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Background-—Perturbed balance between NO and O2
��. (ie, NO/redox imbalance) is central in the pathobiology of diabetes-

induced vascular dysfunction. We examined whether stimulation of b3 adrenergic receptors (b3 ARs), coupled to endothelial nitric
oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins
eNOS and Na+-K+ (NK) pump, and improve vascular function in a new animal model of hyperglycemia.

Methods and Results-—We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-
affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by “uncoupling” of
eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while
O2

�� levels were higher in hyperglycemic rabbits. Infusion of the b3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced
O2

��, restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase
activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-
1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced
glutathionylation of the b1 NK pump subunit that causes NK pump inhibition, and improved K+-induced vasorelaxation that
reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL,
suggesting potential significance of the experimental findings in human diabetes.

Conclusions-—b3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. b3 AR agonists
may confer protection against diabetes-induced vascular dysfunction. ( J Am Heart Assoc. 2016;5:e002824 doi: 10.1161/
JAHA.115.002824)
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E levated levels of reactive oxygen species (ROS), or
“oxidative stress” and decreased NO levels are central

pathobiological features of vascular dysfunction in diabetes.1

At low levels, ROS play an important role in physiological cell

signaling.2,3 Within the signaling microdomains in membrane
lipid rafts/caveolae, the levels of ROS are kept in a tight
balance with NO for optimal signaling, in what is known as
“NO/redox balance.”3 The NO/redox balance is structurally
based on co-localization of NADPH oxidase, the major source
of ROS in the membrane, with endothelial NO synthase
(eNOS) and their signaling interaction.3 In diabetes, excessive
activation of the oxidase and a switch in the function of eNOS
from NO- to ROS generation (ie, eNOS “uncoupling”) causes
disruption of this balance, resulting in adverse effects on
cellular homeostasis and vascular function.2,3

Despite the established role of ROS in diabetes-induced
vascular dysfunction, general antioxidants are clinically inef-
ficacious.2 Even if general antioxidants are successfully
delivered to the membrane signalosomes, a feat that is yet
to be established,4 and they scavenge ROS on a one-to-one
basis, they have no effects on sources of ROS; whereas
diabetes-induced NADPH oxidase-derived ROS generation is a
continuous process.1 In physiological signaling, antioxidants
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need to achieve “controlled” generation rather than complete
suppression of ROS. In contrast to nonspecific antioxidants,
disruption of the renin–angiotensin system in diabetes by
angiotensin-converting enzyme inhibitors or angiotensin
receptor blockers protects against the diabetes-induced
vascular dysfunction.2 Angiotensin II (Ang II) receptors are
co-localized with NADPH oxidase and eNOS,5 and inhibition of
Ang II receptor–coupled signaling re-establishes NO/redox
balance by decreasing NADPH oxidase–mediated ROS pro-
duction2 and by restoring eNOS function.6,7

Due to a paucity of therapies protective against vascular
complications of diabetes besides angiotensin-converting
enzyme inhibitors/angiotensin receptor blockers, we sought
to determine whether agents that modulate adrenergic signal-
ing via b3 adrenergic receptors (b3 ARs) have effects on redox
pathways and vascular function in hyperglycemic state. b3 ARs
are expressed in endothelial cells8 and enriched in the
caveolae9 and their stimulation is coupled to eNOS activation
and NO release.10,11 We have previously shown that b3 AR
stimulation reverses oxidative inhibition of the cardiac Na+-K+

pump,10,11 a biomolecule also enriched in the caveolae.12 This
effect was mediated by a decrease in glutathionylation of the
pump’s b1 subunit.

10 Glutathionylation, which involves forma-
tion of a reversible disulphide bond between glutathione and
reactive cysteines on proteins with significant structural and
functional consequences, is increasingly recognized in physi-
ological and pathophysiological cell signaling.13 Of direct
relevance to our objective, glutathionylation also mediates
eNOS uncoupling in endothelial cells under oxidative stress.14

In contrast to uncoupling by depletion of the cofactor tetrahy-
drobiopterin (BH4), which leads to O2

�� generation in the
oxidase domain of the enzyme instead of NO synthesis,
uncoupling by glutathionylation of 2 highly conserved cysteine
residues of eNOS leads to O2

�� generation in the reductase
domain and abolishment of NO production.14 These seemingly
distinct mechanisms of eNOS uncoupling have recently been
shown to interact, with one mechanism inducing uncoupling by
the other in an integrated manner.15

To study the effects of b3 AR agonism in diabetes, we
established and characterized a novel model of hyperglycemia
because we found that the widely used diabetogenic agents
such as streptozotocin (STZ) and alloxan, which induce type 1
diabetes, have direct and cofounding effects on glutathiony-
lation levels. The prevalence of type 2 diabetes is substantially
higher than type 1, driven by the epidemics of obesity and
insulin resistance,16 and is alarmingly on the rise with
vascular pathophysiology being the major cause of morbidity
and mortality. Since both disruption in insulin signaling17 and
hyperglycemia16 are key pathophysiological mechanisms of
type 2 diabetes–induced vascular dysfunction, we induced a
hyperglycemic state by competitively blocking insulin signal-
ing through continuous infusion of S961, a high-affinity

peptide inhibitor of insulin receptor.18 Moreover, pharmacol-
ogy and physiological effects of the b3 ARs in the cardiovas-
cular system are highly species-dependent, and since rabbits
provide a relevant model for human b3 AR,

19 we characterized
the metabolic and biochemical profile of S961-induced
hyperglycemia in rabbits. We assessed endothelial function,
measured O2

��- and NO levels in vessels and examined
oxidative modification of eNOS and Na+-K+ pump and relevant
redox pathways that regulate these modifications. Subse-
quently, we assessed modulating effects of the b3 AR agonist
CL316243 (CL) on these pathways/molecules and vascular
function in this model.

Materials and Methods

S961-Induced Hyperglycemia, Animals, Cells,
Treatments, and Hemodynamic and Metabolic
Measurements
S961 was expressed in Escherichia coli as a fusion protein with
an affinity tag and had the peptide sequence GSLDESFYDW-
FERQLGGGSGGSSLEEEWAQIQCEVWGRGCPSY with a disulfide
bridge connecting the 2 cysteine residues (a gift from Novo
Nordisk, Denmark).18 We infused S961 dissolved in normal
saline for 7 days at a rate of 12 lg/kg per hour via osmotic
mini-pumps (Alzet, Palo Alto, CA) implanted subcutaneously in
male New Zealand White rabbits, weighing 2.2 to 2.6 kg while
theywere under general anesthesia. The selectiveb3 AR agonist
CL (Sigma-Aldrich, St. Louis,MO)was dissolved in normal saline
and infused via mini-pumps at a rate of 40 lg/kg per hour
during the last 3 days of hyperglycemia. Since infusion of the
vehicle alone (normal saline) in 5 rabbits did not change
oxidative modification of the target proteins or endothelium-
dependent vasorelaxation (either identical or almost-identical
means within nearly equal SEM), we did not use sham infusions
in controls. Durations of infusions of S961 and CL were limited
by the amount of S961 we had available and the cost of CL
needed in a relatively large animal such as rabbit. Blood samples
for biochemical and metabolic analysis were obtained from the
central ear artery of the anesthetized rabbits before and after
each treatment. Blood glucose was measured in a drop of blood
from the marginal ear vein using a glucometer and strips
(Optium Xceed, Abbott Diabetes Care Ltd, Australia). Heart rate
and blood pressure were measured via a catheter in the ear
artery after anesthesia by subcutaneous injection of ketamine
hydrochloride (50 mg/kg) and xylazine hydrochloride (50 mg/
kg) prior to euthanasia by intravenous bolus injection of
ketamine. The rabbit thoracic aorta was harvested and cleared
of adhering tissue in Krebs buffer. The total number of rabbits
used for this study was 50 (diabetogenesis with alloxan in vivo,
n=9, control rabbits for in vitro assessment of diabetogenic
agents n=6, sham infusions with normal saline n=5, control
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rabbits for vasomotor studies andmolecular experiments n=10,
rabbits with hyperglycemia induced by S961 infusion including
dose titration experiments n=20). Pooled, multiple-donor
human umbilical vein endothelial cells (Lonza, Basel, Switzer-
land) were used for in vitro experiments. Surplus segments of
human internal mammary or radial artery were obtained from
patients undergoing coronary artery bypass graft operation at
our institution (n=4 samples from diabetic patients and n=4
from nondiabetic patients). Myocardial tissue was obtained
from a patient undergoing cardiac biopsy at another institution.
The study protocols were in accordance with institutional
guidelines and were approved by the appropriate research
ethics committees at our institution. Informed written consent
was obtained from patients.

Immunodetection of Glutathionylated Protein and
Protein Co-Immunoprecipitation
To detect glutathionylation of eNOS and b1 Na+-K+ pump
subunit in co-immunoprecipitation experiments, an antibody
against glutathionylated protein (anti-glutathione antibody)
was used to detect glutathionylation.10 Aorta was homoge-
nized in ice-cold lysis buffer containing 150 mmol/L NaCl,
50 mmol/L Tris-HCl (pH 8.0), 1% Triton X-100, 2 mmol/L
EDTA, and protease inhibitor (Complete EGTA-free, Roche
Diagnostics), followed by centrifugation at 16 000g for
20 minutes. The supernatant (0.5–1 mg protein) was incu-
bated with the appropriate antibody at a ratio of 1 lg of b1
Na+-K+ subunit antibody:1 mg protein and 2.5 lg anti-eNOS
antibody:1 mg protein at 4°C for 1 hour and then with protein
A/G-Plus agarose beads. The proteins bound to the collected
beads were eluted in Laemmli buffer, subjected to SDS-PAGE,
and probed with anti-glutathione antibody. This protocol was
also used to detect co-immunoprecipitation of eNOS/
glutaredoxin-1 (Grx1), b1 subunit/Grx1, and p47phox/eNOS.
To detect glutathionylation of b1 Na+-K+ subunit in cardiac
myocytes, freshly isolated myocytes were loaded with
biotinylated glutathione ester (500 lmol/L) for 1 hour at
room temperature. The biotin-tag was used to precipitate
glutathionylated proteins as previously described.10 Western
blot chemiluminescence was read by a LAS-4000 image
reader and quantified by densitometry using Multi Gauge 3.1
software (Fujifilm Life Science, Tokyo, Japan). Exposure times
were adjusted to ensure that the variation in signal intensity
was in the linear dynamic range.

Electron Paramagnetic Resonance Spin-Trapping
Measurement of NO
To synthesize the colloid spin trap, sodium diethyldithiocarba-
mate (sodium DETC, 4.5 mg) and FeSO4 7H2O (2.8 mg) were
dissolved separately in 10 mL of deoxygenated Krebs bubbled

with a nitrogen purge and mixed rapidly, resulting in a final
concentration of Fe(DETC)2 of 0.5 mmol/L. The spin trap was
used immediately. After harvesting the aorta from rabbits and
separating the loose adhering tissue, the aorta was opened
longitudinally and cut into 10910 mm segments. The seg-
ments were placed in a 6-well plate containing 500 lL Krebs,
with 500 lL of Fe(DETC)2 added (final concentration of
0.25 mmol/L), and incubated at 37°C for 30 minutes. The
tissue samples were placed in electron paramagnetic reso-
nance tubes, snap-frozen, and stored at �80°C until analysis.
Spectra were recorded at 77 K with a Bruker EMX X-band
spectrometer using the following parameters: microwave
power 2.5 mW; microwave frequency 9.4 GHz; modulation
amplitude 0.2 mT; modulation frequency 100 kHz; conversion
time 81.9 ms, time constant 163.8 ms, scan time 83.9 s with
12 scans averaged. The amplitude of NO signal was determined
as the perpendicular height between the top of the first low-
field signal and the valley of the third high-field signal.20

High-Performance Liquid Chromatography
Analysis of Dihydroethidium (DHE) Oxidation
Products
The stock solution of DHE was prepared by dissolving DHE in
deoxygenated dimethyl sulfoxide under argon in the dark with
the concentration checked by UV-VIS. Immediately after
harvesting from rabbits, five 2-mm segments of aorta were
incubated in Krebs buffer containing the metal chelator
diethylenetriaminepentaacetic acid (DTPA, 100 lmol/L) to
minimize artificial oxidation, and DHE (50 lmol/L) in 1.5 mL
Eppendorf tubes (37°C, 30 minutes, in the dark). The tissue
was washed of the DHE with Krebs/DTPA 3 times and
homogenized in 300 lL of cold methanol by centrifugation at
12 000g for 10 minutes at 4°C in the dark. Fifty microliters of
homogenate was taken to determine protein concentration.
Equal amounts of the homogenate were then added to equal
amount of 0.2 mol/L of HClO4 in methanol, vortexed, and
placed on ice for 1 hour in the dark to allow precipitation of
protein. After centrifugation at 20 000g at 4°C for 30 min-
utes, the supernatant was stored at �80°C until analysis.
High-performance liquid chromatography equipped with a
fluorescence and a CoulArray electrochemical detector was
used to separate the O2

��-dependent 2-hydroxy-ethidium (2-
OH-E+) product from the nonspecific product ethidium (E+)
following DHE oxidation in rabbit aorta.21 Samples (50 lL)
were separated by high-performance liquid chromatography
(Shimadzu) after injection onto a Synergi Polar RP C18
column (25094.6 mm, 4 lmol/L, 80 �A, Phenomenex) equi-
librated at 30°C with 60% mobile phase A (10% CH3CN in
potassium phosphate buffer, 50 mmol/L, pH 2.6) and 40%
mobile phase B (60% CH3CN in potassium phosphate buffer,
50 mmol/L, pH 2.6). Separation of products was performed
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by a linear increase to 100% mobile phase B over 30 minutes
at a flow rate of 0.5 mL min�1. Products were quantified by
fluorescence (DHE and 2-OH-E+: kEX 358 nm, kEM 440 nm; E+

kEX 490 nm, kEM 565 nm) and electrochemical oxidation
using a CoulArray detector (Environmental Sciences Associ-
ates; electrodes at 0, 200, 280, 365, 400, 450, 500, and
600 mV). The quantified 2-OH-E+ levels were normalized to
protein concentration.

Aortic Preparation and Functional Measurements
Aortic rings measuring 5 mm in length were mounted on 2
stainless steel hooks immersed in 25 mL organ bath cham-
bers filled with Krebs buffer containing (in mmol/L) NaCl 118,
KCl 4.6, NaHCO3 27.2, MgSO4 1.2, CaCl2 2.5, KH2PO4 1.2,
and glucose 11.1 (pH 7.4). The isometric contractions were
measured in organ chambers at 37°C by using a force
transducer (Radnoti) and recording with Powerlab software
(AD Instruments, United States). Vascular rings were allowed
to equilibrate for 0.5 hours and tension was gradually
increased to 2 g. Vessels were then contracted with the
addition of 80 mmol/L KCl to determine integrity of the rings.
After maximum contraction was achieved, the aortic rings
were washed with Krebs buffer and re-equilibrated. Rings
were then precontracted with phenylephrine (100 nmol/L).
Once a plateau was achieved, increasing concentrations of
acetylcholine were added. The endothelium-dependent relax-
ation was expressed as the percentage of relaxation to
phenylephrine-induced contraction. In separate experiments,
Krebs buffer was replaced with Krebs buffer that was
nominally K+-free. After 20 minutes in K+-free Krebs buffer,
rings were precontracted with phenylephrine (100 nmol/L).
Once a plateau was achieved, increasing concentrations of K+

were administered as previously described.22,23 As the Na+-K+

pump is inhibited in the absence of extracellular K+ and
reactivated by its reintroduction at low concentrations, K+-
induced relaxation has been characterized as an index of Na+-
K+ pump activity in arteries, which is dependent on external
K+ and intracellular Na+ and Mg2+ and inhibited by the pump
inhibitor ouabain.22

Materials
Sodium diethyldithiocarbamate, FeSO4 7H2O, diethylenetri-
aminepentaacetic acid, and glutathione ethyl ester were
purchased from Sigma-Aldrich. N-Hydroxysulfosuccinimido-
biotin was obtained from Merck, dithiothreitol from Promega,
streptavidin–Sepharose from GE Healthcare Bio-Sciences, and
Protein A/G-Plus agarose from Santa Cruz Biotechnology.
Osmotic mini-pumps were purchased from Alzet and CL from
Sigma-Aldrich. Dihydroethidium and N-(Biotinoyl)-N0-(iodoace-
tyl) ethylenediamine were obtained from Invitrogen. Mono-

clonal antibodies were purchased from the following vendors:
b1 subunit of Na+-K+ ATPase from Upstate Biotechnology;
anti-glutathione from Virogen, eNOS antibody from Sigma-
Aldrich, and p47phox, phosphorylated eNOS116, phosphory-
lated eNOS1177, neuronal NOS (nNOS), and a tubulin from
Santa Cruz Biotechnology. All chemicals used in Krebs
solutions were analytical grade and were obtained from BDH.

Statistical Analysis
Results are presented as mean�SEM and median with 25% to
75% interquartile range where necessary. Kolgomorov–
Smirnov test was performed to check for normality. For
comparison between 2 groups either a non-paired Student t
test or a Mann–Whitney test were used where appropriate.
Paired t test was used for analysis of changes in blood
biochemistry and body weight before and after the induction
of hyperglycemia or treatment with CL (Table). For multiple
comparisons, 1-way ANOVA was used with Tukey’s post-hoc
analysis. For vasorelaxation data, concentrations of acetyl-
choline and vasorelaxation responses in rabbits from different
experimental groups were included in 2-way repeated-
measures ANOVA with Tukey or Sidak’s post-hoc tests used
for multiple comparisons. P value <0.05 was considered
statistically significant.

Results

Choice of Hyperglycemia Model to Avoid Redox
Effects of Diabetogenic Agents
Since we aimed to examine the effects of hyperglycemia on
oxidative modification of proteins, we first determined
whether alloxan and STZ, agents commonly used to establish
type 1 diabetes, would have direct redox effects indepen-
dently of diabetes per se. We tested this by examining
glutathionylation of the highly abundant, ubiquitous mem-
brane protein Na+-K+ pump, which mediates inhibition of the
pump function in cardiac myocytes24 and vascular smooth
muscle cells.23 Alloxan, at high concentrations in vitro
(1 mmol/L, 37°C, 30 minutes), reflecting the pancreatotoxic
diabetogenic doses used in vivo, increased glutathionylation
of the b1 Na+-K+ pump subunit (Figure 1A). Moreover,
glutathionylation of the b1 pump subunit was also increased
in rabbits that received a typically diabetogenic dose of
alloxan (100 mg/kg) in vivo but did not develop diabetes due
to insufficient necrosis of pancreatic b cells (Figure 1B).
Higher glutathionylation levels were detected 7 days after
alloxan injection and were similar to levels in rabbits that did
develop diabetes (Figure 1B), thus showing that alloxan can
alter glutathionylation independent of diabetogenesis in vivo.
In contrast, exposure of isolated rabbit cardiac myocytes to
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STZ in vitro (37°C, 30 minutes) decreased glutathionylation of
b1 Na+-K+ pump subunit in a concentration-dependent
manner (Figure 1C). In contrast, S961, the peptide antagonist
of the insulin receptor, had no effects on b1 pump subunit
glutathionylation in vitro (Figure 1D).

Metabolic and Biochemical Parameters and
Vascular Phenotype of S961-Induced
Hyperglycemia
The details of how we determined the appropriate dose of
S961 to establish stable, persistent hyperglycemia is
described by us elsewhere.25 Briefly, after checking for
transient hyperglycemia induced by a bolus injection of
S961 in rabbits, we examined the effects of continuous
subcutaneous infusion at different rates, and found that mean
blood glucose values increased with an increase in the rate of
S961 infusion.25 On the basis of our dose titration experi-
ments, we selected an infusion rate of 12 lg/kg per hour for
the study. Continuous S961 infusion at this rate induced a
relatively rapid rise in blood glucose levels in rabbits that
remained stably high during the 7 days of infusion (Figure 2A).
Since infusion of vehicle (normal saline) alone in 5 rabbits had
no effect oxidative modification of the target proteins (data not

shown), we did not use sham infusions in controls. Mean blood
glucose levels in rabbits infused for 7 days with this rate
compared to levels in controls are shown in Figure 2B. The
S961-induced increase in blood glucose levels was associated
with an increase in plasma insulin levels (Table) consistent with
a counter-regulatory response to the competitive insulin
receptor blockade shown in in vitro studies.18 C-peptide levels
were not within the detection limits of the assay (Table). The
rabbits gained weight normally during the study (Table). S961
infusion had no effect on serum Na+ or K+, renal function, and
cholesterol or triglyceride levels (Table). To examine the
impact of S961 model on vascular physiology, we measured
endothelium-dependent relaxation in aortic rings precon-
tracted with phenylephrine in organ chambers. S961 hyper-
glycemia reduced acetylecholine-induced relaxation
(Figure 2C). In contrast, sodium nitroprusside–induced relax-
ation was unchanged (Figure 2D).

Effects of b3 AR Agonism on NO- and O2
�� Levels,

eNOS Uncoupling, and Endothelial Function in
S961 Model
We co-administered the b3 AR agonist CL by continuous
infusion in hyperglycemic rabbits for the last 3 days of the

Table. Metabolic, Biochemical and Hemodynamic Effects of the Insulin Receptor Antagonist S961 and the b3 AR Agonist CL

Baseline Hyperglycemia

Weight, kg 2.4�0.2 2.7�0.2*

Na+, mmol/L 143.5�7.4 140.2�3.8

K+, mmol/L 4.4�0.2 3.9�0.4

Urea, mmol/L 6.5�2.1 5.7�2.8

Creatinine, mmol/L 67.8�11.3 50.3�11.9

Triglyceride, mmol/L 1.3�1.0 2.2�1.1

Cholesterol, mmol/L 1.5�0.4 1.0�0.5

Insulin, mIU/L <3 121.2�54*

C-peptide, pmol/L <33 <33

Pre CL Post CL

Blood glucose, mmol/L 15.9�0.7 17�0.6

Plasma insulin, mIU/L 104.9�1.1 132.5�17.5

Control CL HG HG+CL

Heart rate 204�6 212�5 205�5 200�3

Systolic blood pressure 93�2 78�5* 90�2 79�2*

Diastolic blood pressure 82�2 66�5* 76�2 63�2*

Mean arterial pressure 86�2 70�3* 81�2 68�2*

Body weight, electrolytes, renal function, lipid profile, insulin, and C-peptide levels in rabbits at baseline and after 7 days of infusion with S961 at 12 lg/kg per hour. n=8. Heart rate,
systolic, diastolic, and mean arterial pressure in rabbits with S961 hyperglycemia (HG) and after the infusion of the selective b3 AR agonist CL316243 (CL, 40 lg/kg per hour, 3 days).
n=10. Blood glucose and insulin levels in S961 hyperglycemic rabbits pre- and postinfusion of CL (40 lg/kg per hour, 3 days). n=5. b3 AR indicates b3 adrenergic receptors; IU,
international units.
*Statistical significance.
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study. Treatment with CL had no effect on plasma glucose or
insulin levels (Table). CL also had no effect on heart rate but it
reduced blood pressure (Table). S961-induced hyperglycemia
impaired endothelial function as measured by acetylcholine-
induced relaxation in aortic rings of hyperglycemic rabbits,
which was restored by in vivo CL treatment (Figure 3A). There
was a marked increase in O2

�� levels in aorta of hyper-
glycemic rabbits as measured by 2-OH-E+ levels, the specific
product of DHE oxidation by O2

�� (Figure 3B). Treatment with
CL reduced O2

�� levels in aorta of hyperglycemic rabbits
(Figure 3B). While NO levels, measured by electron paramag-
netic resonance analysis of NO-Fe(DETC)2 complexes, were
decreased in aorta of hyperglycemic rabbits, they were
restored to almost normal levels by treatment with CL
(Figure 3C).

Since hyperglycemia was associated with increased O2
��

and decreased NO levels, we next examined whether
hyperglycemia had induced eNOS uncoupling. Indeed, con-
sistent with the pattern of changes in the free radicals, we
found an increase in eNOS glutathionylation in aorta of
hyperglycemic rabbits (Figure 3D). In vivo infusion of CL
abolished the increase in hyperglycemia-induced eNOS

glutathionylation (Figure 3D). Taken together, these data
show that CL enhances NO bioavailability, decreases oxidative
stress, recouples eNOS, and improves endothelial function in
S961-induced hyperglycemia.

Effect of b3 AR Agonism on Redox Regulation of
the Vascular Na+-K+ Pump in S961-Induced
Hyperglycemia
Since the Na+-K+ pump plays a major role in regulation of
many essential cellular processes in the vasculature including
regulation of vascular tone, we next examined the effects of
CL on the function of the pump, previously reported by our
group to be regulated by redox-dependent mechanisms in the
vasculature.23 Hyperglycemia decreased K+-induced relax-
ation, which is dependent on Na+-K+ pump reactivation upon
a switch from nominally K+-free to K+-containing solutions in
the tissue bath22 (Figure 4A). CL enhanced K+-induced
relaxation in aortic rings of hyperglycemic rabbits (Figure 4A).
Consistent with this functional effect, CL abolished hyper-
glycemia-induced increase in b1 subunit glutathionylation
(Figure 4B).
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Effect of b3 AR Agonism on Sources of ROS and
Antioxidant Pathways in S961-Induced
Hyperglycemia
Because O2

�� levels were significantly higher in vessels of
hyperglycemic rabbits, and since NADPH oxidase is a major
source of vascular O2

�� in diabetes, we examined whether
activation of the oxidase contributed to the redox stress in
hyperglycemia. Aortic rings from control and hyperglycemic
rabbits were incubated with the membrane-permeable peptide
gp91ds-tat ex vivo. The peptide had no effect on acetylcholine-
induced relaxation in control rings (Figure 5A), but it improved
relaxation in rings from hyperglycemic rabbits (Figure 5B),
suggesting that increased constitutive NADPH oxidase activity
contributed to the hyperglycemia-induced endothelial dysfunc-
tion. Accordingly, gp91ds-tat had no effect on eNOS glutathiony-
lation in control rabbits (Figure 5C), but it decreased eNOS
glutathionylation in aorta of hyperglycemic rabbits (Figure 5D).

Activation of NADPH oxidase depends on translocation of
its cytosolic p47phox subunit to the membrane, a translocation
that is blocked by the cell-permeable peptide gp91ds-tat. We
examined co-immunoprecipitation of p47phox subunit with
eNOS as an index of p47phox translocation to the membrane.
p47phox/eNOS co-immunoprecipitation was increased in
hyperglycemic rabbits, with CL treatment significantly reduc-
ing it (Figure 5E), thus pointing to a probable effect of CL in
decreasing hyperglycemia-induced activation of the oxidase.

Glutathionylation is a reversible reaction, with de-glutathio-
nylation catalyzed by Grx1. Since activation of Grx1 is
believed to occur via translocation to its targets,26 we
examined association of Grx1 with eNOS and b1 Na

+-K+ pump
subunit by co-immunoprecipitation as a surrogate for its
activation. While co-immunoprecipitation of both eNOS/Grx1
and b1 pump subunit/Grx1 was markedly decreased in
hyperglycemia, CL treatment significantly increased these
associations without changing Grx1 abundance (Figure 5F),
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Figure 2. Blood glucose levels and vascular function in S961-induced hyperglycemia. A, Blood glucose
levels of rabbits infused subcutaneously via osmotic mini-pump with S961 (12 lg/kg per hour). (n=5). B,
Mean blood glucose levels of control rabbits and rabbits with S961-induced hyperglycemia over 7 days
(n=10). C, Endothelium-dependent vasorelaxation in aortic rings of control and hyperglycemic rabbits (n=6
control and 5 hyperglycemic rabbits, with 2–3 or 3–5 rings studied per rabbit in each group, respectively).
These baseline data are re-presented in Figure 3A. P=0.01 on 2-way repeated-measures ANOVA. D, SNP-
induced vasorelaxation in control and diabetic rabbits (n=6 rabbits and 2–3 rings per rabbit). P=0.69 on 2-
way repeated-measures ANOVA. Relaxations are plotted as the percentage decrease in PE-induced
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PE, phenylephrine; SNP, sodium nitroprusside.
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thus suggesting that CL might have enhanced de-glutathio-
nylation by Grx1.

Effect of b3 AR Agonism on eNOS
Glutathionylation in Human Diabetes
To assess the relevance of our findings in the S961 model of
hyperglycemia to human diabetes, we examined the changes
in eNOS glutathionylation in vessels harvested from diabetic

patients and their matched controls (both groups had
hypertension, dyslipidemia, and ischemic heart disease with
no differences in age [70�3 versus 69�4 years]). Similar to
the experimental model, there was an increase in eNOS-GSS
in vessels of diabetic patients (Figure 6A). CL stimulated NO
release in human endothelial cells (Figure 6B) and it
decreased the levels of eNOS-GSS in the vessels of diabetic
patients (Figure 6C). In contrast to signaling in cardiac
myocytes, b3 AR stimulation in human vessels was not
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mediated by differential phosphorylation of eNOS27,28 (Fig-
ure 7A) nor through nNOS28 as we did not detect a signal for
nNOS expression in human endothelial cells or vessels of
diabetic and nondiabetic patients, regardless of exposure to
CL (Figure 7B). This might be due to very low constitutive
expression of nNOS in endothelial cells.29 Taken together,
these human data suggest the presence and support the
potential significance of the redox pathways that we have
examined in detail in the S961 model.

Discussion
We have established a model of persistent hyperglycemia by
competitive antagonism of insulin receptor by S961 and
describe the pathophysiological vascular phenotype of the
model. We set out to determine the redox effects of b3 AR
stimulation in experimental hyperglycemia and it was impor-
tant to first examine whether diabetes-inducing agents have
confounding effects on the target proteins of interest. The
most commonly used diabetogenic agent STZ, a glucosamine-
nitrosourea taken up by pancreatic b cells causing their
necrosis,30 decreased the oxidative modification of b1 Na

+-K+

pump subunit in vitro. With short in vitro exposure time, this is
likely due to the property of STZ to release NO,31 shown to
reduce b1 subunit glutathionylation.11 When administered at
high toxic doses in vivo, STZ increases cellular ROS levels and
causes undesirable extrapancreatic genotoxic effects that

further complicate differentiation of STZ direct molecular
effects from effects of diabetes that it induces.30 Alloxan, the
second most commonly used diabetogenic agent, increased
b1 pump subunit glutathionylation both in vitro and in vivo
independently of diabetogenesis. These effects are consistent
with ROS generation and thiol oxidizing properties of
alloxan.32 In contrast to STZ and alloxan, S961 peptide had
no effect on oxidative modification of b1 pump subunit
in vitro, suggesting that it did not have direct redox effects on
the Na+-K+ pump.

Effects of single injections of S961 on blood glucose over a
period of hours have been previously reported.18 Here we
show that blood glucose rises rapidly and remains stable
when S961 is administered at a constant rate, contrasting the
early instability that often includes life-threatening hypo-
glycemia after injection of STZ or alloxan. It is an advantage of
this new model that blood glucose levels are readily titrated to
a target range with a change in infusion rate.25 The model also
allows cessation of infusion at any time and hence studying
the reversibility of the effects caused by the hyperglycemic
state. We detected no effect on metabolic variables except
serum glucose for the duration of S961 infusion and,
importantly, no effects on nutritional status or ketoacidosis,
a complication often seen in alloxan- and STZ-induced
diabetes. Ketoacidosis increases ROS generation indepen-
dently of hyperglycemia.30 Of mechanistic importance, S961
provides a model of hyperglycemia and insulin signaling
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blockade, central features in pathobiology of vascular disease
in diabetes16,17 as opposed to the commonly used insulino-
penic hyperglycemia models where insulin signaling is usually
unaltered. In this study we infused S961 for 7 days. However,
in principle, it should be possible to use the model for the
study of hyperglycemia for longer durations.

In S961-induced hyperglycemia, we show that activation of
b3 ARs improves endothelial function through modulation of
oxidative pathways that lead to recoupling of eNOS and re-
establishment of NO/redox balance (summarized in Figure 8).
Although these effects are shown in relatively short-term
hyperglycemia, our recent report of protective effects of b3
AR agonism in the heart in hyperglycemic state,25,33 the close
similarities of b3 AR-induced redox effects with angiotensin-
converting enzyme inhibitors,7 and presence of the b3 AR-
mediated effects in vascular tissue of diabetic patients we

show here point to potential therapeutic benefit of b3 AR
agonists for cardiovascular protection in diabetes.

S961 infusion increased vascular levels of ROS, recapitu-
lating a central feature in the pathophysiology of diabetes-
induced vascular disease. The effects of gp91ds-tat to
increase endothelium-dependent vasorelaxation and to
reduce eNOS glutathionylation in aorta of hyperglycemic
rabbits as opposed to no effects in controls suggest that
NADPH oxidase is pathologically activated in the vasculature
of hyperglycemic rabbits and that its activation is upstream to
glutathionylation-mediated eNOS uncoupling and endothelial
dysfunction. This is consistent with NADPH oxidase as the
major source of ROS in other experimental models of
diabetes34 and vessels of diabetic humans.35 Since gp91ds-
tat prevents docking of the cytosolic p47phox subunit to the
membranous gp91phox, the isoforms activated in S961
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hyperglycemia are likely Nox1 or Nox2, which require p47phox

translocation to membrane.2 Consistent with this, we
detected an increase in co-immunoprecipitation of p47phox

with eNOS, a surrogate for association/translocation of the
subunit to membrane, in aorta of hyperglycemic rabbits.
Complex interactions between membrane and cytosolic
sources of ROS such as mitochondria and xanthine oxidase
in endothelial cells have been previously shown.36 Although
we implicate NADPH oxidase-mediated eNOS uncoupling as
an upstream event in vessels of S961 hyperglycemic rabbits,
a crosstalk with other sources of ROS and their activation in
the vessel wall is also likely. The lower levels of NO in
hyperglycemia can be the result of scavenging by NADPH
oxidase-derived ROS. Additionally, a shift in redox potential by
ROS can promote eNOS glutathionylation and uncoupling.
Thus, eNOS glutathionylation acts as a mechanism for
amplification of ROS generation, exacerbating NO/redox
imbalance in hyperglycemia.

To examine the putative mechanisms for eNOS uncoupling,
we focused on eNOS glutathionylation as it is an enzymat-
ically reversible mechanism (like phosphorylation) and is likely

to be involved in pathophysiological signaling, in particular in
our model of relatively short-term hyperglycemia. It is
plausible that increased redox stress by eNOS glutathionyla-
tion-mediated O2

�� generation may also lead to BH4 depletion
that can play a role in eNOS uncoupling in S961-induced
hyperglycemia. Such a role might particularly be of more
pathological significance over extended periods of hyper-
glycemia. Supportive evidence for a potential role of BH4 in
S961 hyperglycemia is provided by our observations in
isolated cardiac myocytes where incubation of the myocytes
with L-sepiapterin, a cell-permeable immediate precursor of
BH4 that is converted to BH4 intracellularly via the pterin
salvage pathway,37 increased the electrogenic Na+-K+ current
in voltage clamped cardiomyocytes of rabbits with S961
hyperglycemia (unpublished data). This increase in pump
current was abolished by L-NG-nitroarginine methyl ester,
showing that stimulation was mediated by eNOS-derived NO
production enhanced by ex vivo supplementation of BH4. In
previous reports we have shown that NO generation from
eNOS stimulates the Na+-K+ pump,10,38 and conditions that
cause eNOS uncoupling inhibit the Na+-K+ pump.24,39This
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Figure 6. eNOS glutathionylation in vessels of diabetic humans and effects of b3 AR
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nuclei were counterstainedwith DAPI (blue). n=4. Cells from 2 to 3 randomly chosen areas of
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scheme shows a direct and physiologically important signaling
interaction between these 2 important membrane biomole-
cules that colocalize in the structured membrane signaling
microdomains40 where changes in redox milieu are sensed by
eNOS and transduced to regulation of the Na+-K+ pump
function via redox-dependent mechanisms. We have shown
that eNOS glutathionylation is also increased in cardiac
myocytes of S961 hyperglycemic rabbits and contributes to
oxidative pump inhibition.25 The effect of L-sepiapterin to
stimulate Na+-K+ pump from a basal inhibited state compared

to controls suggests that decreased BH4 may coexist and play
a role in eNOS uncoupling in the S961 model.

Reversal of glutathionylation of proteins (ie, de-glutathio-
nylation) is catalyzed by Grx1. Grx1 is implicated in regulation
of many intracellular processes related to homeostasis and
stress response,26 including redox-mediated regulation of
eNOS function.41 Despite its important roles, mechanisms
regulating cellular activity of Grx1 are poorly understood. It
has been proposed that association of Grx1 with scaffolding
proteins (eg, caveolae in membrane lipid rafts) may regulate

0

20

40

60

80

100

120

140

160

-CL +CL
0

20

40

60

80

100

120

140

-CL +CL

HUVECs Myocardium   -CL        +CL          -CL           +CL
Vessels (non DM)

IB: nNOS

IB: α tubulin

155kDa

50 kDa

Vessels (DM)

A

B

IP: eNOS

IB: peNOS116

IB: peNOS1177

IB: eNOS

135kDa

135kDa

135kDa

-CL   +CL  -CL   +CL   -CL  +CL  -CL    +CL

Figure 7. Effects of CL on eNOS phosphorylation in human endothelial cells, and expression of nNOS in
human endothelial cells or vessels. A, Immunoblot (IB) of peNOS at serine 114 and 1177 residues from
eNOS immunoprecipitate of HUVECs with (+CL) and without (�CL) exposure to CL (n=4). B, Immunoblots of
nNOS in HUVECs, human myocardium (positive control), and arterial segments from diabetic (DM) and
nondiabetic (non DM) patients exposed to CL ex vivo. CL indicates CL316243; eNOS, endothelial nitric
oxide synthase; peNOS, phosphorylated endothelial nitric oxide synthase; HUVECs, human umbilical vein
endothelial cells; IB, immunoblot; IP, immunoprecipitate; nNOS, neuronal nitric oxide synthase.

DOI: 10.1161/JAHA.115.002824 Journal of the American Heart Association 13

b3 AR and Vascular Dysfunction in Hyperglycemia Karimi Galougahi et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

D
ow

nloaded from
 http://ahajournals.org by on A

ugust 8, 2022



Grx1 function, as the activity of the enzyme is thought to
occur via an encounter reaction.26 Consistent with this
proposal, we show that Grx1 co-immunoprecipitates with
eNOS in rabbit aorta. Interestingly, despite no change in the
abundance of Grx1 in hyperglycemia, and an increase in
glutathionylation of eNOS, we detected markedly lower
signals for Grx1/eNOS co-immunoprecipitation in aorta of
hyperglycemic rabbits. This suggests that interaction of Grx1
with its substrate (ie, glutathionylated cysteines) is not

determined by abundance of the substrate, but by other
disease-related mechanisms. ROS and reactive nitrogen
species reduce Grx1 activity41; therefore, it is likely that
hyperglycemia may impair the enzyme function through
redox-related mechanisms, leading to a decrease in de-
glutathionylation and thereby increase in eNOS glutathiony-
lation.

Infusion of CL restored NO levels in aorta of hyperglycemic
rabbits. These effects of CL could be the result of less
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Figure 8. b3 AR stimulation, redox- and NO-dependent signaling and endothelial function in hyper-
glycemia. A, NADPH oxidase (NOX) is activated in aorta of rabbits with S961-induced hyperglycemia,
increasing the levels of ROS. ROS can directly scavenge and decrease NO levels, increase eNOS
glutathionylation (eNOS-GSS) and, possibly, impair de-glutathionylation by affecting the activity of
glutaredoxin-1 (Grx1) through yet unknown but likely redox-dependent mechanism(s)26 (dashed line).
Glutathionylation-mediated eNOS uncoupling results in eNOS-derived ROS generation, which might further
increase eNOS-GSS and reduce NO bioavailability in endothelial cells (ECs) and impair relaxation of vascular
smooth muscle cells (VSMCs). B, The b3 AR agonist CL316243 (CL) increases NO. NO effect in reducing
ROS by direct quenching may also decrease eNOS-derived ROS by reducing ROS-induced eNOS-GSS (green
cross). Additionally, NO may decrease NOX activity (dashed line). An increase in Grx1/eNOS association by
CL suggests enhanced eNOS de-glutathionylation by Grx1. These changes induced by CL culminate in
enhanced vasodilatation, which my in turn reduce blood pressure (dotted arrow). A decrease in blood
pressure per se may contribute to these beneficial changes (dotted line). b3 AR indicates b3 adrenergic
receptors; eNOS, endothelial nitric oxide synthase; GSS, glutathionylation; ROS, reactive oxygen species.
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quenching of NO by the decreased levels of ROS, a reduction in
ROS-induced eNOS glutathionylation, and an increase in
eNOS/Grx1 interaction promoting eNOS de-glutathionylation
and recoupling. The effect of CL to decrease eNOS glutathiony-
lation is in agreement with higher eNOS glutathionylation in the
hearts of b3 AR�/� mice we have recently reported,25

suggesting that both constitutive- and agonist-induced activa-
tion of the receptor is necessary to maintain eNOS in coupled
state. In contrast to NO release by b3 AR stimulation, in vivo
treatment with an external NO donor increases eNOS glu-
tathionylation,42 an effect that is consistent with NO donor-
induced endothelial dysfunction. These differential effects are
likely due to regulated endogenous NO generation via receptor-
coupled pathway in themembrane signalosomes as opposed to
general exposure of cells to uncontrolled levels by external NO
donors. Although not examined, it is plausible that other
antioxidant mechanisms in addition to the thiol reductase
system are facilitated by treatment with CL, restoring NO levels
in hyperglycemic rabbits. Since activation of insulin receptors is
coupled to eNOS stimulation,17 blockade of insulin receptor by
S961 might have also contributed to reduced NO bioavailability
in hyperglycemic rabbits. Because of the marked counter-
regulatory increase in insulin levels, slightly higher affinity of
insulin in binding to insulin receptor compared to S961 and
competitive nature of antagonism of the insulin receptor by
S961 shown previously,18 the blockade of insulin receptor–
coupled signaling in S961 hyperglycemia is likely relative and
not absolute. Moreover, near-complete restoration of NO
bioavailability by CL co-administered with S961 suggests that
insulin-receptor-coupled eNOS activation probably did not
significantly contribute to lower NO levels in S961 hyper-
glycemic rabbits.

The effect of CL in decreasing O2
�� levels is the result of

recoupling of eNOS as well as a decrease in NADPH oxidase
activation as suggested by reduction in p47phox/eNOS co-
immunoprecipitation. NO can directly inhibit NADPH oxidase
by nitrosylation of p47phox, although this does not affect its
membrane translocation.43 Other putative mechanisms are
oxidative modification of cysteines on p47phox, important in
downregulation of the enzyme,44 and, as recently reported by
our group in cardiac myocytes, by NO signaling-mediated
dephosphorylation and inactivation of p47phox subunit by
protein phosphatase 2A.38

CL decreased hyperglycemia-induced glutathionylation of
b1 Na

+-K+ pump subunit, a redox modification that inhibits the
pump,23,24 and enhanced pump activity as implied by
increased K+-induced vasorelaxation. This should largely
reflect the signal from vascular smooth muscle cells as the
media layer constitutes the major part of the vascular wall.
We have previously shown that AngII inhibits the pump in
vascular smooth muscle cells via an NADPH oxidase-
dependent increase in b1 subunit glutathionylation.23 CL

restored NO bioavailability in aorta and we have shown that
b3 AR stimulation in cardiac myocytes decreases glutathiony-
lation of the Na+-K+ pump via NO-dependent mechanisms
in vitro10 and in vivo in hyperglycemia.25 A reduction in NO
bioavailability in endothelial cells of hyperglycemic rabbits
diffusing into the subjacent vascular smooth muscle cells is a
likely mechanism by which glutathionylation of b1 Na+-K+

subunit is increased, and reversed by re-establishment of NO
levels by b3 AR agonism. Moreover, similar to what we
observed with eNOS, CL also enhanced co-immunoprecipita-
tion of Grx1 with b1 subunit, which may indicate facilitation of
b1 subunit de-glutathionylation. Given the central role of the
pump in regulation of cellular homeostasis, enhancement of
Na+-K+ pump function by CL is expected to contribute to
improved vascular function in diabetes.23

Vasodilatory effects of nebivolol, a highly selective b1 AR
blocker, in arteries of normal animals have been reported to
occur via b3 AR agonism.45 However, nebivolol has a weak
affinity for human b3 AR and elicited no receptor-coupled
response in Chinese hamster ovary cells expressing b3 ARs.

46

Using CL, with its high selectivity for b3 ARs47 and high
efficacy,48 we show potent, novel antioxidant and vasoprotec-
tive effects of b3 AR stimulation in hyperglycemia. Glutathiony-
lation of eNOS has been reported in STZ-induced diabetes.49

Our recent report of eNOS glutathionylation as a critical switch
in AngII-induced endothelial dysfunction7 suggested a mech-
anistic rationale for renin–angiotensin system–mediated dia-
betes-induced complications.17 The current study shows the
central role of this oxidative modification of eNOS in the
pathophysiology of vascular dysfunction, its cellular regulatory
mechanisms, a novel therapy that modulates it in experimental
hyperglycemia, and provides supportive evidence for potential
significance of this pathway in human diabetes.

Early rodent models of diabetes and obesity showed
promising effects of b3 AR agonists on glycemic control and
weight loss. However, subsequent human trials were disap-
pointing, at least in part due to major differences in
pharmacology of the agonists between rodent and human
receptors, differences in tissue-dependent expression levels,
poor selectivity of the agonists for b3- versus b1/b2 ARs, and
unsatisfactory oral bioavailability and pharmacokinetic prop-
erties.50 Problems with pharmacological properties have been
overcome51 and one compound, Mirabegron, is now in clinical
use for overactive bladder syndrome.52 Evidence from exper-
imental models that support beneficial effects of b3 AR
agonists in failing heart is accumulating,10,11,52–54 and a
phase 2 first-in-human clinical trial of Mirabegron in chronic
heart failure has recently been completed.55 The protective
effects of a b3 AR agonist in hyperglycemia we report suggest
that they can be potentially useful in treating the vascular
dysfunction and cardiovascular complications of diabetes. We
believe such a use deserves further clinical investigation.
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