ∈ R≥0, be a sequence
of non-negative numbers. A path with delays P ι is understood as indicating that
a flow along P needs to stop at vj for exactly ιj time, j ∈ {1, . . . , ℓ}. The flow
for commodity i along P ι is then denoted by f i

P ι .
Given this notion, a flow over time f with time horizon T can be decomposed

into (possibly infinitely many) flows over time fP ι along paths with delays. In
particular, the total flow of commodity i entering e = (vj , vj+1) at time θ is

f i
e(θ) =

∑
P ι:e∈P

f i
P ι(θ − τ(P ι, e)),

where

τ(P ι, e) :=
j∑

s=1
(τ i

(vs−1,vs) + ιs) (12)

for e = (vj , vj+1). In addition, one can assume without loss of generality that all
paths in the decomposition are simple. This is because the flow traveling along a
cycle that visits some node v twice can also just wait at node v. Conversely, any
flow over time given in the form of fP ι along paths with delays corresponds to a
flow over time f defined on edges. Throughout the remainder of this section, we
will discuss a flow over time both in its paths with delays representation fP ι and
in its standard representation f .

5.2 Algorithm and proof outline

The idea of our approximation scheme is to first round up the transit times of
each commodity on each edge to the nearest multiple of ∆, for some carefully
selected ∆. Then we convert the dynamic network problem into a static ∆-
condensed time-expanded network, and solve the quickest static flow problem on
that network with the additional set of constraints 10 and 11. Finally we convert
the static flow to a feasible flow over time.

We restate Theorem 2 as below here.

Theorem 2. For any ϵ > 0, a (1 + ϵ)-approximate solution to the HeteroMFT
problem can be found in time polynomial in the input size and 1

ϵ .
The key to Theorem 2 is the following lemma.
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Lemma 1. For any constant ϵ > 0, let ∆ = ϵ2

2n T . Let f be a heterogeneous
multi-commodity flow over time f in a dynamic network G with demand D =
(d1, . . . , dk) and time horizon T . Let T ′ = (1 + ϵ)4 · T .

Then there exists another dynamic network G′, obtained from G by modifying
transit and delay times, satisfying the following property: in the time-expanded
network G′T ′

/∆, there exists a feasible static flow x such that the flow over time
fx constructed from x by Definition 3 is a feasible flow in G with time horizon
at most (1 + ϵ)4 · T .

Furthermore, the parameters of G′ can be computed in polynomial time.

The remaining of this section is devoted to the proof of Lemma 1.

5.3 Proof of Lemma 1

Let ϵ > 0, and set ∆ = ϵ2

2n T . Starting from a flow over time f with time horizon
T in a network G, our goal is to devise a static flow x in the ∆-condensed
time-expanded network with time horizon (1 + ϵ) · T . The construction of x goes
through the following four steps.

Step 1: flow smoothening. Briefly speaking, given any heterogeneous multi-
commodity flow over time f in network G with demand D and time horizon T ,
we can get a smoothened heterogeneous multi-commodity flow over time f̂ with
the same demand D within time horizon (1 + ϵ) · T and still obeys the capacity
constraints in G. Here, smooth means that the rate changes are not drastic. The
flow smoothening procedure applies to flows along paths with delays.

Definition 4. Let f be a flow over time in a network G with time horizon T ,
and fP ι be a path decomposition of f . Given ϵ > 0, the smoothed flow f̂ is defined
by

f̂ i
P ι(θ) = 1

ϵT

∫ θ

θ−ϵT

f i
P ι(ξ)dξ (13)

for all θ ∈ [0, (1 + ϵ)T ] and P ι appears in the path decomposition of f .

The smoothed flow f̂ enjoys the following property.

Proposition 3. Let f be a flow over time in a network G with time horizon T .
For any ϵ > 0, the smoothed flow f̂ is also a feasible flow over time with time
horizon (1 + ϵ)T , and for any θ ∈ [0, (1 + ϵ)T ], µ > 0 and commodity i,

|f̂ i
P ι(θ) − f̂ i

P ι(θ − µ)| ≤ µ

ϵT
uP

where uP = mine∈P ue.
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Step 2: rounding up the transit times. After smoothing the flow, the
next step is to round up the transit time of each commodity on each edge
to the nearest multiple of ∆, such that the dynamic network can be feasibly
converted to a ∆-condensed time-expanded network. We need to ensure that
this rounding procedure will not jeopardize the feasibility and optimality of the
solution. Fortunately this can be guaranteed by the smoothness property of the
flow over time.

Proposition 4. Let ϵ > 0 and ∆ ≤ ϵ2

2n T . Let G̃ be the network where the transit
time of each commodity on each edge is rounded up to the nearest multiple of ∆.
We think of the smoothed flow f̂ from Definition 4 as a flow over time in G̃ with
the delay on each node also rounded up to the nearest multiple of ∆. Then this
flow satisfies the demand of each commodity and finishes with the time horizon
T̃ ≤ (1 + ϵ)2 · T , and the capacity constraint on each edge is violated by at most
a factor of (1 + ϵ).

Step 3: construct a condensed time-expanded network. After Step 2, by
averaging the flow over time f̃ over the time intervals [i∆, (i + 1)∆] in G̃, we
get a corresponding static flow x in the ∆-condensed time-expanded network
G̃T̃ /∆. Because f̃ is constructed from f̂ which has been smoothened in Step 1,
this static flow x achieves demand D within time (1 + ϵ)2 · T , and exceeds the
capacity of edges by at most a factor of (1 + ϵ)2.

Proposition 5. The flow over time f̄ constructed by Definition 3 from the static
flow x in G̃T̃ /∆ achieves demand at least D = (d1, . . . , dk) with time horizon at
most (1 + ϵ)2 · T , and the capacity constraint on each edge is violated by at most
a factor of (1 + ϵ)2.

At this point, we have constructed a ∆-condensed time-expanded network
G̃T̃ /∆ and have found a static flow x in it, such that the flow over time fx

constructed from x by Definition 3 achieves demand at least D with time horizon
at most (1 + ϵ)2T , and the capacity constraint on each edge is violated by at
most a factor of (1 + ϵ)2.

Step 4: remove the capacity violations. The last step is to remove the
capacity violations. To achieve this, we apply the following two procedures:

1. First if we keep the structure of the time-expanded network intact, but change
the unit time interval length from ∆ to (1 + ϵ)2∆, it will correspond to a
new dynamic network in which all transit times and the time horizon are
increased by a factor of (1 + ϵ)2. The static flow x still corresponds to a
flow over time fx in this new network with the supply and demand of each
commodity also increased by a factor of (1 + ϵ)2. That is, fx has time horizon
(1 + ϵ)4T and achieves demand (1 + ϵ)2D. But the capacity constraint on
each edge is still violated by at most a factor of (1 + ϵ)2.
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2. Next, we reduce the flow values of x on all edges by a factor of (1 + ϵ)2. The
resulting static flow x will achieve demand (1+ϵ)2D

(1+ϵ)2 = D, with all capacity
constraints strictly satisfied. The timespan of fx is still (1 + ϵ)4T .

The above four steps complete the proof of Lemma 1. ⊓⊔
With the help of Lemma 1, the proof of our main theorem becomes rather

straightforward.

Proof (Proof of Theorem 2). This proof follows the same structure of the proof
of Theorem 1. That is, we use binary search to find the smallest T , such that
in the ∆-condensed time-expanded network G′T ′

/∆ constructed from Lemma 1,
there exists a feasible static flow, which in turn implies the desired flow over time
in G.
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