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ABSTRACT

We report on the initial findings of a study aimed at developing ways to address threshold concepts in the design of
undergraduate curricula, involving academics in two disciplines (physics and law) from four Australian universities

The present paper compares two different processes by which physics academics identified and characterised a candidate
threshold concept, measurement uncertainty, using student interviews and their own experiences as teachers.
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INTRODUCTION

It has been suggested that, within each discipline, there are a limited number of concepts that are
‘threshold’ in nature, so-called because they act as ‘conceptual gateways’ to disciplinary ways of
thinking. Such concepts are proposed to form a subset of fundamental (or key) discipline concepts,
distinguished by five criteria: that such concepts are (1) transformative, (2) integrative, (3) probably
irreversible, (4) frequently boundary-defining and (5) potentially troublesome to learn (Meyer & Land,
20086).

Because of their gateway nature, threshold concepts are considered to play a key role in the
development of students’ disciplinary ways of thinking. Students who gain understanding of a
threshold concept obtain “a transformed internal view of subject matter, subject landscape or even
world view” (Meyer & Land, 2005 p.373), leading not only to new ways of understanding a subject
area but a shift in the learner’s sense of identity. Students who fail to grasp a threshold concept find
their learning path blocked, with no means to proceed.

However, the very transformative and integrative nature of these concepts can make them
troublesome to learn (Perkins, 2006). Incomplete understanding or misunderstanding of threshold
concepts is likely to have long-lasting implications for students’ learning in the subject area, including
their ability to apply their learning in new and unfamiliar contexts. Such incomplete learning creates a
path-blocking effect and a subsequent push to rote learning (Davies, 2006). Such rote-learning may
explain why students may be able to apply discipline methods well enough to pass an exam, but may
not be able to adapt their learning to a new context or setting and may not acquire discipline ways of
thinking. Teachers of physics (and other science disciplines) may recognise such instances in, for
example, students who can apply the equations that express Newton’s law, but without letting go of a
fundamentally Aristotelian view of the relationships between force and motion.

Threshold concepts may thus provide a particularly valuable focus for curriculum design attention.
However, the exploitation of such concepts as curriculum foci is not unproblematic. Although the idea
of threshold concepts has proved to have widespread appeal to teachers in higher education, and
Meyer and Land (2005) note that academics are quick to suggest threshold concepts in their own
disciplines, it is not necessarily easy for academics to distinguish threshold concepts from key
concepts. As yet, no clear strategies have been devised to assist teachers in making this distinction,
nor in helping them identify what it is about a particular threshold concept that makes it troublesome
for students. The development of such strategies is the focus of this paper.
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Davies (2006) suggests that threshold concepts may be identified and characterised through
comparison of the reflections of multiple experts, and comparison of the concepts of experts and
students. Another approach is illustrated in two recent studies of threshold concepts in disciplines
closely related to physics. Park and Light (2009) used semi-structured interviews to categorise types
and levels of student understanding of atomic structure, aiming to better understand the possible
threshold nature of that concept. In an analysis of interviews with undergraduate engineering
students, Scheja and Pettersson (2010) found compelling evidence of the threshold nature of both
‘limit” and ‘integral’ in mathematics. Such studies raise the potential value of student interviews to
explicate threshold concepts. However, this approach is resource intensive, and so not to be
undertaken lightly.

This literature raises two potential ways to clarify the troublesome and path-blocking nature of
threshold concepts — a resource intensive approach involving interviews with students, and a less
resource intensive approach based on the prior experiences of teachers with student misconceptions
in their own fields. This paper provides a comparison of the two approaches in one particular case, in
which a group of experienced academics, all teaching in first year physics, were brought together to
identify a threshold concept in physics and collaborate on targeted curriculum development.

SELECTING A THRESHOLD CONCEPT

Initially, five physicists from four Australian universities, chosen to sample different university types
and different geographical regions, were brought together in a one-day meeting facilitated by
educational developers. The physicists were introduced to threshold concepts through the five criteria
outlined above, which were illustrated through a concrete, everyday example (ethics). They were then
asked to brainstorm key discipline concepts without reference to their possible threshold nature, and
subsequently to identify candidates for threshold concept status using Meyer and Land’s criteria.

They identified several concepts as fundamental to the discipline, listed in Table 1, where they have
been loosely grouped into different categories. We note that more than one third of the concepts (all
of those in the two categories related to modelling and observation) are not exclusively characteristic
of physics — that is, they are not terms that can be associated primarily with the disciplinary language
— and yet they were clearly perceived as crucial elements of the discipline. From this list, the
academics selected the concept of uncertainty as the potential threshold concept to be used in this
project. This was subsequently clarified to be measurement uncertainty, to exclude the concept of
inherent uncertainty and incompatible observables in quantum mechanics. An analysis of
measurement uncertainty in terms of Meyer and Land’s criteria suggests it is a suitable candidate.

Table 1: Key concepts emerging from the physics brainstorm

Key concept Grouping

Field, flux, force, momentum, entropy, impulse, energy, potential, temperature, Terms used to name key discipline

induction, acceleration, concepts or concept clusters

wave-particle duality, conservation laws, space-time, gravity, relativity,

equilibrium

First principles, diagrams, modelling, vectors, frames of reference, idealisation- Terms related to modelling or the tools

reality used in modelling

Significance, approximation, orders of magnitude, uncertainty, measurement Terms connected with the act of
observation or measurement

1. Transformative There are several symptoms of students’ behaviour which suggest that a good
understanding of the role of measurement uncertainty results in a transformation in a student’s
thinking. Before a student has grasped the role of uncertainty in measurement, they see the outcome
of an experiment as a single number (Buffler, Allie & Lubben, 2001). This means that comparisons are
made between the values x; and x, rather than say x; + o;and x,t g, (where g;and o, are measures
of uncertainty on x;and x, respectively). Uncertainty is seen as a mistake — something to be
eliminated or remedied, or which indicates an experiment has been performed incorrectly. When
graphing data, lines are drawn to connect points rather than to show a trend. Once the threshold has
been crossed, students experience a radically revised view of many aspects of measurement,
including factors contributing to experimental design, the limitations on experiments and inferences
from data, and indeed the very nature of experimental results. Uncertainty is seen as an intrinsic part
of the result of a measurement and as essential in assessing the quality of the outcomes of an
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experiment; its target magnitude becomes something that is an important criterion in the design of an
experiment; and extrapolations/interpretations are made taking uncertainties into account.

2. Integrative The concept of measurement uncertainty integrates a range of concepts and skills in a
way that makes more meaning out of the whole. Concepts such as random and systematic error,
calibration, repetition, hypothesis testing, significance, tolerances, populations and samples,
experimental design, the limits of what can be discovered, interpolation and extrapolation, modelling,
approximation and more are brought together in a complex cluster to form a key element of scientific
method.

3. Irreversible Once a student has grasped the role of uncertainty, their views of the interdependency
of theory, experiment and data are irreversibly changed. Their ways of reading data change so that,
for example, they distinguish between scatter and pattern, and they recognise all data as contestable.

4. Bounded or boundary-making Of the five criteria, the idea that threshold concepts help to define the
boundaries of the discipline to which they belong is often the most difficult to interpret, and indeed the
physics academics in this project decided to discard it as a criterion. Measurement uncertainty
certainly does not serve to demarcate the discipline boundaries of physics from other sciences,
instead comprising a cluster of ideas, capabilities and concepts shared by statistics, the sciences and
many social science disciplines. It could, however, be seen as one of the ‘boundary’ concepts of
quantitative, empirical studies.

5. Troublesome There is no doubt that uncertainty is frequently a troublesome concept for students to
grasp. The mathematical formalism is non-trivial; the idea of quantifying something that by definition
you are unsure of and cannot directly measure is deeply challenging; and learning to ‘read’ data is
something that takes practice. In addition, the challenge to the idea of a ‘true’ or ‘exact’ value is often
at odds with the definite language of theory (and hence lectures and textbooks). The realisation that
data (upon which theories depend) are inherently uncertain, and that the process of measurement is
imperfect, leads students naturally and compellingly to question the basis of physical knowledge. This
can be deeply unsettling for students who crave clarity and certainty.

A key reason why the academics chose measurement uncertainty as the subject of study (rather than
previously identified threshold concepts such as gravity or entropy) was the importance they felt it
should be accorded in the development of disciplinary thinking. An understanding of measurement
uncertainty — that is, an understanding of how to identify different sources of uncertainty, quantify their
effects, take those effects into account in planning experiments, analysing data and making logical
inferences from those data, and an appreciation of the consequences of uncertainty — is one of the
core characteristics and capabilities of an effective scientist. This is particularly true in physics, where
many experiments are aimed at making precise quantitative measurements, and many theoretical
predictions are expressed as numbers. However, traditional physics curricula often relegate
uncertainties to the realm of the lab alone, or perhaps augment lab experiences with one or two
supporting lectures or tutorials. Unfortunately, these activities rarely seem to engage students’ deeper
learning. Indeed, for many students, the process of identifying, quantifying and propagating
uncertainties is a tedious and occasionally mystifying chore, and a distraction from the real business
of getting a result. More explicit pedagogical interventions may be required to provide students with
structured opportunities to acquire this threshold concept.

UNCOVERING STUDENT CONCEPTIONS OF UNCERTAINTY

In line with Davies’s suggestion, the lecturers first tried to use their own experiences and expertise to
describe common student (mis)understandings of uncertainty. Their expectations, emerging from
discussions at the initial one-day meeting, are shown in Table 2.

Table 2: Physics teachers’ expectations regarding student conceptions of uncertainty

Stage 1 No conception of uncertainty; no thought of it in relation to experimental outcomes

Stage 2 Uncertainty is seen as mistakes, errors

Stage 3 Uncertainty is seen as a means of quantifying how wrong you are

Stage 4 Uncertainty is understood as something that must be planned for

Stage 5 Uncertainty is a comprehensible, modelable, quantifiable, communicable result
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The next step in the project was to investigate students’ actual understandings of measurement
uncertainty. Through a series of web-based discussions and video conferences, the team used the
outcomes of their discussions at the initial meeting and existing literature on teaching measurement
uncertainty, particularly the work of Andy Buffler (Buffler et al., 2001, 2008), to design two scenarios to
present to students for discussion in interviews. Scenario A (Figure 1) used a physics context
(measuring the earth’s gravitational field) but only minimal description of the experiment, while
scenario B (Figure 2) used a daily-life context (mobile phone battery lifetimes) and more experimental
detail.

You go to a Magnetic Observatory where scientists are making sensitive measurements of the
Earth’s magnetic field and they wish to compare these measurements with theories about the
composition of the Earth.

You go into a laboratory where two groups of scientists (group A and group B) are each busy with
their own experiment to measure the magnetic field in the laboratory on that day. The table and
graph below show the data gathered by each group.

65
Trial Group A Group B
[ | [ ] ] Magnetic Magnetic
field (uT) field (uT)
%0 " ¢ 1 55 60
- 'S 2 52 50
g ¢ 3 57 62
3 5 ¢ ¢ | 4 55 48
g ¢ 5 58 62
2 ‘ N 6 52 50
T +Group A
e : = ——
S WGroupB
b | average 55.4 56.1
45
40
0 1 2 3 4 5 [ 7 ]
Trial

Figure 1: Scenario A, Magnetic Field Measurements

Semi-structured interviews were carried out with 24 first year students (6 randomly-selected from
each institution). During the interviews, Scenario A was presented first at two institutions, while
Scenario B was presented first at the other two. In both cases, students were initially asked to
comment generally on the data. With Scenario A, students were asked to comment on whether one
group’s measurements were “better’ than the others; with Scenario B, students were asked to say
which brand they would recommend to a friend. They were also asked if there was a true value of
battery life or B field. Finally, they were asked for examples of situations where uncertainty might
matter. At all stages, the students were asked to explain their answers, and interviewers followed up
on concepts and difficulties they raised.
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Battery life is a big factor that customers take into account when deciding which mobile phone to
purchase.

A consumer group wishes to advise potential purchasers of competing Sony-Ericsson and Nokia
phones about the battery life of phones available from each manufacturer.

The consumer group devise a standard test in which each phone is initially charged fully. For each
phone, the display brightness is set to 50% and backlight is illuminated for 10s. used

A landline is called with each phone. The call continues until the battery drains, and the phone shuts
itself off.

The consumer group test the Sony Ericsson K610i and the Nokia N72.

The time for each phone to shut off is shown in the table and graph below (each mobile phone is
recharged between trials).

430 Trial Nokia time Sony-
m to shut off Ericsson
g 400 . (minutes) | time to shut
2 . off
£ . . (minutes)
= 350 B 1 335 346
5 ? ¢ o0 2 362 404
3 [ | i 3 332 416
£ 300 & Nokia
4 . [ _ 4 335 295
o M Sony-Ericsson 5 337 310
.E 250 6 402 288
7 380 340
300 8 362 402
average 355.6 350.1
0] 2 4 [ 8 10
Trial

Figure 2: Scenario B, Mobile phone battery lifetimes

PRELIMINARY RESULTS

The interviews were analysed phenomenographically (Akerlind, 2005), with the aim of identifying
variation in the ways in which students understand the concept of measurement uncertainty. This
involved four physics lecturers and two educational developers experienced in phenomenographic
analysis comparing and contrasting each of the interview transcripts in a search for key similarities
and differences. The similarities enabled identification of common aspects of students’ understanding
of uncertainty, whilst the differences highlighted variation in what some students noticed about
uncertainty that others were unaware of. This analysis suggests that there are three distinct aspects
to students’ understandings of uncertainty — a pattern-recognition element that allows students to
distinguish between trends, noise and potential anomalies; a formal, procedural understanding that
allows them to quantify and combine different elements of uncertainty; and a “meaning” element that
invests uncertainty with a communicable meaning that has implications beyond the given data. A
sophisticated understanding of uncertainty involved the integration of all three aspects, whilst a less
sophisticated understanding emphasised only one or two of these aspects.

Examples of student comments that focus on the pattern aspect include “Group A’s data is more
constant than Group B’s,” “it goes up and then down and then up again. That is the first thing |
noticed.” “... it looks like a parabola ... actually | take back the parabola thing. It looks a lot more like a
sine wave.” Some students explicitly made a connection between scatter and error, e.g. “It seems like
there is a lot of error because it is not close. There is a wide change here... if there was less error the

data would be closer together ...”

The difficulty that many students had in quantifying uncertainty (the formal aspect) is evident from
responses such as “This is the worst part about physics, it’'s working out that absolute or relative error,
yeah, what is the error?...It’s either half the smallest measurement that you're using.... Or else you do
all these weird, complicated equations...,” “...that is how you calculate uncertainty by doing the
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equation of maximum value over the number of trials,” and again, “Minus one something from
something divided by something?”

An awareness of the meaning of uncertainty was most often evident in the students’ suggestions for
causes of scatter or for situations where uncertainty might matter, such as this response from a
student doing biomedical sciences: “...if I go on to do medicine, and | give someone morphine, two
milligrams of morphine, you can say make you nice and happy, and the syringe is 10 mills plus or
minus half a mill, that half a mill is going to matter. Because if | give them too little, it mightn’t do
anything to them, and if | give them too much, it might just kill them,” and in this more prosaic but
highly practical suggestion, “They should have uncertainty in their bus timetables.”

The interviews suggest that it is the integration of these three elements into a coherent, interacting
whole that characterises the threshold aspect of coming to understand measurement uncertainty.
Most students recognised differences in spread in the data, and most were willing and able to suggest
experimental and/or environmental factors contributing to the scatter and to differences between data
sets. Most were also reluctant to imagine a ‘true value,’ instead using the term as a kind of short hand
for an accepted or published value that they might compare results to. However, very few students
were able to quantify their sense of the scatter, or employed disciplinary language such as mean or
standard deviation when describing the data. This lack of integration is somewhat different from the
stages in student understanding proposed by the physics academics, suggesting that the less
resource intensive way of identifying threshold concepts, while potentially powerful, may miss some of
the ways in which threshold concepts present barriers to conceptual change and development of
disciplinary ways of thinking. Thus although both processes for analysing threshold concepts were
valuable, in this study, the student interviews provided additional insights to guide subsequent
pedagogical interventions.

The next stage of the project (not described here) uses the understanding of student conceptions that
resulted from the interviews to design different curriculum interventions aimed at improving student
learning of the threshold concept. A common ‘post-test’ was implemented in each institution to assess
the effectiveness of the interventions. Further details of the interview analysis and the results of the
pedagogical interventions will form the focus of future papers and will be available at http://www.
thresholdvariation.edu.au from late 2010.
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PREFACE
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educators in the Uniserve Science Conference. We look forward to the continued presence of
Associate Professors Mary Peat and lan Johnston.

With this year’s Proceedings we begin a new tradition: that of Open Source publishing. Furthermore,
the submission, reviewing and publication processes have all been handled by an online system. We
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system allows incredible benefits in terms of tracking and we look forward to a smoother flow in 2011.

A series of papers from the 2009 UniServe Science Conference have been published in the
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