
An efficient quantum algorithm for finding hidden parabolic

subgroups in the general linear group

Thomas Deckera, Gábor Ivanyosb, Raghav Kulkarnia, Youming Qiaoc,a, Miklos Santhad,a

aCentre for Quantum Technologies, National University of Singapore, Singapore 117543
bInstitute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary

cCentre for Quantum Computation and Intelligent Systems University of Technology, Sydney, Australia
dLIAFA, Univ. Paris 7, CNRS, 75205 Paris, France

Abstract

In the theory of algebraic groups, parabolic subgroups form a crucial building block
in the structural studies. In the case of general linear groups over a finite field Fq,
given a sequence of positive integers n1, . . . , nk, where n = n1 + · · · + nk, a parabolic
subgroup of parameter (n1, . . . , nk) in GLn(Fq) is a conjugate of the subgroup consisting
of block lower triangular matrices where the ith block is of size ni. Our main result is a
quantum algorithm of time polynomial in log q and n for solving the hidden subgroup
problem in GLn(Fq), when the hidden subgroup is promised to be a parabolic subgroup.
Our algorithm works with no prior knowledge of the parameter of the hidden parabolic
subgroup. Prior to this work, such an efficient quantum algorithm was only known for the
case n = 2 (A. Denney, C. Moore, and A. Russell (2010), Quantum Inf. Comput., Vol. 10,
pp. 282-291) and for minimal parabolic subgroups (Borel subgroups), for the case when q
is not much smaller than n (G. Ivanyos: Quantum Inf. Comput., Vol. 12, pp. 661-669).

Keywords: Hidden subgroup; Quantum computing; Parabolic subgroups; General linear
group.

1. Introduction

1.1. Background

The hidden subgroup problem (HSP for short) is defined as follows. A function f on a
group G is said to hide a subgroup H ≤ G, if f satisfies the following: f(x) = f(y) if and
only if x and y are in the same left coset of H (that is, x−1y ∈ H). When such an f is
given as a black box, the HSP asks to determine the hidden subgroup H. Note that the
problem when the level sets of the hiding f are demanded to be right cosets of H – that
is, f(x) = f(y) if and only if yx−1 ∈ H – is equivalent: composing f with taking inverses
maps a hiding function via right cosets to a hiding function via left cosets, and vice versa.
When we explicitly want to refer to this variant of the problem, we speak about HSP via
right cosets.

Email addresses: t.d3ck3r@gmail.com (Thomas Decker), Gabor.Ivanyos@sztaki.mta.hu (Gábor
Ivanyos), kulraghav@gmail.com (Raghav Kulkarni), jimmyqiao86@gmail.com (Youming Qiao),
miklos.santha@liafa.jussieu.fr (Miklos Santha)

A preliminary version if this paper appeared in [11].

Preprint submitted to Elsevier January 4, 2017

The complexity of a hidden subgroup algorithm is measured in terms of the number
of bits representing the elements of the group G, which is usually O(log |G|). On classical
computers, the problem has exponential query complexity even for abelian groups. In
contrast, the quantum query complexity of HSP for any group is polynomial [12], and the
HSP for abelian groups can be solved in polynomial time with a quantum computer [5, 23].
The latter algorithms are generalizations of Shor’s result on order finding and computing
discrete logarithms [26]. These algorithms can be further generalized to compute the
structure of finite commutative black-box groups [8].

To go beyond the abelian groups is well-motivated by its connection with the graph
isomorphism problem. Despite considerable attention, the groups for which the HSP is
tractable remain close to being abelian. For example, we know polynomial-time algorithms
for the following cases: groups whose derived subgroups are of constant derived length and
constant exponent [13], Heisenberg groups [2, 1] and more generally two-step nilpotent
groups [21], “almost Hamiltonian” groups [14], and groups with a large abelian subgroup
and reducible to the abelian case [18]. The limited success in going beyond the abelian
case indicates that the nonabelian HSP may be hard, and [25] shows some evidence for
this by providing a connection between the HSP in dihedral groups and some supposedly
difficult lattice problem.

Instead of considering various ambient groups, another direction is to pose restrictions
on the possible hidden subgroups. This can result in efficient algorithms, even over fairly
nonabelian ambient groups. For example, if the hidden subgroup is assumed to be normal,
then HSP can be solved in quantum polynomial time in groups for which there are efficient
quantum Fourier transforms [16, 17], and even in a large class of groups, including solvable
groups [20]. The methods of [24, 15] are able to find sufficiently large non-normal hidden
subgroups in certain semidirect products efficiently.

Some restricted subgroups of the general linear groups were also considered in this
context. The result by Denney, Moore and Russell in [9] is an efficient quantum algorithm
that solves the HSP in the group of 2 by 2 invertible matrices (and related groups)
where the hidden subgroup is promised to be a so-called Borel subgroup. In [19], Ivanyos
considered finding Borel subgroups in general linear groups of higher degree, and presented
an efficient algorithm when the size of the underlying field is not much smaller than the
degree.

A well-known superclass of the family of Borel subgroups is the family of parabolic
subgroups, whose definition is given below. In this work, we follow the line of research in
[9, 19], and consider the problem of finding parabolic subgroups in general linear groups.
Our main result will be a polynomial-time quantum algorithm for this case, without
restrictions on field size.

1.2. Parabolic subgroups of the general linear group

Let q be a power of a prime p. The field with q elements is denoted by Fq. The
vector space Fnq consists of column vectors of length n over Fq. GLn(Fq) stands for the
general linear group of degree n over Fq. The elements of GLn(Fq) are the invertible
n × n matrices with entries from Fq. We also use GL(V) to denote the group of linear
automorphisms of the Fq-space V . With this notation, we have GLn(Fq) ∼= GL(Fnq) and
throughout the paper we will identify these two groups. As a matrix is represented by

2

an array of n2 elements from Fq, an algorithm is considered efficient if its complexity is
polynomial in n and log q.

We now present the definition of parabolic subgroups (see [27]). For a positive integer
k, and a sequence of positive integers n1, . . . , nk with n1 + · · · + nk = n, the standard
parabolic subgroup of GLn(Fq) with parameter (n1, . . . , nk) is the subgroup consisting of
the invertible lower block triangular matrices of diagonal block sizes n1, . . . , nk. Any
conjugate of the standard parabolic subgroup is called a parabolic subgroup.

To see the geometric meaning of parabolic subgroups, we review the concept of
flags of vector spaces. Let 0 also denote the zero vector space. For Fnq and k ≥ 1, a
flag F with the parameter (n1, . . . , nk) is a nested sequence of subspaces of Fnq , that
is Fnq = U0 > U1 > U2 > · · · > Uk−1 > Uk = 0, such that for 0 ≤ i ≤ k − 1,
dim(Ui) = ni+1 + · · ·+ nk. k is called the length of F . For g ∈ GLn(Fq), g stabilizes the
flag F if for every i ∈ [k], g(Ui) = Ui. From the definition of parabolic subgroups, it is
easy to see that a parabolic subgroup consists of all elements in GLn(Fq) stabilizing some
flag F ; this flag is determined by the conjugating element.

For example, the standard parabolic subgroup B in GL5(Fq) with parameter (2, 2, 1)

consists of invertible matrices of the form

∗ ∗ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

. Let {e1, . . . , e5} be the standard

basis of F5
q. The flag stabilized by B is F5

q > 〈e3, e4, e5〉 > 〈e5〉 > 0.
A parabolic subgroup is maximal if there are no parabolic subgroups properly containing

it. It is minimal if it does not properly contain any parabolic subgroup. A parabolic
subgroup B in GLn(Fq) is maximal if and only if it is the stabilizer of a flag of length 2,
that is, it is the stabilizer of some nontrivial subspace. On the other hand, B is minimal
if it stabilizes a flag of length n. Borel subgroups in GLn(Fq) are just minimal parabolic
subgroups. They are conjugates of the subgroup of invertible lower triangular matrices.

1.3. Our results

The main result of this paper is a polynomial-time quantum algorithm for finding
parabolic subgroups in general linear groups.

Theorem 1. Any hidden parabolic subgroup in GLn(Fq) can be found in quantum polyno-
mial time (i.e., in time poly(log q, n)).

Note that this algorithm does not require one to know the parameter of the hidden
parabolic subgroup in advance. Neither does it pose any restriction on the underlying
field size, while the algorithm in [19] for finding Borel subgroups requires the field size
to be large enough. The basic idea behind the algorithm is that in certain cases the
superposition of the elements in a coset of the subgroup is close to a superposition of the
elements of a linear space of matrices. The latter perspective allows the use of standard
algorithms for abelian HSPs. Another crucial idea is to make use of the subgroup of
common stabilizers of all the vectors on a random hyperplane, and examine its intersection
with the hidden parabolic subgroup.

We can also consider certain subgroups of Borel subgroups, namely the full unipotent
subgroups. They are conjugates of the subgroup of lower triangular matrices with 1’s
on the diagonal. Following a variant of the idea for Theorem 1, we can show that these
subgroups can be efficiently found if the base field is small.

3

Theorem 2. Any hidden full unipotent subgroup in GLn(Fq) can be found by a quantum
algorithm in time poly(q, n).

Finally, we consider finding the maximal parabolic subgroups in the classical setting.
We show that in the classical setting, the deterministic and randomized query complexities
are exponential, in contrast to the efficient quantum algorithm as above.

Theorem 3. For d ≤ n/2 the query complexity for a bounded-error randomized algorithm
with bounded error probability ε to find a maximal parabolic subgroup stabilizing a d-
dimensional subspace in GLn(Fq) is Ω(qd/2).

The proof is based on the fact that for any o(qd/2) matrices which are not scalar
multiples of each other there are still many d-dimensional subspaces such that the matrices
fall into pairwise distinct cosets of the corresponding maximal parabolic subgroups. As
every Borel subgroup is contained in a unique maximal parabolic subgroup stabilizing an
n/2-dimensional subspace, the same argument gives the following.

Corollary 4. The query complexity for a bounded-error randomized algorithm with
bounded error probability ε to find a hidden Borel subgroup in GLn(Fq) is Ω(qbn/4c).

The structure of the paper. In Section 2 we collect certain preliminaries for the paper.
In particular, in Section 2.2 we adapt the standard algorithm for abelian HSP to linear
subspaces, which forms the basis of our algorithms. We then present an efficient quantum
algorithm for finding maximal parabolic subgroups in Section 3. Section 4 describes a
main technical tool, a generalization of the result of [24, 9] for finding complements in
affine groups. In Section 5 we present the algorithm for finding parabolic subgroups,
proving Theorem 1. In Section 6 we consider the task of finding unipotent subgroups,
proving Theorem 2. In Section 7 we discuss the deterministic and randomized complexities
of finding hidden maximal Borel subgroups in the classical setting, proving Theorem 3
and Corollary 4. Finally in Section 8 we conclude this paper and propose some future
directions.

2. Preliminaries

2.1. Notations and facts

Throughout the article, q is a prime power. For n ∈ N, [n] = {1, . . . , n}. Mn(Fq) is
the set of n× n matrices over Fq. For a finite group G, we will be concerned with finding
a subgroup H in G, when it is promised that H is from a fixed family of subgroups H.
We use HSP(G,H) to denote the HSP problem with this promise, and rHSP(G,H) to
denote the HSP via right cosets of H ∈ H. Let V be a vector space. For a subspace
U ≤ V and G = GL(V), let GU be the subgroup in G consisting of elements that act as
pointwise stabilizers on U . That is, GU = {X ∈ GL(V) : ∀u ∈ U,Xu = u}. Let G{U}
be the subgroup in G consisting of elements that act as setwise stabilizers on U . That
is, G{U} = {X ∈ GL(V) : XU = U}. Note that {G{U} : 0 < U < V } is just the set of
maximal parabolic subgroups.

Fact 5. For every prime power q, and for every positive integers n ≥ m, the probability
for a random n×m matrix M over Fq to have rank m is no less than what we have in
the case of q = 2, that is 1

2
· 3
4
· 7
8
· · · · ≈ 0.288788 > 1/4.

4

2.2. The quantum Fourier transform of linear spaces

In this part we briefly discuss slight generalizations of the Fourier transform of
linear spaces over Fq considered in [19] and a version useful for certain linear spaces of
matrices. Let V ∼= Fmq be a linear space over the field Fq and assume that we are given a
nondegenerate symmetric bilinear function φ : V × V → Fq. By CV we denote the Hilbert
space of dimension qm having a designated orthonormal basis consisting of the vectors |v〉
indexed by the elements v ∈ Fmq .

Let q = pr where p is a prime and let ω be the primitive pth root e
2πi
p of unity. We

define the quantum Fourier transform with respect to φ as the linear transformation
QFTφ of CV which maps

|v〉 to
1√
|V |

∑
u∈V

ωTr(φ(u,v))|u〉,

where v ∈ V and Tr is the trace map from Fq to Fp defined as Tr(x) =
∑r−1

i=0 x
pi .

Regarding the additive stucture, Fnq is isomorphic to Zrnp and the map (x, y) 7→ Tr(φ(x, y))
is a nondegenerate bilinear map from Zrnp ×Zrnp to Zp. Hence QFTφ is one of the possible
Fourier transforms for this group. Thus QFTφ is a unitary map. We will choose various
bilinear maps φ suitable for the specific applications. Notice that if the vectors from V are
represented by arrays of elements from Fq that are coordinates in terms of an orthonormal
basis of V with respect to φ (that is, φ is the standard inner product

∑m
i=1 uivi of Fmq),

then |u〉 = |u1, . . . , um〉 is mapped to

1√
qm

∑
(v1,...,vm)∈Fmq

ωTr(u1v1+...+umvm)|v1, . . . , vm〉 =

 1
√
q

∑
v1∈Fq

ωTr(u1v1)|v1〉

⊗ . . .⊗
 1
√
q

∑
vm∈Fq

ωTr(umvm)|vm〉

 .

Therefore, QFTφ can be implemented by applying the QFT defined in [10] for Fq to the
m registers independently. (This latter QFT is the linear transformation of CFq that maps
|x〉 (x ∈ Fq) to 1√

q

∑
y∈Fq ω

Tr(xy)|y〉. Polynomial time approximate implementation, based

on the approximate QFT for Zp and efficent computability of the form (x, y) 7→ Tr(xy),
is given in Lemma 2.2 of [10].) Therefore, in this case, QFTφ has a polynomial time
approximate implementation on a quantum computer. In the general case, where elements
of V are represented by coordinates in terms of a not necessarily orthonormal basis w.r.t.
φ, the map QFTφ can be efficiently implemented by composing the above transform with
linear transformations of CV corresponding to appropriate basis changes for V .

For a subset A ⊆ V we adopt the standard notation |A〉 for the uniform superposition
of the elements of A, that is |A〉 = 1√

|A|

∑
a∈A |a〉. Assume that we receive the uniform

superposition |v0 +W 〉 = 1√
|W |

∑
v∈W |v0 + v〉 over the a coset v0 + W of the Fq-linear

subspace W of V and for some v0 ∈ V . Let W⊥ stand for the subspace of V consisting
of the vectors u from Fmq such that φ(u, v) = 0 for every v ∈ W . By results from [19], if
we measure the state after the Fourier transform, we obtain a uniformly random element
of W⊥. If instead of the uniform superposition over the coset v0 + W we apply the

5

QFT to the superposition |v0 +W ′〉 = 1√
|W ′|

∑
v∈W ′ |v0 + v〉 over a subset v0 + W ′ for

∅ 6= W ′ ⊆ W , the resulting state is
∑

u∈V c
′
u|u〉, where

c′u = 〈u|QFTφ|v0 +W ′〉 =
ωTrφ(v0,u)√
|W ′||V |

∑
v∈W ′

ωTrφ(v,u).

For u ∈ W⊥ we have

|c′u| =
|W ′|√
|W ′||V |

=

√
|W ′|√
|W |

· 1√
|W⊥|

, (1)

whence, after measurement the chance of obtaining a particular u ∈ W⊥ is |W
′|

|W | times as

much as if we had in the case of the uniform distribution over W⊥.
In this paper we consider subspaces and certain subsets of the linear space Mn(Fq).

If we take the inner product φ0(A,B) = tr(ABT) the elementary matrices form an
orthonormal basis. It follows that QFTφ0 , being just the n2th tensor power of the QFT
of Fq, can be efficiently approximated. However, for the purposes of this paper it turns
out to be more convenient using the inner product φ(AB) = tr(AB). The map QFTφ
is the composition of QFTφ0 with taking transpose (the latter is just a permutation of
the matrix entries). The main advantage of considering QFTφ is that it is invariant in
the following sense: we always obtain the same QFTφ even if we write matrices of linear
transformations of the space V = Fnq in terms of various bases. In particular, in our hidden
subgroup algorithms we can think of our matrices in terms of a basis a priori unknown to
us in which the hidden subgroup has a natural form, for example lower block triangular.

2.3. A common procedure for HSP algorithms

Suppose we want to find some hidden subgroup H in G = GLn(Fq). Let V = Fnq . We
present the standard procedure that produce a uniform superposition over a coset of the
hidden subgroup. This part will be common in (most of) the hidden subgroup algorithms
presented in this paper. First we show how to produce the uniform superposition over
GL(V). The uniform superposition 1

qn2

∑
X∈Mn(Fq) |X〉 over Mn(Fq) can be produced

using the QFT for Fn2

q . Then, in an additional qubit we compute a Boolean variable
according to whether or not the determinant of X is zero. We measure this qubit, and
abort if it indicates that the matrix X has determinant zero. This procedure gives the
uniform superposition over GL(V) with success probability more than 1

4
.

Next we assume that we have the uniform superposition 1√
|GL(V)|

∑
X |X〉|0〉, summing

over X ∈ GL(V). Recall that f is the function hiding the subgroup. We appended a new
quantum register, initialized to zero, for holding the value of f . We compute f(X) in
this second register, measure and discard it. The result is |AH〉 = 1√

|H|

∑
X∈H |AX〉 for

some unknown A ∈ GL(V). A is actually uniformly random, but in this paper we will
not make use of this fact.

3. Maximal parabolic subgroups

In this section, we settle the HSP when the hidden subgroup is a maximal parabolic
subgroup, which will be used in the main algorithm in Section 5. It also helps to illustrate

6

the idea of approximating a subgroup in the general linear group by a subspace in the
linear space of matrices.

Recall that a parabolic subgroup H is maximal if it stabilizes some subspace 0 <
U < Fnq . We mentioned in Section 2.1 that they are just setwise stabilizers of subspaces.
Determining H is equivalent to finding U . Set V = Fnq .

Proposition 6. Let G = GLn(Fq), and H = {G{U} : 0 < U < V }. HSP(G,H) can be
solved in quantum polynomial time.

Proof. Let H be the hidden maximal parabolic subgroup, stabilizing some (n − d)-
dimensional subspace U ≤ Fn. Note that d is unknown to us. Before describing the
algorithm, we observe the following: checking correctness of a guess for U , and hence for
H, can be done by applying the oracle to a set of generators of the stabilizer of U , as
there are no inclusions between maximal parabolic subgroups.

Now we present the algorithm. First produce a coset superposition |AH〉 for unknown
A ∈ GL(V), as described in Section 2.3. Let W = {X ∈Mn(Fq) : XU ≤ U}. In a basis
whose last n − d elements are from U , W is the subspace of the matrices of the form(
B
C D

)
, where B and D are not necessarily invertible, and the empty space in the upper

right corner means a d× (n− d) block of zeros. Noting that such a matrix is invertible

if and only if B and D are both invertible, we have H ⊂ W and |AH|
|AW | = |H|

|W | >
1

4×4 .

Also, viewing in the same basis, (AW)⊥A = W⊥ consists of the matrices of the form(
∗

)
, where ∗ stands for an arbitrary (n − d) times d matrix. This implies that

(AW)⊥ = {X ∈Mn(Fq) : XV ≤ U and XU = 0}A−1.
If d ≥ n/2, we apply QFT to the left coset superposition |AH〉 and perform a

measurement. For any element X in (AW)⊥, the measurement will produce X with
probability no less than 1

16|(AW)⊥| . It follows that XA will be a particular matrix from

(AW)⊥A with probability at least 1
16|(AW)⊥| . Then more than 1

4
of the (n− d)× d matrices

have rank n − d. It follows that with probability at least 1
64

, the matrix XA will be a
matrix from (AW)⊥A whose image is U . As XV = XAV , we can conclude that XV = U
with probability more than 1

64
.

For the case d < n/2 we consider the HSP via right cosets of H, and let act matrices
on row vectors from the right. Via the same procedure as above, it will reveal the dual
subspace stabilized by H, which determines H uniquely as well.

Finally, though d is not known to us, depending on whether d ≥ n/2, one of these
two procedures with produce U correctly with high probability. So we perform the two
procedures alternatively, and use the checking procedure to determine which produces the
correct result. This concludes the algorithm.

4. A tool: finding complements in small stabilizers

In this section, we introduce and partially settle a new instance of the hidden subgroup
problem. This will be an important technical tool for the main algorithm.

Consider the hidden subgroup problem in the following setting. The ambient group

G ≤ GLn(Fq) consists of the invertible matrices of the form

(
b
v I

)
, where b ∈ Fq, v is

7

a column vector from Fn−1q , and I is the (n− 1)× (n− 1) identity matrix. The family
of hidden subgroups H consists of all conjugates of H0, where H0 is the subgroup of

diagonal matrices in G: H0 =

{(
b
I

)
: b ∈ F∗q

}
. Note that any conjugate of H0 is

Hv =

{(
b

(b− 1)v I

)
: b ∈ F∗q

}
, for some v ∈ Fn−1q . We will consider the HSP via right

cosets in this setting.
The group G has an abelian normal subgroup N consisting of the matrices of the

form

(
1
v I

)
isomorphic to Fn−1q , and the subgroups Hv are the semidirect complements

of N . For n = 2, G is the affine group AGL1(Fq). The HSP in AGL1(Fq) is solved in
quantum polynomial time in [24] over prime fields and in [9] in the general case using the
non-commutative Fourier transform of the group AGL1(Fq). The algorithm served as the
main technical ingredient in [9] for finding Borel subgroups in GL(F2

q). A generalization
for certain similar semidirect product groups is given in [2]. To our knowledge, the first
occurrence of the idea of comparing with a coset state in a related abelian group is in
[2]. Here, due to the “nice” representation of the group elements, we can apply the same
idea in a simpler way, while in [2] it was needed to be combined with a discrete logarithm
algorithm which is not necessary here.

Proposition 7. Let G and H be as above, and suppose q = Ω(n/ log n). Then rHSP(G,H)
can be solved in quantum polynomial time.

Proof. Assume that the hidden subgroup is H = Hv for some v ∈ Fn−1q . As right cosets of
H are being considered, we have superpositions over right cosets HA for some unknown
A ∈ G. The actual information of each matrix X from G is contained in X − I, a matrix
from the n-dimensional space L of matrices whose last n− 1 columns are zero. We will
work in L. Set

W̃ ′ = {X − I : X ∈ H} =

{(
b
bv

)
: −1 6= b ∈ Fq

}
and W =

{(
b
bv

)
: b ∈ Fq

}
.

Then W is a one-dimensional subspace of L. It turns out that W = WA for every matrix
A ∈ G (that is why it is convenient to consider the HSP via right cosets). It follows that
{(Y + I)A − I : Y ∈ W} = {Y A + (A − I) : Y ∈ W} = W + A − I, whence the set

{XA− I : X ∈ H} equals W ′ + A− I for W ′ = W̃ ′A.
Therefore, after an application of the QFT of L to the state |HA− I〉 = |W ′ + A− I〉

and a measurement, we obtain every specific element of W⊥ with probability at least
q−1
q

1
|W⊥| . More generally, if we do the procedure for a product of n− 1 superpositions over

right cosets of H we obtain each specific (n−1)-tuple of vectors from W⊥ with probability
at least (q−1

q
)n−1 1

|W⊥|n−1 . Since the probability that n− 1 random elements from a space of

dimension n− 1 over Fq span the space is at least 1
4
, therefore, the probability of getting

a basis of W⊥ is Ω((q−1
q

)n−1). Using this basis, we obtain a guess for W and H as H is
the set of invertible matrices from W + I. A correct guess will be obtained with constant
probability with O((q

q−1)n−1) repetitions. This is polynomial if q is Ω(n/ log n).

Finally we note that for constant q, or more generally for constant characteristic, [13]
can be used to obtain a polynomial time algorithm. On the other hand, it is intriguing to
study the case of “intermediate” values of q.

8

5. The main algorithm

5.1. The structure of the algorithm

In this subsection, we describe the structure of an algorithm for finding parabolic
subgroups in general linear groups, proving Theorem 1. Let G = GLn(Fq), V = Fnq , and the
hidden parabolic subgroup H be the stabilizer of the flag V > U1 > U2 > · · · > Uk−1 > 0.
Note that the parameter of the flag, including k, is unknown to us. The algorithm will
output the hidden flag, from which a generating set of the parabolic subgroup can be
constructed easily.

Let T = Uk−1 denote the smallest subspace in the flag. The algorithm relies on the
following subroutines crucially. These two subroutines are described in Section 5.2 and
Section 5.3, respectively.

Proposition 8. Let G, H and T be as above. There exists a quantum polynomial-time
algorithm, that given access to an oracle hiding H in G, produces three subspaces W1, W2

and W3, s.t. one of Wi is a nonzero subspace contained in T with high probability.

Proposition 9. Let G, H and T be as above. There exists a classical polynomial-time
algorithm, that given access to an oracle hiding H in G, and some 0 < W ≤ V , determines
whether W ≤ T , and in the case of W ≤ T , whether W = T .

Given these two subroutines, the algorithm proceeds as follows. It starts with checking
whether k = 1, that is whether H = G. This can be done easily: produce a set of
generators of G, and check whether the oracle returns the same value on all of them. If
k = 1, return the trivial flag V > 0.

Otherwise, it repeatedly calls the subroutine in Proposition 8 until that subroutine
produces subspaces W1, W2 and W3, such that for some i ∈ [3], we have 0 < Wi ≤ T .
This can be verified by Proposition 9. Let W be this subspace. The second subroutine
then also tells whether W = T .

After getting 0 < W ≤ T , the algorithm fixes a subspace W ′ to be any direct
complement of W in V , and makes a recursive call to the HSP with a new ambient
group G′, and a new hidden subgroup H ′, as follows. G′ is {X ∈ GL(V) : XW ′ ≤
W ′ and (X− I)W = 0}, which is isomorphic to GL(W ′) ∼= GL(V/W). H ′ is the stabilizer
of the flag W ′ > W ′ ∩ U1 > · · · > W ′ ∩ Uk−1 ≥ 0. Note that the oracle restricted to G′

realizes a hiding function for H ′.
The recursive call then returns a flag in W ′ as W ′ > U ′1 > U ′2 > · · · > Uk′ > 0. Let

Ui = 〈U ′i ∪W 〉, i ∈ [k′]. If W = T , then the algorithm outputs the flag V > U1 > U2 >
· · · > Uk′ > W > 0. If W < T , return V > U1 > U2 > · · · > Uk′ > 0.

It is clear that at most n recursive calls will be made, and the algorithm runs in
polynomial time given that the two subroutines run in polynomial time too. We now
prove Proposition 8 and 9 in the next two subsections.

5.2. Guessing a part of the flag

In this subsection we prove Proposition 8. Recall that G = GLn(Fq), the hidden
subgroup H stabilizes the flag V > U1 > . . . > Uk−1 > 0, and T = Uk−1. The algorithm
of [9] for finding hidden Borel subgroups in 2 by 2 matrix groups was based on computing
the intersection with the stabilizer of a nonzero vector. Here we follow an extension of

9

the idea to arbitrary dimension n. We consider the common stabilizer of n− 1 linearly
independent vectors.

Pick a random subspace U ′ ≤ V of dimension n − 1. Recall that GU ′ denotes the
group of pointwise stabilizers of U ′. We also consider the group consisting of the unipotent
elements of GU ′ , N = {X ∈ GL(V) : (X − I)V ≤ U ′ and X ∈ GU ′}. Note that N is an
abelian normal subgroup of GU ′ of size qn−1. Here we illustrate the form of GU ′ and N
when U ′ is put in an appropriate basis:

1 ∗
1 ∗

1 ∗
1 ∗
∗

 ,

1 ∗

1 ∗
1 ∗

1 ∗
1

 .

GU ′ N

We will describe three procedures, whose success on producing some 0 < W ≤ T depend
on d := dim(T) and the field size q. Each of these procedures only works for a certain
range of d and q, but together they cover all possible cases. Thus, the algorithm runs each
of these procedures, and returns the three results from them. The general idea behind
these procedures is to examine the intersection of the random hyperplane U ′ with T . As

d = dim(T), the probability that U ′ contains T is qn−d−1
qn−1 ∼

1
qd

.

Assume first that U ′ does not contain T . We claim that in this case∑
X∈H∩GU′

(X − I)V = T (2)

and
∑

X∈H∩N

(X − I)V = U ′ ∩ T. (3)

To see this, pick vn ∈ T \ U ′, and let v1, . . . , vn−1 be a basis for U ′ such that for every
0 < j < k, the system vn−dim(Uj)+1, . . . , vn−dim(Uj+1) is a basis for Uj . In the basis v1, . . . , vn,
the matrices of the elements of N are the matrices with ones in the diagonal, arbitrary
elements in the last column except the lowest one, and zero elsewhere. Among these the
matrices of the elements of intersection with H are those whose first n− d entries in the
last column are also zero:

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,

1

1
1

1 ∗
∗

 ,

1

1
1

1 ∗
1

 .

H H ∩GU ′ H ∩N

Based on the above analysis, the three procedures are as follows.
• If d > 1, then H ∩ N is nontrivial. As N is abelian, we can efficiently compute
H ∩N by the abelian hidden subgroup algorithm. Thus by Equation 3, we can use
it to compute W1 as a guess for a nontrivial subspace of T .
• If d = 1 and q ≥ n, we can compute H∩GU ′ in GU ′ by the algorithm in Proposition 7,

and use it to compute W2 as a guess for T by Equation 2.
• If d = 1 and q < n, with probability at least 1

q
− 1

q2
= Ω(1

q
) = Ω(1

n
), we have that

U ′ ≥ T but U ′ does not contain Uk−2. Then we have∑
X∈H∩N

(X − I)V = U ′ ∩ Uk−2. (4)

10

To see this, pick vn ∈ Uk−1\{0}, vn−1 ∈ Uk−2\U ′, and v1, . . . , vn−2 s.t. v1, . . . , vn−2, vn
is a basis for U ′ and for every 0 < j < k, the system vn−dim(Uj)+1, . . . , vn−dim(Uj+1)

is a basis for Uj. In this basis the matrices for the elements of N ∩ H are those
whose entries are zero except the ones in the diagonal and except the other lowest
dimUk−2 entries in the next to last column:

∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,

1 ∗

1 ∗
1 ∗

1
∗ 1

 ,

1

1
1 ∗

1
∗ 1

 .

H N H ∩N

Again, we can find H ∩ N by the abelian hidden subgroup algorithm and use
Equation 4 to compute V ′ = U ′ ∩ Uk−2. If dimV ′ = 1 then return W3 = V ′ as the
guess for T . Otherwise we take a direct complement V ′′ of V ′ and restrict the HSP
to the subgroup of the transformations X such that (X − I)V ′′ = 0 and XV ′ ≤ V ′

(which is isomorphic to GL(V ′)) and apply the method in Proposition 6 to compute
a subspace W3 as the guess for T .

5.3. Checking and recursion

In this subsection we prove Proposition 9. Recall that the goal is to determine whether
some subspace 0 < W ≤ V is contained in T = Uk−1, the last member of the flag
V > U1 > · · · > Uk−1 > 0 stabilized by the hidden parabolic subgroup H. If W ≤ V , we’d
like to know whether W = T . This can be achieved with the help of the following lemma.

Lemma 10. Let H be the stabilizer in GL(V) of the flag V > U1 > U2 > . . . > Uk−1 > 0,
and let 0 < W < V . Let W ′ be any direct complement of W in V . Then Uk−1 ≥ W if and
only if H ≥ {X ∈ GL(V) : (X − I)V ≤ W}. Furthermore, if Uk−1 ≥ W then Uk−1 = W
if and only if

H ∩ {X ∈ GL(V) : (X − I)V ≤ W ′ and (X − I)W ′ = 0} = {I}.

It is clear that this allows us to determine whether Uk−1 ≥ W : form a generating set
of {X ∈ GL(V) : (X − I)V ≤ W}, and query the oracle to see whether all element in the
generating set evaluate the same. Also, if Uk−1 ≥ W , we can test whether Uk−1 = W by
solving an instance of the abelian HSP.

Let us present an intuitive interpretation of this lemma. Consider a basis of V
consisting of a basis of W ′, followed by a basis of W . Then the subgroup mentioned in the
first part is the group of invertible matrices of the form Y + I, where the first d = dimW ′

rows of Y are zero. The group of the second part consists of the matrices of the form
I + Y where only the upper right d× (n− d) block of Y can contain nonzero entries. This
is an abelian group.

Proof. Let L = {X ∈ GL(V) : (X − I)V ≤ W}. To see that Uk−1 ≥ W ⇒ H ≥ L,
we show that every X ∈ L stabilizes the flag. For i ∈ {1, . . . , k − 1}, and v ∈ Ui,
(X − I)v ∈ W ≤ Uk−1 ≤ Ui. Thus Xv ∈ Ui, and X stabilizes the flag. We prove the other
direction H ≥ L ⇒ Uk−1 ≥ W by contradiction. That is, if Uk−1 6≥ W , then we exhibit
some X ∈ L \ H. For this, choose some nonzero b ∈ Uk−1 and c′ ∈ U \ Uk−1, and form
c = b+ c′ 6∈ Uk−1. Fix a basis of V as {b, c, d1, . . . }. Now consider the linear map X s.t.

11

X switches b and c, and leaves di’s fixed. It is straightforward to verify that X ∈ L and
X 6∈ H.

For the furthermore part, we set L′ = {X ∈ GL(V) : (X−I)V ≤ W ′ and (X−I)W ′ =
0}. To see the if direction, assume that Uk−1 > W . Then Uk−1 ∩W ′ 6= 0 and

{X ∈ GL(V) : (X − I)W ′ = 0 and (X − I)W ≤ Uk−1 ∩W ′}

is a nontrivial subgroup of H ∩ L′. For the only if direction, assume that W = Uk−1
and that X ∈ H ∩ L′. For any v ∈ V , Xv − v ∈ W ′ by X ∈ L′. We show that
Xv − v ∈ W as well. For this, write v = w + w′ where w ∈ W = Uk−1 and w′ ∈ W ′, thus
Xv− v = X(w+w′)− (w+w′) = Xw−w ∈ Uk−1 = W by X ∈ H∩L′. This shows that
for any v ∈ V , Xv − v ∈ W ∩W ′ = 0, so X = I.

Remark 11. Instead of considering whether a subspace W is contained in Uk−1, we can
also decide whether W contains U1 as follows. Let us consider the same hypotheses as in
Lemma 10. Then U1 ≤ W if and only if H ≥ {X ∈ GL(V) : (X−I)W = 0}. Furthermore,
if U1 ≤ W then U1 = W if and only if

H ∩ {X ∈ GL(V) : (X − I)V ≤ W ′ and (X − I)W ′ = 0} = {I}.

With the help of the above claim, there is another possible recursion scheme: if V > W ≥ U1

is found then take any direct complement W ′ of W in V and recurse with the smaller
ambient group {X ∈ GL(V) : XW ≤ W and (X − I)W ′ = 0}, which is isomorphic to
GL(W).

6. Finding hidden full unipotent groups

A full unipotent group in GL(V) is the subgroup

H = {X ∈ GL(V) : (X − I)Uj ≤ Uj+1 (j = 0, . . . , n− 1)}

for some complete flag V = U0 > U1 > . . . > Un−1 > Un = 0 of subspaces. The full
unipotent groups are the p-Sylow subgroups of GL(V) (recall that q is a power of the
prime p) and finding generators for one of them is equivalent to finding the corresponding
flag. We can use a variant of the method described in Section 5.2 to find Un−1 in time
(q + n)O(1).

We pick a random subspace W ′ of dimension n− 1. Put

N = {X ∈ GL(V) : (X − I)V ≤ W ′ and (X − I)W ′ = 0}.

With probability Ω(1
q
), we have W ′ ∩ Un−2 = Un−1. If this is the case then∑

X∈N∩H

(X − I)V = Un−1.

To see this, pick vn ∈ Un−1 \ {0}, vn−1 ∈ Un−2 \ Un−1, and vj ∈ W ′ ∩ Uj−1 \ Uj, for
j = 1, . . . , n − 2. In this basis the matrices for the elements of N ∩H are those whose

12

entries are zero except the ones in the diagonal and except the lowest entry in the next to
last column:

1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1

 ,

1 ∗

1 ∗
1 ∗

1
∗ 1

 ,

1

1
1

1
∗ 1

 .

H N N ∩H

Therefore we can use the abelian hidden subgroup algorithm for finding H ∩N and use it
to compute a guess for Un−1. We can test a guess for Un−1 by testing a set of generators
of the group

{X ∈ GL(V) : (X − I)V ≤ Un−1 and (X − I)Un−1 = 0}

for membership in H and the restrict the hiding function to the subgroup

{X ∈ GL(V) : (X − I)Un−1 = 0} ∼= GLn−1(Fq)

in order to find the other members of the flag by recursion. The complexity of the
procedure is (q + n)O(1).

7. Maximal and minimal parabolic subgroups: classical algorithms

In this section, we consider the following HSP: the ambient group G = GLn(Fq),
and for some integer 0 < d < n, the family of hidden subgroups is H = {G{U} : U ≤
V, dim(U) = d}, that is those subgroups setwise stabilizing d-dimensional subspaces. We
assume that d is given.

7.1. A simple deterministic algorithm

Here is a simple deterministic algorithm for finding U : try every hyperplane in V until
we obtain a hyperplane W ≥ U . Once such W is obtained we recurse as described in
Remark 11. It is also described in Remark 11 how to check with the oracle whether W ≥ U .
The cost is polynomial in the number of hyperplanes qn − 1, which is sub-exponential in
n2 log q when n is reasonably large.

7.2. An almost tight lower bound

We now present a lower bound for the query complexity of a randomized algorithm for
this HSP. First we present the lower bound for the deterministic case based on an adversary
strategy. Then we argue that a minor adaptation of this works for the randomized case.
We will suppose w.l.o.g that d ≤ n/2, as otherwise we can replace with d by n− d.

7.2.1. Deterministic query complexity

Proposition 12. Let G = GLn(Fq), and H = {G{U} : U ≤ V, dim(U) = d}. Any
deterministic algorithm for HSP(G,H) must make Ω(qd/2) queries.

13

Proof. Suppose that the deterministic algorithm queries the oracle for N group elements.
The strategy of the adversary is simply to return different values (different labels of cosets)
for these elements until it becomes impossible. That is, as long as there still exists a
d-dimensional subspace which is not stabilized by any of the non-scalar quotients of pairs
of the queried matrices. In other words, if during the execution of algorithm, the queries
are g1, ..., gN , where assuming without loss of generality that all gi’s are distinct, the
adversary returns labels 1, 2, ..., N . Note that the answer to the tth query adds at most
t new pairs of quotients of gis. Hence there are at most

(
N
2

)
such nontrivial quotients

gig
−1
j . If g is one of the quotients, then the algorithm learns that g does not stabilize

the hidden subspace. In order to continue the adversary strategy, all we need to make
sure is that the quotients generated so far do not stabilize all the hidden subspaces of
dimension d, i.e., there are still two d-dimensional subspaces which are not stabilized by
any of the quotients. In this case the algorithm can not answer correctly on any of these
two subspaces. Thus it suffices to upper bound the number of subspaces stabilized by an
individual group element.

For a, b ∈ N, b ≤ a, let
(
a
b

)
q

be the Gaussian binomial coefficient, which counts the

number of b-dimensional subspaces of Faq . If b > a then set
(
a
b

)
q

= 0. The analogue of

the Pascal equality for binomial coefficients is
(
a
b

)
q

= qb
(
a−1
b

)
q

+
(
a−1
b−1

)
q
. It is also easily

deduced that
(
a
b

)
q

= qa−1
qa−b−1

(
a−1
b

)
q
.

Claim 13. For A ∈ GLn(Fq), if A 6= λI, λ ∈ F×q , then A can stabilize at most
(
n−1
d

)
q

+(
n−1
d−1

)
q
d-dimensional subspaces.

Proof. We prove by induction on n. When n = d, this can be verified easily. Suppose the
claim holds for d ≤ n < k. Then for n = k, we distinguish the following cases.
Case I. Suppose there does not exist a hyperplane P ≤ V , s.t. A acts as a scalar matrix
on P . Then by induction hypothesis, for any hyperplane P ≤ V , the restriction of A
on P stabilizes at most (

(
k−2
d

)
q

+
(
k−2
d−1

)
q
) d-dimensional subspaces. Thus the number

of d-dimensional subspaces that A stabilizes is at most qk−1
qk−d−1 · (

(
k−2
d

)
q

+
(
k−2
d−1

)
q
) ≤

qk−q
qk−d−q ·

(
k−2
d

)
q

+ qk−1−1
qk−d−1 ·

(
k−2
d−1

)
q
≤
(
k−1
d

)
q

+
(
k−1
d−1

)
q
.

Case II. Suppose A acts on some hyperplane P ≤ V as λI. If A only stabilizes d-
dimensional subspaces in P , A stabilizes at most

(
n−1
d

)
q
d-dimensional subspaces. Other-

wise, suppose A stabilizes a subspace U ≤ V , dim(U) = d, and U 6≤ P . Take v ∈ U \ P ,
and suppose Av = µv + w for µ ∈ F×q , and w ∈ P ∩ U . We now consider the following
cases.
Case II (i). If µ 6= λ, let γ = 1/(µ − λ). Then A(v + γw) = µ(v + γw). Form a basis
of V as (b1, . . . , bk−1, v + γw), where b1, . . . , bk−1 is a basis for P . Then w.r.t. this basis
A is diag(λ, . . . , λ, µ). The number of subspaces stabilized by diag(λ, . . . , λ, µ) is clearly(
k−1
d

)
q

+
(
k−1
d−1

)
q
.

Case II (ii). If µ = λ, first note that w 6= 0, since A 6= λI. Now consider a basis of V
as (v, w, b1, . . . , bk−2), where (w, b1, . . . , bk−2) is a basis of P . W.r.t this basis, A is of the

14

form
λ
1 λ

λ
. . .

λ

 .

Then for any d-dimensional U s.t. A(U) = U and U 6≤ P , it is easy to check that U must
contain w, so the number of such U is at most

(
k−1
d−1

)
q
, which the number of d-dimensional

subspaces containing w. This concludes this case.

Therefore the quotients can hit less than N2(
(
n−1
d

)
q

+
(
n−1
d−1

)
q
) subspaces. As

(
n
d

)
q

=

qd
(
n−1
d

)
q

+
(
n−1
d−1

)
q

and
(
n−1
d−1

)
q
≤
(
n−1
d

)
q

for d ≤ n/2, these do not give all the d-dimensional

subspaces unless N = Ω(qd/2) when d ≤ n/2. In other words, this yields a lower bound of
Ω(qd/2) for the deterministic query complexity.

Note that when d is around n
2
, this lower bound gives Ω(qn/4), as compared to the

qO(n) upper bound shown in the last subsection.

7.2.2. Randomized query complexity

Recall that any randomized query algorithm R for HSP that has success probability ε
can be viewed as a probability distribution over several deterministic query algorithms,
i.e., the deterministic algorithm Di is used with probability pi, where i ∈ {1, . . . , k} for
some k.

On every input, i.e., on every d dimensional subspace V the probability that the Di

outputs correctly on V is at least 1− ε. By a simple double-counting argument (cf. Yao’s
min-max principle applied to uniform distribution on inputs), there is a j ∈ {1, . . . , k}
such that the deterministic algorithm D = Dj outputs correctly on at least 1− ε fraction
of the inputs. Thus in order to prove lower bound for randomized case, it suffices to show
a lower bound for the deterministic algorithm that computes correctly on 1− ε fraction of
the inputs.

Claim 14. Let G = GLn(Fq), d ≤ n/2, and H = {G{U} : U ≤ V, dim(U) = d}. Let D be
a deterministic algorithm for HSP(G,H) that answers correctly on at least 1− ε fraction
(for a constant ε ≥ 0) of the d-dimensional subspaces. Then D must make at least Ω(qd/2)
queries in worst case.

Proof. Suppose D makes N queries and computes correctly on at least 1− ε fraction of
inputs. First we note that the adversary strategy (described in previous subsection) for
the deterministic query complexity is non-adaptive, i.e., one may assume that the answers
to the queries are fixed by the adversary beforehand. So we can assume without loss of
generality that the adversary answers distinct coset-labels 1, 2, . . . , N as long as it can
be consistent with its answers. We use the same adversary strategy for D that was used
for the deterministic case. Our lower bound will only be weaker by a multiplicative 1− ε
factor.

To see this, note that after N queries D obtains information about at most
(
N
2

)
quotient elements. Moreover, since D makes error on at most ε fraction of inputs, there

15

are at most ε fraction of the d-dimensional subspaces uncovered by the stabilizers of these(
N
2

)
quotient elements. Hence, from the point of view of the adversary, it can can continue

giving different labels as answer to the queries as long as there are still ε fraction of the
d-dimensional subspaces still left uncovered. Hence we get essentially the same lower
bound with the multiplicative factor of 1− ε on the query complexity of D, and hence on
query complexity of any randomized algorithm.

This proves Therom 3. As every Borel subgroup is contained in the stabilizer of a
unique bn/2c-dimensional subspace, Claim 14 remains valid with d = bn/2c if we replace
H with the class of Borel subgroups, proving Corollary 4.

8. Concluding remarks

We have shown that hidden parabolic subgroups of the general linear group over a
finite field can be found in quantum polynomial time. Efficient procedures for finding
parabolic subgroups in related groups, that is in the (projective) special linear group
can be derived using the techniques described in [19] for Borel subgroups. One possible
direction for further research could be determining the complexity of HSP (GLn(Fq),H)
for other well known classes H of large subgroups of GLn(Fq), e.g., where H consists of
(certain subclasses) the classical groups. For full unipotent groups we gave a method
polynomial in n and q. Even for n = 2 it would be interesting to know whether there is
an algorithm of complexity subexponential in log q (e.g, 2O(

√
log q)).

The instance of the HSP discussed in Section 4 is a problem in the flavor of the
generalized hidden shift problem introduced in [6]. In our view, the existence of a
quantum algorithm for this problem which also works in polynomial time where the
base field is neither of constant characteristic nor sufficiently large is an interesting open
question. A positive answer would also simplify the main algorithm of the present paper.

Acknowledgements.. The research is partially funded by the Singapore Ministry of Edu-
cation and the National Research Foundation, also through the Tier 3 Grant “Random
numbers from quantum processes,” MOE2012-T3-1-009. Research partially supported by
the European Commission IST STREP project Quantum Algorithms (QALGO) 600700,
by the French ANR Blanc program under contract ANR-12-BS02-005 (RDAM project), by
the Hungarian Scientific Research Fund (OTKA), Grant NK105645, and by the Australian
Research Council DECRA DE150100720.

Bibliography

[1] D. Bacon (2008), How a Clebsch-Gordan transform helps to solve the Heisenberg
hidden subgroup problem, Quantum Inf. Comput., Vol. 8, pp. 438-467.

[2] D. Bacon, A. Childs, and W. van Dam (2005), From optimal measurement to efficient
quantum algorithms for the hidden subgroup problem over semidirect product groups,
In Proc. 46th IEEE FOCS, pp. 469-478.

[3] E. R. Berlekamp (1968), Algebraic coding theory, McGraw-Hill, New York.

[4] E. R. Berlekamp (1970), Factoring polynomials over large finite fields, Math. Com-
put., Vol. 24, pp. 713-735.

16

[5] D. Boneh and R. Lipton (1995), Quantum cryptanalysis of hidden linear functions,
In: Proc. Crypto’95, pp. 427-437.

[6] A. M. Childs and W. van Dam, Quantum algorithm for a generalized hidden shift
problem, in: Proc. SODA 2007, pp. 1225-1237.

[7] D. G. Cantor, H. Zassenhaus (1981), A New Algorithm for Factoring Polynomials
Over Finite Field, Math. Comput. 36, pp. 587-592.

[8] K. Cheung and M. Mosca (2001), Decomposing finite abelian groups, Quantum Inf.
Comput., Vol. 1, pp. 26-32.

[9] A. Denney, C. Moore, and A. Russell (2010), Finding conjugate stabilizer subgroups
in PSL(2;q) and related problems, Quantum Inf. Comput., Vol. 10, pp. 282-291.

[10] W. van Dam, S. Hallgren, and L. Ip (2006), Quantum algorithms for some hidden
shift problems, SIAM J. Comput., Vol 36, pp. 763-778.

[11] T. Decker, G. Ivanyos, R. Kulkarni, Y. Qiao, and M. Santha (2014), An efficient
quantum algorithm for finding hidden parabolic subgroups in the general linear group,
In.: Proc. MFCS 2014, pp. 226-238.

[12] M. Ettinger, P. Hoyer, and E. Knill (2004), The quantum query complexity of the
hidden subgroup problem is polynomial, Inform. Proc. Lett., 91, pp. 43-48.

[13] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen (2003), Hidden translation
and orbit coset in quantum computing, In: Proc. 35th STOC, pp. 1-9.

[14] D. Gavinsky (2004), Quantum solution to the hidden subgroup problem for poly-
near-Hamiltonian groups, Quantum Inf. Comput. Vol. 4, pp. 229-235.

[15] D. N. Goncalves, R. Portugal and C. M. M. Cosme (2009), Solutions to the hidden
subgroup problem on some metacyclic groups, In: Proc. TQC2009, Lect. Notes
Comput. Sci., Vol. 5906, Springer-Verlag (Berlin), pp. 1-9.

[16] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani (2001), Quantum mechanical
algorithms for the nonabelian Hidden Subgroup Problem, In Proc. 33rd ACM STOC,
pp. 68-74.

[17] S. Hallgren, A. Russell, and A. Ta-Shma (2003), Normal subgroup reconstruction
and quantum computation using group representations, SIAM J. Comp., 32, pp.
916-934.

[18] Y. Inui and F. Le Gall (2007), Efficient quantum algorithms for the hidden subgroup
problem over semi-direct product groups, Quantum Inf. Comput., Vol. 7, pp. 559-570.

[19] G. Ivanyos (2012), Finding hidden Borel subgroups of the general linear group,
Quantum Inf. Comput., Vol. 12, pp. 0661-0669.

[20] G. Ivanyos, F. Magniez, and M. Santha (2003), Efficient quantum algorithms for
some instances of the non-Abelian hidden subgroup problem, Int. J. Found. Comp.
Sci., Vol. 15, pp. 723-739.

17

[21] G. Ivanyos, L. Sanselme, and M Santha (2012), An efficient quantum algorithm for
the hidden subgroup problem in nil-2 groups, Algorithmica 63(1-2): pp. 91-116.

[22] R. Jozsa (2001), Quantum factoring, discrete logarithms, and the hidden subgroup
problem, Computing in Science and Engineering, Vol. 3, pp. 34-43.

[23] A. Yu. Kitaev (1995), Quantum measurements and the Abelian Stabilizer Problem,
Technical report arXiv:quant-ph/9511026.

[24] C. Moore, D. Rockmore, A. Russell, and L. Schulman (2004), The power of basis
selection in Fourier sampling: Hidden subgroup problems in affine groups, In Proc.
15th ACM-SIAM SODA, pp. 1106-1115.

[25] O. Regev (2004), Quantum computation and lattice problems, SIAM J. Comput. 33,
pp. 738-760.

[26] P. Shor (1997), Algorithms for quantum computation: Discrete logarithm and
factoring, SIAM J. Comput., 26, pp 1484-1509.

[27] T. A. Springer (1998), Linear Algebraic groups, Progress in mathematics, Vol. 9,
2nd ed., Birkhäuser (Boston).

[28] J. Watrous (2001), Quantum algorithms for solvable groups, In Proc. 33rd ACM
STOC, pp. 60-67.

18

